At Least One Layer Of Silicide Or Polycrystalline Silicon Patents (Class 257/754)
-
Patent number: 11495687Abstract: The present disclosure describes various non-planar semiconductor devices, such as fin field-effect transistors (finFETs) to provide an example, having one or more metal rail conductors and various methods for fabricating these non-planar semiconductor devices. In some situations, the one or more metal rail conductors can be electrically connected to gate, source, and/or drain regions of these various non-planar semiconductor devices. In these situations, the one or more metal rail conductors can be utilized to electrically connect the gate, the source, and/or the drain regions of various non-planar semiconductor devices to other gate, source, and/or drain regions of various non-planar semiconductor devices and/or other semiconductor devices. However, in other situations, the one or more metal rail conductors can be isolated from the gate, the source, and/or the drain regions these various non-planar semiconductor devices.Type: GrantFiled: August 24, 2020Date of Patent: November 8, 2022Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chih-Liang Chen, Chih-Ming Lai, Ching-Wei Tsai, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kuo-Cheng Chiang, Ru-Gun Liu, Wei-Hao Wu, Yi-Hsiung Lin, Chia-Hao Chang, Lei-Chun Chou
-
Patent number: 11152273Abstract: Conductive structures and the redistribution circuit structures are disclosed. One of the conductive structures includes a first conductive layer and a second conductive layer. The first conductive layer is disposed in a lower portion of a dielectric layer, and the first conductive layer includes an upper surface with a protrusion at an edge. The second conductive layer is disposed in an upper portion of the dielectric layer and electrically connected to the first conductive layer. An upper surface of the second conductive layer is conformal with the upper surface of the first conductive layer.Type: GrantFiled: April 20, 2020Date of Patent: October 19, 2021Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shang-Yun Tu, Ching-Wen Hsiao, Sheng-Yu Wu, Ching-Hui Chen
-
Patent number: 11043414Abstract: Microelectronic devices—having at least one conductive contact structure adjacent a silicide region—are formed using methods that avoid unintentional contact expansion and contact reduction. A first metal nitride liner is formed in a contact opening, and an exposed surface of a polysilicon structure is thereafter treated (e.g., cleaned and dried) in preparation for formation of a silicide region. During the pretreatments (e.g., cleaning and drying), neighboring dielectric material is protected by the presence of the metal nitride liner, inhibiting expansion of the contact opening. After forming the silicide region, a second metal nitride liner is formed on the silicide region before a conductive material is formed to fill the contact opening and form a conductive contact structure (e.g., a memory cell contact structure, a peripheral contact structure).Type: GrantFiled: October 16, 2019Date of Patent: June 22, 2021Assignee: Micron Technology, Inc.Inventors: Kenichi Kusumoto, Taizo Yasuda, Hidekazu Nobuto, Kohei Morita
-
Patent number: 11011467Abstract: A method includes depositing an etch stop layer over a non-insulator structure and a dielectric layer over the etch stop layer; etching the dielectric layer to form a first hole in the dielectric layer; deepening the first hole into the etch stop layer such that the non-insulator structure is exposed at a bottom of the deepened hole; after the non-insulator structure is exposed, performing a cleaning operation to remove etch byproducts from the deepened first hole, wherein the cleaning operation results in lateral recesses laterally extending from a bottom portion of the deepened first hole into the etch stop layer; depositing a first diffusion barrier layer into the deepened first hole until the lateral recesses are overfilled; depositing a second diffusion barrier layer over the first diffusion barrier layer; and depositing one or more conductive layers over the second diffusion barrier layer.Type: GrantFiled: August 8, 2020Date of Patent: May 18, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Yu-Chen Chan, Shin-Yi Yang, Ming-Han Lee
-
Patent number: 11004804Abstract: In one embodiment, a semiconductor device includes a substrate, and a plurality of insulating layers provided on the substrate. The device further includes a plurality of electrode layers provided on the substrate alternately with the plurality of insulating layers and including metal atoms and impurity atoms different from the metal atoms, lattice spacing between the metal atoms in the electrode layers being greater than lattice spacing between the metal atoms in an elemental substance of the metal atoms.Type: GrantFiled: March 7, 2019Date of Patent: May 11, 2021Assignee: TOSHIBA MEMORY CORPORATIONInventors: Satoshi Wakatsuki, Masayuki Kitamura, Atsuko Sakata
-
