Polysilicon Laminated With Silicide Patents (Class 257/755)
  • Patent number: 5444302
    Abstract: In forming an electrode 2 on a silicon 6 oxide film 5 on a semiconductor substrate 4 through a silicon oxide film 5, for example, the gate electrode 2 is structured in a laminated structure of a plurality of polycrystalline silicon layers 6. The portion of the gate electrode 2 is formed by a method of manufacturing a thin film having a process of depositing amorphous layers and a process of crystallizing (recrystallizing) this amorphous material.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: August 22, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakajima, Hideo Miura, Hiroyuki Ohta, Noriaki Okamoto
  • Patent number: 5444285
    Abstract: Bipolar transistors and MOS transistors on a single semiconductor substrate involves depositing a single layer of polysilicon on a substrate, including complementary transistors of either or both types, and a method for fabricating same. The devices are made by depositing a single layer of polysilicon on a substrate and etching narrow slots in the form of rings around every bipolar emitter area, which slots are thereafter filled with an insulating oxide. Then, emitters and extrinsic base regions are formed. The emitters are self-aligned to the extrinsic base regions. An optional cladding procedure produces a surface layer of a silicide compound, a low resistance conductor. The resulting structure yields a high-performance device in which the size constraints are at a minimum and contact regions may be made at the top surface of the device.
    Type: Grant
    Filed: November 9, 1994
    Date of Patent: August 22, 1995
    Assignee: Analog Devices, Inc.
    Inventors: Derek W. Robinson, William A. Krieger, Andre M. Martinez, Marion R. McDevitt
  • Patent number: 5442226
    Abstract: In a semiconductor device, an emitter electrode has a polysilicon layer provided in a first contact hole and on a first insulating film. The polysilicon layer is in contact with an emitter region and is covered with a metal layer. A second contact hole is provided on a part of a second insulating film located on a substantially flat portion of the metal layer. A third contact hole is provided in those portions of the first insulating film and a second insulating layer which are located on a base region.
    Type: Grant
    Filed: April 26, 1993
    Date of Patent: August 15, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeo Maeda, Hiroshi Gojohbori, Takeo Nakayama
  • Patent number: 5428244
    Abstract: The adhesion between a metallic silicide film and a dielectric layer of a semiconductor device is improved. Formed on a silicon substrate is a gate dielectric layer formed on which is a metallic silicide film. A silicon dielectric layer of a rich-in-silicon-content type, which have a silicon content higher than a silicon content according to the stoichiometric composition formula, is deposited on the metallic silicide film. Because of this arrangement, a semiconductor device which is free from film peeling and which has an electrode wire with a low electrical resistance is achievable without decreasing the concentration of impurity at an electrode. If a passivation silicon oxide layer whose composition is close to a composition according to the stoichiometric composition formula is formed on the silicon oxide layer of a rich-in-silicon-content type, the degradation of the inside of an electrode, and the degradation of a gate oxide layer both caused by unwanted impurities from the outside can be prevented.
    Type: Grant
    Filed: June 28, 1993
    Date of Patent: June 27, 1995
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mizuki Segawa, Yoshiaki Kato, Hiroaki Nakaoka
  • Patent number: 5424572
    Abstract: A contact structure and a method for fabrication is disclosed for a semiconductor device that includes a plurality of semiconductor regions along the surface of the device, each region having a top surface and at least a sidewall surface, where a first part of the semiconductor regions are of a first conductivity type and a second part of semiconductor regions are of a second conductivity type. Select dielectric spacers are formed along the sidewalls of the select semiconductor regions of first conductivity type while a refractory metal such as titanium, molybdenum or tungsten is used to form contact on the sidewalls of the semiconductor regions of second conductivity type. This structure is most advantageous in bipolar, CMOS and BiCMOS transistor structures as it allows the formation of the sidewall spacers on emitter/gate contacts while having local metal interconnects with the reactive metal on the sidewall of the select base/source/drain contacts.
