Recrystallized Semiconductor Material Patents (Class 257/75)
  • Patent number: 7105865
    Abstract: Seeds are implanted in a regular pattern upon an undersubstrate. An AlxInyGa1-x-yN (0?x?1, 0?y?1, 0<x+y?1) mixture crystal is grown on the seed implanted undersubstrate by a facet growth method. The facet growth makes facet pits above the seeds. The facets assemble dislocations to the pit bottoms from neighboring regions and make closed defect accumulating regions (H) under the facet bottoms. The closed defect accumulating regions (H) arrest dislocations permanently. Release of dislocations, radial planar defect assemblies and linear defect assemblies are forbidden. The surrounding accompanying low dislocation single crystal regions (Z) and extra low dislocation single crystal regions (Y) are low dislocation density single crystals.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: September 12, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Nakahata, Ryu Hirota, Kensaku Motoki, Takuji Okahisa, Kouji Uematsu
  • Patent number: 7102170
    Abstract: The irregularities of characteristics of a pair of transistors, which are prepared by a pseudo single crystallizing technique, are reduced. To achieve this, semiconductor layers are formed on a substrate and have pseudo single crystal regions therein, and a plurality of thin film transistors are arranged inside of the pseudo single crystal regions. Two or more of the plurality of thin film transistors, which are required to exhibit small irregularities relative to each other as characteristics thereof, have the direction of the length of the gates of the respective thin film transistors arranged at an inclination of within ±20 degree with respect to the longitudinal direction of the strip-like grown crystals, and they are arranged such that, when channel regions of respective thin film transistors are imaginarily extended in parallel to the growth direction of the strip-like grown crystals, at least portions of the channel regions are superposed on each other.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: September 5, 2006
    Assignee: Hitachi Displays, Ltd.
    Inventors: Hideo Sato, Shigeyuki Nishitani, Tomohiko Sato, Mutsuko Hatano
  • Patent number: 7094610
    Abstract: A magnetic sensor using efficient injection of spin polarized electrons at room temperature can be fabricated by forming a semiconductor layer sandwiched between ferromagnets and forming ?-doped layers between the semiconductor layer and the ferromagnets. A sensing method applies a magnetic field to be measured to the semiconductor layer and observes the conductivity of the sensor. The sensing techniques can achieve high magneto-sensitivity and very high operating speed, which in turn provides ultra fast and sensitive magnetic sensors.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: August 22, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viatcheslav V. Osipov, Alexandre M. Bratkovski
  • Patent number: 7087971
    Abstract: A magnetic sensor based on efficient spin injection of spin-polarized electrons from ferromagnets into semiconductors and rotation of electron spin under a magnetic field. Previous spin injection structures suffered from very low efficiency (less than 5). A spin injection device with a semiconductor layer sandwiched between ?-doped layers and ferromagnets allows for very high efficient (close to 100%) spin polarization to be achieved at room temperature, and allows for high magneto-sensitivity and very high operating speed, which in turn allows devising ultra fast and sensitive magnetic sensors.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: August 8, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Vlatcheslav V. Osipov, Alexandre M. Bratkovski
  • Patent number: 7084081
    Abstract: A display device includes a display area composed of pixels in a matrix. Each pixel has a light-emitting element and a driving element to supply a driving current to the light-emitting element. The driving element includes a thin film transistor with a semiconductor layer of a poly-crystalline film. The semiconductor layer is provided with channel region, and a source and drain region disposed on both sides of the channel region. The channel region connects the source region to the drain region and has at least two conductive regions with different average grain sizes. The characteristics of the driving elements are made substantially uniform so that the display quality of the display device can be improved remarkably.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: August 1, 2006
    Assignee: Toshiba Matsushita Display Technology Co., Ltd.