Patent number: 10998270Abstract: Techniques are disclosed for forming transistor devices having reduced interfacial resistance in a local interconnect. The local interconnect can be a material having similar composition to that of the source/drain material. That composition can be a metal alloy of a group IV element such as nickel germanide. The local interconnect of the semiconductor integrated circuit can function in the absence of barrier and liner layers. The devices can be used on MOS transistors including PMOS transistors.Type: GrantFiled: October 28, 2016Date of Patent: May 4, 2021Assignee: Intel CorporationInventors: Seung Hoon Sung, Glenn A. Glass, Van H. Le, Ashish Agrawal, Benjamin Chu-Kung, Anand S. Murthy, Jack T. Kavalieros
-
Patent number: 10971601Abstract: Replacement metal gate structures with improved chamfered workfunction metal and self-aligned contact and methods of manufacture are provided. The method includes forming a replacement metal gate structure in a dielectric material. The replacement metal gate structure is formed with a lower spacer and an upper spacer above the lower spacer. The upper spacer having material is different than material of the lower spacer. The method further includes forming a self-aligned contact adjacent to the replacement metal gate structure by patterning an opening within the dielectric material and filling the opening with contact material. The upper spacer prevents shorting with the contact material.Type: GrantFiled: October 30, 2019Date of Patent: April 6, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
-
Patent number: 10930562Abstract: A connection structure for microelectronic device with superposed semi-conductor layers including a conductor via that connects a lower face of an upper semi-conductor layer and an underlying conducting zone, the connection structure further including a silicide zone in contact with a lower face or with an inner face of the layer of the upper semi-conductor layer.Type: GrantFiled: May 24, 2019Date of Patent: February 23, 2021Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESInventors: Claire Fenouillet-Beranger, Fabrice Nemouchi, Maud Vinet
-
Patent number: 10665498Abstract: A semiconductor device, including an active region defined in a semiconductor substrate; a first contact plug on the semiconductor substrate, the first contact plug being connected to the active region; a bit line on the semiconductor substrate, the bit line being adjacent to the first contact plug; a first air gap spacer between the first contact plug and the bit line; a landing pad on the first contact plug; a blocking insulating layer on the bit line; and an air gap capping layer on the first air gap spacer, the air gap capping layer vertically overlapping the first air gap spacer, the air gap capping layer being between the blocking insulating layer and the landing pad, an upper surface of the blocking insulating layer being at a height equal to or higher than an upper surface of the landing pad.Type: GrantFiled: June 29, 2016Date of Patent: May 26, 2020Assignee: Samsung Electronics Co., Ltd.Inventors: Eun-Jung Kim, Bong-Soo Kim, Yong-Kwan Kim, Sung-Hee Han, Yoo-Sang Hwang
-
Patent number: 10615252Abstract: A device fabricated on a wafer is disclosed. The device includes a first block of the wafer and a second block of the wafer isolated from the first block using a first deep trench isolation (DTI). The device further includes a third block of the wafer isolated from the second block using a second DTI. The second block includes a first vertical section coupled to a first ground, a second vertical section, a third vertical section coupled to a second ground. The second vertical section is doped lightly compared to the first vertical section and the second vertical section.Type: GrantFiled: August 6, 2018Date of Patent: April 7, 2020Assignee: NXP USA, INC.Inventor: Radu Mircea Secareanu
-
Patent number: 10594271Abstract: A circuit element is formed on a substrate made of a compound semiconductor. A bonding pad is disposed on the circuit element so as to at least partially overlap the circuit element. The bonding pad includes a first metal film and a second metal film formed on the first metal film. A metal material of the second metal film has a higher Young's modulus than a metal material of the first metal film.Type: GrantFiled: June 7, 2019Date of Patent: March 17, 2020Assignee: Murata Manufacturing Co., Ltd.Inventors: Isao Obu, Yasunari Umemoto, Masahiro Shibata, Kenichi Nagura
-
Patent number: 10580876Abstract: An integrated circuit device may include a pair of line structures. Each line structure may include a pair of conductive lines extending over a substrate in a first horizontal direction and a pair of insulating capping patterns respectively covering the pair of conductive lines. The integrated circuit device may include a conductive plug between the pair of line structures and a metal silicide film contacting a top surface of the conductive plug between the pair of insulating capping patterns. The conductive plug may have a first width between the pair of conductive lines and a second width between the pair of insulating capping patterns, in a second horizontal direction perpendicular to the first horizontal direction, where the second width is greater than the first width.Type: GrantFiled: March 7, 2018Date of Patent: March 3, 2020Assignee: Samsung Electronics Co., Ltd.Inventors: Jun-hyeok Ahn, Eun-jung Kim, Hui-jung Kim, Ki-seok Lee, Bong-soo Kim, Myeong-dong Lee, Sung-hee Han, Yoo-sang Hwang