    Type: Grant
    Filed: November 10, 1992
    Date of Patent: June 13, 1995
    Assignee: National Semiconductor Corporation
    Inventor: Alan G. Solheim
  • Patent number: 5418398
    Abstract: A conductive structure for an integrated circuit. An amorphous silicon layer overlies a silicide layer atop a conductive polycrystalline silicon structure. An insulating layer overlies the overall structure formed by the three layers. An opening through the insulating layer also extends through the amorphous silicon layer to expose a portion of the silicide layer. An upper interconnect layer extends through the insulating layer and the amorphous silicon layer to make contact with the silicide layer.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: May 23, 1995
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: John C. Sardella, Alexander Kalnitsky
  • Patent number: 5416352
    Abstract: The invention relates to a semiconductor device having an electrode formed on an region ranging from its thin insulating film in an element forming region to its thick insulating film in an isolation region, and it is an object of the invention to provide a semiconductor device capable of improving dielectric strength of a thin insulating film under a electrode in the boundary region between a thin insulating film and a thick insulating film as well as improving the film quality of the thin insulating film.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: May 16, 1995
    Assignee: Fujitsu Limited
    Inventor: Kazuhiko Takada
  • Patent number: 5414302
    Abstract: A high-density semiconductor memory device has a self-aligning contact structure for electrical connection between lower and upper conductive layers, and an inter-insulating layer with a via for forming the contact structure. The contact structure has a contact pad including a first conductive layer electrically connected with the lower conductive layer within the via and formed on a predetermined portion of the inter-insulating layer around the groove, a planarizing material filling up the groove formed on the first conductive layer, and second conductive layers formed on the planarizing material and exposed first conductive layer.
    Type: Grant
    Filed: January 28, 1994
    Date of Patent: May 9, 1995
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-seung Shin, Sung-nam Chang
  • Patent number: 5392237
    Abstract: Provided is a semiconductor memory device wherein nonvolatile memory elements are arranged in a matrix configuration, each of the memory elements having a field effect transistor including a floating gate, an interlayer insulating film and a control gate electrode which are stacked on an insulating film covering a semiconductor substrate, and a source region and a drain region which are respectively formed in the semiconductor substrate on both sides of the gate electrode, the floating gate, interlayer insulating film and control gate electrode being formed in a recess provided in the semiconductor substrate. The semiconductor device of such a structure is reduced in size and highly integrated with its high-performance characteristics maintained.
    Type: Grant
    Filed: July 27, 1993
    Date of Patent: February 21, 1995
    Assignee: Rohm Co., Ltd.
    Inventor: Kunio Iida
  • Patent number: 5391906
    Abstract: A semiconductor integrated circuit including a MOSFET having a polycide gate structure, a resistor and a capacitor thereon is manufactured. Polycrystalline silicon film and a dielectric film are consecutively deposited. After processes of patterning and etching the dielectric film, the remaining dielectric films are used as a etching protection mask for the resistor and a capacitor insulating film for the capacitor. Then, a refractory metal silicide for a polycide gate is uniformly deposited over the remaining dielectric films. Then, the refractory metal silicide and polycrystalline silicon are consecutively etched over a patterned resist and the remaining dielectric films to simultaneously form the polycide gate, resistor and capacitor. Thus, a resistor having a precise resistance value is manufactured in a MOSFET device having a polycide gate without excessive steps.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: February 21, 1995
    Assignee: Yamaha Corporation
    Inventor: Kiyoshi Natsume
  • Patent number: 5357136
    Abstract: A semiconductor device having a bonding pad region, and a method of its fabrication. A conductive layer is formed on an isolation layer separating transistors of the device, to anchor the interconnection layer on the bonding region. The conductive layer may be formed from the same layer of material that gate electrodes of the transistors are formed. An oxide insulation layer covers the conductive layer and has at least one opening exposing the conductive layer in the bonding pad region. A barrier metal layer, formed on the diffusion regions and the insulation layer, extends into the opening where it makes a firm direct connection with the exposed conductive layer. A bonding pad is formed on the barrier metal layer by providing the interconnection layer on the barrier metal layer. Since the conductive layer and the barrier metal layer are firmly connected, and secures the interconnection layer in the bonding pad structure.
    Type: Grant
    Filed: April 2, 1993
    Date of Patent: October 18, 1994
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Kentaro Yoshioka
  • Patent number: 5349229
    Abstract: Local interconnect is defined in a polycrystalline silicon layer. Openings to underlying conducting regions are made through an insulating layer after the local interconnect conductor definition. A thin extra polycrystalline silicon layer is then deposited over the device and etched back to form polycrystalline silicon sidewall elements. These sidewalls connect the polycrystalline silicon local interconnect conductors to the underlying conductive regions. Standard silicidation techniques are then used to form a refractory metal silicide on the exposed underlying conductive regions, the polycrystalline silicon sidewall elements, and the polycrystalline silicon local interconnect conductors. This results in a complete silicided connection between features connected by the local interconnect conductors.