    Inventor: Yasumasa Goto
  • Patent number: 7084468
    Abstract: Disclosed are a spin injection device applicable as a memory and a logical device using a spin valve effect obtained by injecting a carrier spin-polarized from a ferromagnet into a semiconductor at an ordinary temperature, and a spin-polarized field effect transistor.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: August 1, 2006
    Assignee: Korea Institute of Science and Technology
    Inventors: Woo Young Lee, Suk Hee Han, Joon Yeon Chang, Hi Jung Kim, Han Joo Lee, Woong Jun Hwang, Moo Whan Shin, Young Keun Kim
  • Patent number: 7075002
    Abstract: A method of manufacturing a thin-film solar cell, comprising the steps of: forming an amorphous silicon film on a substrate; placing a metal element that accelerates the crystallization of silicon in contact with the surface of the amorphous silicon film; subjecting the amorphous silicon film to a heat treatment to obtain a crystalline silicon film; depositing a silicon film to which phosphorus has been added in contact with the crystalline silicon film; and subjecting the crystalline silicon film and the silicon film to which phosphorus has been added to a heat treatment to getter the metal element from the crystalline film.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: July 11, 2006
    Assignee: Semiconductor Energy Laboratory Company, Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai
  • Patent number: 7071489
    Abstract: A polycrystalline silicon plate has grain boundary lines on a surface thereof, and at least one of the grain boundary lines is a quasi-linear grain boundary line. The silicon plate is used to produce a solar cell. The silicon plate is formed using a base substrate having an irregular surface provided with dotted or linear protrusions, which makes it possible to control the grain boundary lines. As such, an inexpensive and high-quality silicon plate can be provided. Further, by employing this silicon plate to produce a solar cell, an inexpensive and high-quality solar cell can be provided as well.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: July 4, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yoshihiro Tsukuda
  • Patent number: 7063986
    Abstract: A 3 group–5 group compound ferromagnetic semiconductor, comprising one material ‘A’ selected from the group of Ga, Al and In and one material ‘B’ selected from the group consisting of N and P, wherein one material ‘C’ selected from the group consisting of Mn, Mg, Co, Fe, Ni, Cr and V is doped as a material for substituting the material ‘A’, the compound semiconductor has a single phase as a whole. The ferromagnetic semiconductor can be fabricated by a plasma-enhance molecular beam epitaxy growing method and since it shows the ferromagnetic characteristics at a room temperature, it can be applied as various spin electron devices.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: June 20, 2006
    Assignee: Korea Institute of Science and Technology
    Inventors: Woo Young Lee, Suk Hee Han, Joon Yeon Chang, Hi Jung Kim, Jung Mi Lee, Jae Min Myoung
  • Patent number: 7045819
    Abstract: A silicon film is crystallized in a predetermined direction by selectively adding a metal element having a catalytic action for crystallizing an amorphous silicon and annealing. In manufacturing TFT using the crystallized silicon film, TFT provided such that the crystallization direction is roughly parallel to a current-flow between a source and a drain, and TFT provided such that the crystallization direction is roughly vertical to a current-flow between a source and a drain are manufactured. Therefore, TFT capable of conducting a high speed operation and TFT having a low leak current are formed on the same substrate.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: May 16, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiro Takemura
  • Patent number: 7045818
    Abstract: In a fabrication process of a semiconductor device for use in a TFT liquid crystal display system, before the start of crystallizing amorphous silicon (a-Si), dehydrogenation annealing is carried out to not only decrease the density of hydrogen in the p-Si film (13) to 5×1020 atoms/cm3 at most but also to prevent crystallization of the a-Si film (13) being obstructed due to possible excessive hydrogen remaining in the film. With the p-Si film (13) covered with an interlayer insulation film (15) in the form of a plasma nitride film, annealing is then carried out in nitrogen atmosphere at a temperature of 350° C. to 400° C. for one to three hours, more preferably 400° C. for two hours. The result is that hydrogen atoms in the p-Si film (13) efficiently terminate dangling bonds of the film and hence do not become excessive, thus improving the electrical characteristics of the semiconductor device.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: May 16, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yushi Jinno, Shiro Nakanishi, Kyoko Hirai, Tsutomu Yamada, Yoshihiro Morimoto, Kiyoshi Yoneda
  • Patent number: 7005672
    Abstract: A thin film transistor including: an insulating layer; a gate electrode; a semiconductor layer including coalesced structurally ordered polymer aggregates of a self-organizable polymer, wherein the self-organizable polymer is of a type capable of gelling; a source electrode; and a drain electrode, wherein the insulating layer, the gate electrode, the semiconductor layer, the source electrode, and the drain electrode are in any sequence as long as the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconductor layer.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: February 28, 2006