-
Patent number: 10535527Abstract: A method for forming a film on a substrate in a semiconductor process chamber includes forming a first layer on the substrate using a plasma enhanced process and a gas compound of a chloride-based gas, a hydrogen gas, and an inert gas. The process chamber is then purged and the first layer is thermally soaked with a hydrogen-based precursor gas. The process chamber is then purged again and the process may be repeated with or without the plasma enhanced process until a certain film thickness is achieved on the substrate.Type: GrantFiled: July 6, 2018Date of Patent: January 14, 2020Assignee: APPLIED MATERIALS, INC.Inventors: Yi Xu, Takashi Kuratomi, Avgerinos V. Gelatos, Vikash Banthia, Mei Chang, Kazuya Daito
-
Patent number: 10381450Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate. An insulating fill material layer and drain select gate electrodes are located over the alternating stack. A group of memory stack structures extends through the alternating stack, and is arranged as rows of memory stack structures. Each memory stack structure is entirely encircled laterally by a respective one of the drain select gate electrodes. The insulating fill material layer includes a drain select level isolation structure extending between neighboring rows of memory stack structures and including a pair of sidewalls containing a respective laterally alternating sequence of planar vertical sidewall portions and concave vertical sidewall portions, and a drain select level field portion adjoined to the drain select level isolation portion.Type: GrantFiled: February 27, 2018Date of Patent: August 13, 2019Assignee: SANDISK TECHNOLOGIES LLCInventors: Shinsuke Yada, Xiaolong Hu, Junichi Ariyoshi
-
Patent number: 10381305Abstract: Some embodiments include a method of forming an integrated assembly. Conductive lines are formed to extend along a first direction, and are spaced from one another by a first pitch. Protective knobs are formed over the conductive lines and are arranged in rows. The protective knobs within each row are spaced along a second pitch which is greater than the first pitch. The protective knobs protect regions of the conductive lines while leaving other regions of the conductive lines unprotected. The unprotected regions are recessed so that the protected regions become tall regions and the unprotected regions become short regions. The protective knobs are removed. Conductive structures are formed over the conductive lines. The conductive structures are spaced along the second pitch. Each of the conductive lines is uniquely coupled to only one of the conductive structures. Some embodiments include integrated assemblies.Type: GrantFiled: August 29, 2017Date of Patent: August 13, 2019Assignee: Micron Technology, Inc.Inventor: Werner Juengling
-
Patent number: 10361666Abstract: A circuit element is formed on a substrate made of a compound semiconductor. A bonding pad is disposed on the circuit element so as to at least partially overlap the circuit element. The bonding pad includes a first metal film and a second metal film formed on the first metal film. A metal material of the second metal film has a higher Young's modulus than a metal material of the first metal film.Type: GrantFiled: April 5, 2018Date of Patent: July 23, 2019Assignee: Murata Manufacturing Co., Ltd.Inventors: Isao Obu, Yasunari Umemoto, Masahiro Shibata, Kenichi Nagura
-
Patent number: 10305000Abstract: A sacrificial layer is formed on a region for forming the reflective electrode later on the p-type layer, Subsequently, a part of the p-type layer is dry etched to expose an n-type layer. Then, a resist layer having an opening is formed through photolithography on the p-type layer and the n-type layer exposed in the previous step. The opening has a pattern to enclose the sacrificial layer in a plan view. Next, the sacrificial layer is wet etched using a buffered hydrofluoric acid to remove the entire sacrifice layer. Subsequently, a reflective film is formed by sputtering on the p-type layer and the resist layer. Next, the resist layer is removed using a resist stripper, and only the reflective film on the p-type layer is left to form the reflective electrode.Type: GrantFiled: November 2, 2017Date of Patent: May 28, 2019Assignee: TOYODA GOSEI CO., LTD.Inventor: Shingo Totani
-
Patent number: 9997567Abstract: A semiconductor structure includes a memory structure. The memory structure includes a memory element, a first barrier layer and a second barrier layer. The memory element includes titanium oxynitride. The first barrier layer includes at least one of silicon and silicon oxide. The first barrier layer is disposed on the memory element. The second barrier layer includes at least one of titanium and titanium oxide. The second barrier layer is disposed on the first barrier layer.Type: GrantFiled: May 5, 2017Date of Patent: June 12, 2018Assignee: MACRONIX INTERNATIONAL CO., LTD.Inventors: Dai-Ying Lee, Chao-I Wu, Yu-Hsuan Lin