    Type: Grant
    Filed: January 31, 1992
    Date of Patent: September 20, 1994
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Che-Chia Wei, Fu-Tai Liou
  • Patent number: 5336916
    Abstract: An integrated circuit structure is suitable for use with SRAM memory devices. P-channel load devices are used in a 6-transistor SRAM cell. The P-channel devices are formed as polycrystalline silicon field effect transistors above the N-channel field effect transistors, which are formed in the substrate. In order to avoid formation of a P-N junction, a barrier layer is formed between P-type and N-type source/drain regions. The preferred barrier is a bilayer formed from a conductive material such as silicide over a doped polycrystalline silicon layer.
    Type: Grant
    Filed: July 27, 1992
    Date of Patent: August 9, 1994
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Tsiu C. Chan, Frank R. Bryant, Lisa K. Jorgenson
  • Patent number: 5336903
    Abstract: Doped silicon-germanium alloy is selectively deposited on a semiconductor substrate, and the semiconductor substrate is then heated to diffuse at least some of the dopant from the silicon-germanium alloy into the semiconductor substrate to form a doped region at the face of the semiconductor substrate. The doped silicon-germanium alloy acts as a diffusion source for the dopant, so that shallow doped, regions may be formed at the face of the semiconductor substrate without ion implantation. A high performance contact to the doped region is also provided by forming a metal layer on the doped silicon-germanium alloy layer and heating to react at least part of the silicon-germanium alloy layer with at least part of the metal layer to form a layer of germanosilicide alloy over the doped regions. The method of the present invention is particularly suitable for forming shallow source and drain regions for a field effect transistor, and self-aligned source and drain contacts therefor.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: August 9, 1994
    Assignee: North Carolina State University at Raleigh
    Inventors: Mehmet C. Ozturk, Douglas T. Grider, Mahesh K. Sanganeria, Stanton P. Ashburn, Jimmie J. Wortman
  • Patent number: 5332913
    Abstract: An improved density semiconductor device having a novel buried interconnect is described. The buried interconnect electrically connects electrical device regions on a semiconductor substrate such that other structures may directly overlie the buried interconnect but not be electrically connected to the electrically conductive portions of the interconnect. The interconnect is composed of a buried conductor and conductive segments. The conductive segments are electrically joined to the buried conductor so as to form an electrical pathway. First, a buried conductor is formed over an oxidized portion of a first field oxide. A layer of selective poly-epi silicon is then grown over the surface of the substrate. A nonconductive portion of selective poly-epi silicon is then formed over the buried conductor by oxidizing at least some of the selective poly-epi silicon layer.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: July 26, 1994
    Assignee: Intel Corporation
    Inventor: Joseph Shappir
  • Patent number: 5323049
    Abstract: In a semiconductor apparatus, a first conductive interconnection layer and a second conductive interconnection layer are formed respectively on a lower surface and a higher surface of an interlayer insulation film interposing a step-like portion therebetween by employing different photolithography and etching. A dummy interconnection is provided directly beneath the second conductive interconnection layer in the vicinity of the step-like portion. The first and second conductive interconnection layers and are electrically connected to each other by a conductive layer formed directly on the dummy interconnection in a region including the step-like portion to extend over the surface of a silicon substrate. Consequently, even if the step-like portion is larger than depth of focus, the first and second conductive interconnection layers are precisely patterned within depth of focus.
    Type: Grant
    Filed: April 28, 1992
    Date of Patent: June 21, 1994
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Kaoru Motonami
  • Patent number: 5309000
    Abstract: A is a heat-resisting ohmic electrode on diamond film, including: a p-type semiconducting diamond film; a boron-doped diamond layer provided on the semiconducting diamond film; and an electrode element made of p-type Si selectively formed on the boron-doped diamond layer; wherein the boron concentration in the boron-doped diamond layer is from 1.0.times.10.sup.19 to 1.8.times.10.sup.23 cm.sup.-3, and at least one impurity selected from the group consisting of B, Al and Ga is doped in the electrode element with a concentration from 1.0.times.10.sup.20 to 5.0.times.10.sup.22 cm.sup.-3. The ohmic electrode on diamond film is applicable for electronic devices operative at high temperature.