-
Patent number: 9972620Abstract: Electrical shorting between source and/or drain contacts and a conductive gate of a FinFET-based semiconductor structure are prevented by forming the source and drain contacts in two parts, a bottom contact part extending up to a height of the gate cap and an upper contact part situated on at least part of the bottom contact part.Type: GrantFiled: August 11, 2016Date of Patent: May 15, 2018Assignee: GLOBALFOUNDRIES INC.Inventors: Charan V. Surisetty, Dominic J. Schepis, Kangguo Cheng, Alexander Reznicek
-
Patent number: 9882015Abstract: A method for fabricating a transistor gate with a conductive element that includes cobalt silicide includes use of a sacrificial material as a place-holder between sidewall spacers of the transistor gate until after high temperature processes, such as the fabrication of raised source and drain regions, have been completed. In addition, semiconductor devices (e.g., DRAM devices and NAND flash memory devices) with transistor gates that include cobalt silicide in their conductive elements are also disclosed, as are transistors with raised source and drain regions and cobalt silicide in the transistor gates thereof. Intermediate semiconductor device structures that include transistor gates with sacrificial material or a gap between upper portions of sidewall spacers are also disclosed.Type: GrantFiled: February 18, 2014Date of Patent: January 30, 2018Assignee: Micron Technology, Inc.Inventor: Yongjun Jeff Hu
-
Patent number: 9831183Abstract: Contact structures and methods of forming contacts structures are contemplated by this disclosure. A structure includes a dielectric layer over a substrate, an adhesion layer, a silicide, a barrier layer, and a conductive material. The dielectric layer has an opening to a surface of the substrate. The adhesion layer is along sidewalls of the opening. The silicide is on the surface of the substrate. The barrier layer is on the adhesion layer and the silicide, and the barrier layer directly adjoins the silicide. The conductive material is on the barrier layer in the opening.Type: GrantFiled: November 4, 2014Date of Patent: November 28, 2017Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yu-Hung Lin, Mei-Hui Fu, Sheng-Hsuan Lin
-
Patent number: 9735204Abstract: Each imaging pixel provided in a solid-state imaging device includes a charge accumulation part which is a diffusion region formed in a substrate, a gate electrode formed lateral to the charge accumulation part on the substrate, an insulating film formed on the charge accumulation part, and a contact plug connected to the charge accumulation part so as to penetrate the insulating film and made of semiconductor. The contact plug is, at a lower part thereof, embedded in the insulating film, and is, at an upper part thereof, exposed through the insulating film. Silicide is formed on the upper part of the contact plug, and the charge accumulation part and the gate electrode are covered by the insulating film.Type: GrantFiled: November 25, 2014Date of Patent: August 15, 2017Assignee: Panasonic Intellectual Property Management Co., Ltd.Inventors: Ryota Sakaida, Nobuyoshi Takahashi, Kosaku Saeki
-
Patent number: 9691781Abstract: A vertical, columnar resistor in a semiconductor device is provided, along with techniques for fabricating such a resistor. The resistor may be provided in a peripheral area of a 3D memory device which has a two-tier or other multi-tier stack of memory cells. The structure and fabrication of the resistor can be integrated with the structure and fabrication of the stack of memory cells. The resistor may comprise doped polysilicon. In an example implementation, a polysilicon pillar extends a height of a first tier of the stack and a metal pillar above the polysilicon pillar extends a height of a second tier of the stack.Type: GrantFiled: December 4, 2015Date of Patent: June 27, 2017Assignee: SanDisk Technologies LLCInventors: Masatoshi Nishikawa, Kota Funayama, Toru Miwa, Hiroyuki Ogawa
-
Patent number: 9691804Abstract: Some embodiments of the present disclosure provide a back side illuminated (BSI) image sensor. The back side illuminated (BSI) image sensor includes a semiconductive substrate and an interlayer dielectric (ILD) layer at a front side of the semiconductive substrate. The ILD layer includes a dielectric layer over the semiconductive substrate and a contact partially buried inside the semiconductive substrate. The contact includes a silicide layer including a predetermined thickness proximately in a range from about 600 angstroms to about 1200 angstroms.Type: GrantFiled: April 17, 2015Date of Patent: June 27, 2017Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Chih-Chang Huang, Chi-Ming Lu, Jian-Ming Chen, Jung-Chih Tsao, Yao-Hsiang Liang
-
Patent number: 9449921Abstract: Voidless contact metal structures are provided. In one embodiment, a voidless contact metal structure is provided by first providing a first contact metal that contains a void within a contact opening. The void is then opened to provide a divot in the first contact metal. After forming a dielectric spacer atop a portion of first contact metal, a second contact metal is then formed that lacks any void. The second contact metal fills the entirety of the divot within the first contact metal. In another embodiment, two diffusion barrier structures are provided within a contact opening, followed by the formation of a contact metal structure that lacks any void.Type: GrantFiled: December 15, 2015Date of Patent: September 20, 2016Assignee: International Business Machines CorporationInventors: Veeraraghavan S. Basker, Nicolas L. Breil, Oleg Gluschenkov, Shogo Mochizuki, Alexander Reznicek
-
Patent number: 9159652Abstract: An electronic device is described comprising at least one chip enclosed in a package, in turn provided with a metallic structure or leadframe having a plurality of connection pins, this chip having at least one first contact realized on a first face and at least one second contact realized on a second and opposite face of this chip. The chip comprises at least one through via crossing the whole section of the chip as well as a metallic layer extending from the second contact arranged on the first face, along walls of the at least one through via up to the second and opposite face in correspondence with an additional pad. The electronic device comprises at least one interconnection layer for the electrical and mechanical connection between the chip and the metallic structure having at least one portion realized in correspondence with the at least one through via so as to bring the second contact placed on the second face of the chip back on its first face.Type: GrantFiled: February 18, 2014Date of Patent: October 13, 2015Assignee: STMicroelectronics S.r.l.Inventor: Concetto Privitera
-
Patent number: 9034755Abstract: Embodiments of the present invention provide a method of forming contact structure for transistor. The method includes providing a semiconductor substrate having a first and a second gate structure of a first and a second transistor formed on top thereof, the first and second gate structures being embedded in a first inter-layer-dielectric (ILD) layer; epitaxially forming a first semiconductor region between the first and second gate structures inside the first ILD layer; epitaxially forming a second semiconductor region on top of the first semiconductor region, the second semiconductor region being inside a second ILD layer on top of the first ILD layer and having a width wider than a width of the first semiconductor region; and forming a silicide in a top portion of the second semiconductor region.Type: GrantFiled: December 4, 2013Date of Patent: May 19, 2015Assignee: International Business Machines CorporationInventors: Emre Alptekin, Reinaldo A. Vega
-
Patent number: 8999842Abstract: A method of manufacturing a semiconductor device with a cap layer for a copper interconnect structure formed in a dielectric layer is provided. In an embodiment, a conductive material is embedded within a dielectric layer, the conductive material comprising a first material and having either a recess, a convex surface, or is planar. The conductive material is silicided to form an alloy layer. The alloy layer comprises the first material and a second material of germanium, arsenic, tungsten, or gallium.Type: GrantFiled: July 21, 2014Date of Patent: April 7, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hui-Lin Chang, Hung Chun Tsai, Yung-Cheng Lu, Syun-Ming Jang
-
Patent number: 8994177Abstract: A method for far back end of the line (FBEOL) protection of a semiconductor device includes forming a patterned layer over a back end of the line (BEOL) stack, depositing a first conformal protection layer on the patterned layer which covers horizontal surfaces of a top surface and sidewalls of openings formed in the patterned layer. A resist layer is patterned over the first conformal protection layer such that openings in the resist layer correspond with the openings in the patterned layer. The first conformal protection layer is etched through the openings in the resist layer to form extended openings that reach a stop position. The resist layer is removed, and a second conformal protection layer is formed on the first conformal protection layer and on sidewalls of the extended openings to form an encapsulation boundary to protect at least the patterned layer and a portion of the BEOL stack.Type: GrantFiled: August 15, 2013Date of Patent: March 31, 2015Assignee: International Business Machines CorporationInventors: Tymon Barwicz, Robert L. Bruce, Swetha Kamlapurkar
-
Patent number: 8987906Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.Type: GrantFiled: April 22, 2014Date of Patent: March 24, 2015Assignee: Micron Technology, Inc.Inventors: Gurtej Sandhu, Scott Sills