    Type: Grant
    Filed: April 22, 1993
    Date of Patent: May 3, 1994
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Kimitsugu Saito, Koji Kobashi, Kozo Nishimura, Koichi Miyata
  • Patent number: 5306951
    Abstract: A process and structure for improving the conductive capacity of a polycrystalline silicon (poly) structure, such as a bit line. The inventive process allows for the formation of a refractory metal silicide layer on the top and sidewalls of a poly structure, thereby increasing the conductive capacity. To form the titanium silicide layer over the poly feature, the refractory metal is sputtered on the poly, which reacts to form the refractory metal silicide. A second embodiment is described whereby an isotropic etch of the poly feature slopes the sidewalls; then, the refractory metal is sputtered onto the polycrystalline silicon. This allows for the formation of a thicker layer of refractory metal silicide on the sidewalls, thereby further increasing the conductive capacitance of the poly structure. Suggested refractory metals include titanium, cobalt, tungsten, and tantalum.
    Type: Grant
    Filed: May 14, 1992
    Date of Patent: April 26, 1994
    Assignee: Micron Technology, Inc.
    Inventors: Roger R. Lee, Fernando Gonzalez, Tyler A. Lowrey
  • Patent number: 5298779
    Abstract: A bipolar transistor comprising a semiconductor substrate, of a first conductivity type, a retrograde well serving as the collector and having a second conductivity type opposite to the first, a base active region having a first conductivity type, a region serving as an emitter of the second conductivity type, the regions being bordered on either side by insulating regions. According to the invention, the transistor includes at least one second conductivity type zone serving as the collector contact, located in a region of the retrograde well at a distance from the base zone and extending away from said base zone no further than level with the insulating zone. The invention is applicable to making BI-MOS or BI-CMOS circuits.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: March 29, 1994
    Assignee: France Telecom-Establissement Autonome de Droit Public
    Inventors: Alain Nouailhat, Daniel Bois
  • Patent number: 5294822
    Abstract: A local interconnect comprises a doped, silicided amorphous or polysilicon layer 28. One interconnect 34, 35 extends between an isolated gate contact 60 and a source and drain 61 of an NMOS transistor 42. Another local interconnect 34,37 extends between a source and a drain 62, 63 of CMOS transistors.
    Type: Grant
    Filed: March 17, 1993
    Date of Patent: March 15, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Douglas P. Verrett
  • Patent number: 5290720
    Abstract: A method of making a silicided inverse T-gate with an L-shaped silicon spacer and nitride sidewall spacers is described. The L-shaped spacer is electrically connected to the gate.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: March 1, 1994
    Assignee: AT&T Bell Laboratories
    Inventor: Min-Liang Chen
  • Patent number: 5280188
    Abstract: A semiconductor device includes a bipolar transistor and an IIL element fabricated on a single wafer. The emitter region of the bipolar transistor is formed by diffusing the impurity of an impurity layer formed in contact with the base region therein. The impurity layer is formed of a polycide layer formed of a polysilicon layer doped with an impurity and a metal silicide layer laminated on the polysilicon layer, a laminated layer of a polysilicon layer and a refractory metal layer, or a metal silicide layer.
    Type: Grant
    Filed: December 8, 1992
    Date of Patent: January 18, 1994
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Iwasaki
  • Patent number: 5264725
    Abstract: A submicron-width fuse element is disclosed that protects peripheral DRAM chip devices from low current failures below the range of metal fuse elements. In a specific application, the fuse elements are used to protect a DRAM chip from dielectric failure of voltage supply filtering capacitors. A low cross-section and length allows minimum space for the element.
    Type: Grant
    Filed: December 7, 1992
    Date of Patent: November 23, 1993
    Assignee: Micron Semiconductor, Inc.
    Inventors: Patrick J. Mullarkey, Kurt D. Beigel
  • Patent number: 5256894
    Abstract: The present invention relates to a semiconductor device used as a gate electrode or interconnection, in which a polysilicon layer in a laminate comprising a polysilicon layer doped with an impurity and a refractory metal silicide layer has an impurity concentration that is reduced close to a boundary between the polysilicon layer and the refractory metal silicide layer. With this structure, the difference in oxidation speed between the polysilicon layer and the silicide layer is smaller in comparison with a conventional structure, and thus peeling due to bird's beaks can be prevented. The semiconductor device of this structure can be realized by a two-layer polysilicon structure in which the upper layer in contact with the refractory metal silicide layer has a lower impurity concentration, or by a structure in which the peak of the impurity concentration profile is set to be deep within the polysilicon layer during ion implantation.