-
Patent number: 8952536Abstract: A semiconductor memory device employs a SONOS type memory architecture and includes a bit line diffusion layer in a shallow trench groove in which a conductive film is buried. This makes it possible to decrease the resistivity of the bit line diffusion layer without enlarging the area on the main surface of the semiconductor substrate, and to fabricate the semiconductor memory device having stable electric characteristics without enlarging the cell area. The bit line is formed by implanting ions into the sidewall of Si3N4.Type: GrantFiled: August 27, 2008Date of Patent: February 10, 2015Assignee: Spansion LLCInventors: Masahiko Higashi, Hiroyuki Nansei
-
Publication number: 20150021776Abstract: A polysilicon layer including an amorphous polysilicon layer and a crystallized polysilicon layer is provided. The crystallized polysilicon layer is disposed on the amorphous polysilicon layer. Besides, the amorphous polysilicon layer has a first grain size, the crystallized polysilicon layer has a second grain size, and the first grain size is smaller than the second grain size. The amorphous polysilicon layer with a smaller grain size can serve as a base for the following deposition, so that the crystallized polysilicon layer formed thereon has a flatter topography, and thus, the surface roughness is reduced and the Rs uniformity within a wafer is improved.Type: ApplicationFiled: October 6, 2014Publication date: January 22, 2015Inventors: Chien-Liang Lin, Yu-Ren Wang, Ying-Wei Yen, Wen-Yi Teng, Chan-Lon Yang
-
Patent number: 8933566Abstract: Substantially simultaneous plasma etching of polysilicon and oxide layers in multilayer lines in semiconductors allows for enhanced critical dimensions and aspect ratios of the multilayer lines. Increasing multilayer line aspect ratios may be possible, allowing for increased efficiency, greater storage capacity, and smaller critical dimensions in semiconductor technologies.Type: GrantFiled: June 10, 2014Date of Patent: January 13, 2015Assignee: Macronix International Co., Ltd.Inventor: Lo Yueh Lin
-
Publication number: 20150001724Abstract: A method including patterning a thickness dimension of an interconnect material into a thickness dimension for a wiring line with one or more vias extending from the wiring line and introducing a dielectric material on the interconnect material. A method including depositing and patterning an interconnect material into a wiring line and one or more vias; and introducing a dielectric material on the interconnect material such that the one or more vias are exposed through the dielectric material. An apparatus including a first interconnect layer in a first plane and a second interconnect in a second plane on a substrate; and a dielectric layer separating the first and second interconnect layers, wherein the first interconnect layer comprises a monolith including a wiring line and at least one via, the at least one via extending from the wiring line to a wiring line of the second interconnect layer.Type: ApplicationFiled: June 28, 2013Publication date: January 1, 2015Inventors: Manish CHANDHOK, Hui Jae Yoo, Yan A. Borodovsky, Florian Gstrein, David N. Shykind, Kevin L. Lin
-
Patent number: 8895435Abstract: The method of forming a polysilicon layer is provided. A first polysilicon layer with a first grain size is formed on a substrate. A second polysilicon layer with a second grain size is formed on the first polysilicon layer. The first grain size is smaller than the second grain size. The first polysilicon layer with a smaller grain size can serve as a base for the following deposition, so that the second polysilicon layer formed thereon has a flatter topography, and thus, the surface roughness is reduced and the Rs uniformity within a wafer is improved.Type: GrantFiled: January 31, 2011Date of Patent: November 25, 2014Assignee: United Microelectronics Corp.Inventors: Chien-Liang Lin, Yun-Ren Wang, Ying-Wei Yen, Wen-Yi Teng, Chan-Lon Yang
-
Publication number: 20140339702Abstract: Structures and methods of forming the same are disclosed herein. In one embodiment, a structure can comprise a region having first and second oppositely facing surfaces. A barrier region can overlie the region. An alloy region can overlie the barrier region. The alloy region can include a first metal and one or more elements selected from the group consisting of silicon (Si), germanium (Ge), indium (Id), boron (B), arsenic (As), antimony (Sb), tellurium (Te), or cadmium (Cd).Type: ApplicationFiled: May 20, 2013Publication date: November 20, 2014Applicant: INVENSAS CORPORATIONInventors: Charles G. Woychik, Cyprian Emeka Uzoh, Michael Newman, Pezhman Monadgemi, Terrence Caskey
-
Patent number: 8872281Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.Type: GrantFiled: August 9, 2012Date of Patent: October 28, 2014Assignee: International Business Machines CorporationInventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Lie, James S. Nakos, Bradley A. Omer, Robert M. Rassel, David C. Sheridan
-
Patent number: 8866156Abstract: A silicon carbide semiconductor device includes a silicon carbide substrate and a contact electrode. The silicon carbide substrate includes an n type region and a p type region that makes contact with the n type region. The contact electrode makes contact with the n type region and the p type region. The contact electrode contains Ni atoms and Si atoms. The number of the Ni atoms is not less than 87% and not more than 92% of the total number of the Ni atoms and the Si atoms. Accordingly, there can be provided a silicon carbide semiconductor device, which can achieve ohmic contact with an n type impurity region and can achieve a low contact resistance for a p type impurity region, as well as a method for manufacturing such a silicon carbide semiconductor device.Type: GrantFiled: May 16, 2013Date of Patent: October 21, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shunsuke Yamada, Hideto Tamaso
-
Patent number: 8853862Abstract: Embodiments of the present invention provide a contact structure for transistor. The contact structure includes a first epitaxial-grown region between a first and a second gate of, respectively, a first and a second transistor; a second epitaxial-grown region directly on top of the first epitaxial-grown region with the second epitaxial-grown region having a width that is wider than that of the first epitaxial-grown region; and a silicide region formed on a top portion of the second epitaxial-grown region with the silicide region having an interface, with rest of the second epitaxial-grown region, that is wider than that of the first epitaxial-grown region. In one embodiment, the second epitaxial-grown region is at a level above a top surface of the first and second gates of the first and second transistors.Type: GrantFiled: December 20, 2011Date of Patent: October 7, 2014Assignee: International Business Machines CorporationInventors: Emre Alptekin, Reinaldo Vega
-
Publication number: 20140284801Abstract: According to an embodiment, a semiconductor device, includes a substrate, an inter-layer insulating layer provided above the substrate, a first interconnect provided in a first trench, and a second interconnect provided in a second trench. The first interconnect is made of a first metal, and the first trench is provided in the inter-layer insulating layer on a side opposite to the substrate. The second interconnect is made of a second metal, and the second trench is provided in the inter-layer insulating layer toward the substrate. A width of the second trench is wider than a width of the first trench. A mean free path of electrons in the first metal is shorter than a mean free path of electrons in the second metal, and the first metal is a metal, an alloy or a metal compound, including at least one nonmagnetic element as a constituent element.Type: ApplicationFiled: September 5, 2013Publication date: September 25, 2014Inventors: Masayuki KITAMURA, Atsuko SAKATA, Takeshi ISHIZAKI, Satoshi WAKATSUKI
-
Publication number: 20140264879Abstract: Methods of fabricating a first contact to a semiconductor device, which fundamentally comprises providing a semiconductor device formed on a substrate. The substrate further includes a conductive surface. A dielectric layer is formed over the substrate and has an opening exposing the conductive surface. The opening extends an entire length of the semiconductor device, partway down the entire length of the device, extending from the device onto adjacent field of the device, or and a combination thereof. A barrier layer is formed within the opening. A copper containing material fills the opening to form a first contact to the semiconductor device.Type: ApplicationFiled: May 28, 2014Publication date: September 18, 2014Inventors: Kelin J. Kuhn, Kaizad Mistry, Mark Bohr, Chris Auth
-
Patent number: 8822995Abstract: A display substrate includes a switching transistor electrically connected to a gate line and a data line, the data line extending in a first direction substantially perpendicular to the gate line extending in a second direction, the switching transistor including a switching active pattern comprising amorphous silicon, a driving transistor electrically connected to a driving voltage line and the switching transistor, the driving voltage line extended in the first direction, the driving transistor including a driving active pattern comprising a metal oxide; and a light-emitting element electrically connected to the driving transistor.Type: GrantFiled: June 17, 2009Date of Patent: September 2, 2014Assignee: Samsung Display Co., Ltd.Inventors: Chun-Gi You, Kap-Soo Yoon, Gug-Rae Jo, Sung-Hoon Yang, Ki-Hun Jeong, Seung-Hwan Shim, Jae-Ho Choi
-
Publication number: 20140225264Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.Type: ApplicationFiled: April 22, 2014Publication date: August 14, 2014Applicant: MICRON TECHNOLOGY, INC.Inventors: Gurtej Sandhu, Scott Sills
-