    Type: Grant
    Filed: July 12, 1991
    Date of Patent: October 26, 1993
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Katsuya Shino
  • Patent number: 5250846
    Abstract: A semiconductor device having multi-layered leads having a first lead portion including a polycrystalline silicon layer and a titanium silicide layer, and a second lead portion formed over the first lead portion and made up of a polycrystalline silicon layer. An intermediate insulating layer is provided between the first and second lead portions. The intermediate insulation layer and the underlying titanium silicide layer are provided with contact holes aligned with each other so as to allow the polycrystalline silicon of the second lead portion to be in direct contact with the polycrystalline silicon layer of the first lead portion without interposing therebetween the titanium silicide layer at the contact hole portion.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: October 5, 1993
    Assignee: Seiko Epson Corporation
    Inventor: Toshihiko Kondo
  • Patent number: 5221853
    Abstract: Selective deposition of a refractory metal on a silicon substrate utilizing high temperatures and a silane reduction process in which the flow rate ratio of silane to refractory metal halide gas is less than one. In a second embodiment, an additional layer of the refractory metal is deposited utilizing a hydrogen reduction of the metal halide gas at very high temperatures. In both embodiments, a refractory metal barrier layer may be provided by forming a self-aligned refractory metal silicide layer. Alternatively, a two layer self-aligned barrier is formed of a refractory metal silicide lower layer and a refractory metal nitride upper layer and the refractory metal is selectively deposited on the metal nitride.
    Type: Grant
    Filed: September 20, 1991
    Date of Patent: June 22, 1993
    Assignee: International Business Machines Corporation
    Inventors: Rajiv V. Joshi, Choon-Sik Oh, Dan Moy
  • Patent number: 5214305
    Abstract: A method is described for fabricating a lightly doped drain MOSFET integrated circuit device which overcomes the peeling problems of refractory metal silicide layers on a polycide gate. The process of this invention has been simplified by not using several of the high thermal cycle process steps believed to be necessary for successfully making a polycide gate lightly doped drain MOS FET integrated circuit. These steps are (1) the thermal oxidation after the polycide etching step, (2) the densification step after the blanket deposition of silicon dioxide layer for the spacer preparation, and (3) the silicon oxide capping of the refractory metal silicide layer after the spacer formation by anisotropically etching. The result is a process that provides a non-peeling polycide gate lightly doped drain MOS FET integrated circuit device.
    Type: Grant
    Filed: January 27, 1992
    Date of Patent: May 25, 1993
    Assignee: United Microelectronics Corporation
    Inventors: Chen H. Huang, Water Lur
  • Patent number: 5214302
    Abstract: A semiconductor integrated circuit device having a structure in which each of the following regions, that is, a first region for forming the base and emitter regions of each of the bipolar transistors, a second region for forming the collector lead-out region of the bipolar transistor, and a third region for forming each of the MISFETs, is projected from the main surface of a semiconductor substrate, whereby it is possible to effect isolation between the MISFETs and between these MISFETs and the bipolar transistors with the same isolation structure and in the same manufacturing step as those for the isolation between the bipolar transistors. In this device, furthermore, the base region of the bipolar transistor is electrically and self-alignedly connected to a base electrode which is formed over the main surface so as to surround the emitter region.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: May 25, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Akihisa Uchida, Keiichi Higeta, Nobuo Tamba, Masanori Odaka, Katsumi Ogiue
  • Patent number: 5184205
    Abstract: A semiconductor device comprising a substrate, a first metal wiring layer made of aluminum alloy and formed on the substrate, a conductive film made of doped polysilicon and formed on a selected part of the first metal wiring layer, an inter-layer insulation film made of plasma SiO.sub.2 and formed on the conductive film and the first metal wiring layer, a contact hole formed in the inter-layer insulation film and being larger than the conductive film, and a second metal wiring layer made of aluminum alloy, extending through the contact hole, and connected to the conductive film.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: February 2, 1993
    Assignee: Kahishiki Kaisha Toshiba
    Inventor: Hideki Shibata
  • Patent number: 5182627
    Abstract: A method is provided for forming a polycrystalline silicon resistive load element of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A lightly doped first conductive layer having a conductivity of a first type. A first oxide layer is formed over the integrated circuit with a first opening therethrough exposing a portion of the first conductive layer. Using the first oxide layer as a mask, the exposed portion of the first conductive layer is then implanted with a dopant of a second conductivity type to form a junction between the exposed portion and the portion covered by the mask. A second oxide region is then formed on a portion of the first oxide layer in the first opening, over the junction and over a portion of the exposed first conductive layer adjacent to the junction. A silicide is formed over the exposed portion of the first conductive layer.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: January 26, 1993
    Assignee: SGS-Thomson Microelectronics, Inc.
    Inventors: Fusen E. Chen, Girish A. Dixit, Robert O. Miller