Patent number: 8796855Abstract: An electric device with vias that include dielectric structures to prevent conductive material in the vias from electrically connecting conductive structures on a top of the vias with conductive structures on the bottom of the vias. The dielectric structures are formed in selected vias where other vias do not include the dielectric structures.Type: GrantFiled: January 13, 2012Date of Patent: August 5, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Perry H. Pelley, Michael B. McShane, Tab A. Stephens
-
Patent number: 8778795Abstract: In sophisticated metallization systems of semiconductor devices, a sensitive core metal, such as copper, may be efficiently confined by a conductive barrier material comprising a copper/silicon compound, such as a copper silicide, which may provide superior electromigration behavior and higher electrical conductivity compared to conventionally used tantalum/tantalum nitride barrier systems.Type: GrantFiled: July 27, 2011Date of Patent: July 15, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Ronny Pfuetzner, Jens Heinrich
-
Patent number: 8766236Abstract: A semiconductor device according to an embodiment includes: a substrate; a first semiconductor layer formed on the substrate and having a strain; a second and a third semiconductor layers formed at a distance from each other on the first semiconductor layer, and having a different lattice constant from a lattice constant of the first semiconductor layer; a gate insulating film formed on a first portion of the first semiconductor layer, the first portion being located between the second semiconductor layer and the third semiconductor layer; and a gate electrode formed on the gate insulating film.Type: GrantFiled: September 19, 2011Date of Patent: July 1, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Koji Usuda, Tsutomu Tezuka
-
Publication number: 20140175653Abstract: Semiconductor devices comprise at least one integrated circuit layer, at least one conductive trace and an insulative material adjacent at least a portion of the at least one conductive trace. At least one interconnect structure extends through a portion of the at least one conductive trace and a portion of the insulative material, the at least one interconnect structure comprising a transverse cross-sectional dimension through the at least one conductive trace which differs from a transverse cross-sectional dimension through the insulative material.Type: ApplicationFiled: February 26, 2014Publication date: June 26, 2014Applicant: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, Nishant Sinha, John A. Smythe
-
Patent number: 8710553Abstract: An integrated circuit includes a substrate. The substrate includes diffusion lines. The diffusion lines include impurities diffused into the substrate. A signal line layer includes first signal lines. A first metal layer includes second signal lines. The second signal lines include a first metallic material. A second metal layer includes third signal lines. The third signal lines include a second metallic material. First contacts connect the diffusion lines to (i) a first set of the second signal lines, or (ii) a first set of the third signal lines. Second contacts connect a first set of the first signal lines to a second set of the third signal lines. Each signal line in a first set of the second signal lines includes first portions and second portions. The first portions extend towards and are not connected to the second contacts. The first portions are not parallel to the second portions.Type: GrantFiled: July 3, 2013Date of Patent: April 29, 2014Assignee: Marvell International Ltd.Inventors: Qiang Tang, Min She, Ken Liao
-
Publication number: 20140097541Abstract: Substantially simultaneous plasma etching of polysilicon and oxide layers in multilayer lines in semiconductors allows for enhanced critical dimensions and aspect ratios of the multilayer lines. Increasing multilayer line aspect ratios may be possible, allowing for increased efficiency, greater storage capacity, and smaller critical dimensions in semiconductor technologies.Type: ApplicationFiled: October 10, 2012Publication date: April 10, 2014Applicant: MACRONIX INTERNATIONAL CO., LTD.Inventor: Lo Yueh LIN
-
Patent number: 8692373Abstract: A method of forming a metal silicide region. The method comprises forming a metal material over and in contact with exposed surfaces of a dielectric material and silicon structures protruding from the dielectric material. A capping material is formed over and in contact with the metal material. The silicon structures are exposed to heat to effectuate a multidirectional diffusion of the metal material into the silicon structures to form a first metal silicide material. The capping material and unreacted portions of the metal material are removed. The silicon structures are exposed to heat to substantially convert the first metal silicide material into a second metal silicide material. A method of semiconductor device fabrication, an array of silicon structures, and a semiconductor device structure are also described.Type: GrantFiled: February 21, 2012Date of Patent: April 8, 2014Assignee: Micron Technology, Inc.Inventors: Carla Maria Lazzari, Enrico Bellandi