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu, Beng S. Ong, Dasarao K. Murti
  • Patent number: 6962884
    Abstract: A method for processing integrated circuit devices. The method includes providing a monitor wafer, which comprising a silicon material. The method introduces a plurality of particles within a depth of the silicon material. The plurality of particles have a reduced activation energy within the silicon material. The method subjects the monitor wafer including the plurality of particles into a rapid thermal anneal process. The method includes applying the rapid thermal anneal process at a first state including a first temperature. The first temperature is within a range defined as a low temperature range, which is less than 650 Degrees Celsius. The method includes removing the monitor wafer and measuring a sheet resistivity of the monitor wafer. The method also determines the first temperature within a tolerance of less than 2 percent across the monitor wafer.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 8, 2005
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Jingang Wu, Amy Liu, Tony Wang, Dennis Huang
  • Patent number: 6952021
    Abstract: A bottom-gate thin-film transistor includes a gate electrode, a gate insulating film, an active layer, and a protective insulating film deposited in that order on a substrate. The protective insulating film has a thickness of 100 nm or less, and the protective insulating film is formed on any one of the active layer, and LDD region, and a source-drain region. A method for making a bottom-gate thin-film transistor, a liquid crystal display device including a TFT substrate using the bottom-gate thin-film transistor and a method for fabricating the same, and an organic EL device including the bottom-gate thin-film transistor and a method for fabricating the same are also disclosed.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: October 4, 2005
    Assignee: Sony Corporation
    Inventors: Tsutomu Tanaka, Masahiro Fujino, Hisao Hayashi
  • Patent number: 6933530
    Abstract: A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: August 23, 2005
    Assignee: The Regents of the University of California
    Inventors: Daniel Toet, Thomas W. Sigmon
  • Patent number: 6909113
    Abstract: A method of forming a periodic index of refraction pattern in a superlattice of a solid material to achieve photonic bandgap effects at desired optical wavelengths is disclosed. A plurality of space group symmetries, including a plurality of empty-spaced buried patterns, are formed by drilling holes in the solid material and annealing the solid material to form empty-spaced patterns of various geometries. The empty-spaced patterns may have various sizes and may be formed at different periodicities, so that various photonic band structures can be produced for wavelength regions of interest.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Kevin G. Donohoe
  • Patent number: 6906346
    Abstract: This invention concerns with a semiconductor device which is characterized in that the device is provided with a thin film transistor 40 having a polycrystalline semiconductor layer 11, the semiconductor layer 11 including a channel area 22, highly doped drain areas 24, 17 positioned on both sides of the channel area 22 and LDD areas 18a, 18b positioned between the channel area 22 and the highly doped drain areas 24, 17 and lower in dopant density than the highly doped drain areas 24, 17, wherein any diameter of the crystal 14 at least partly existing in the LDD area 18b is larger than the size of other crystals 15.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: June 14, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hikaru Nishitani, Makoto Yamamoto, Yoshinao Taketomi
  • Patent number: 6888162
    Abstract: An electronic apparatus employs a polycrystalline semiconductor thin film structure formed of an insulating substrate and a plurality of polycrystalline layers laminated on the insulating substrate. A plurality of transistors are formed at the surface of the polycrystalline semiconductor thin film structure, each transistor being formed in a region of one of a plurality of crystal grains disseminated on the surface of the polycrystalline layers. A number of crystal grains in each of the polycrystalline layers is gradually reduced from a lower layer to an upper layer.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: May 3, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Yamaguchi, Masanobu Miyao, Kiyokazu Nakagawa, Nobuyuki Sugii
  • Patent number: 6878968
    Abstract: A metallic element is effectively removed from a semiconductor film crystallized by using the metallic element. The concentration distribution of phosphorous or antimony in the depth direction of at least one of a source and a drain of a TFT semiconductor film has: a region in which the concentration is 1×1020 atoms/cm3 or less is 5 nm or greater in thickness, and 5×1019 atoms/cm3 or greater in the maximum value. By creating this concentration distribution, and by thermal annealing at about between 500 and 650° C., the metallic element within a channel forming region diffuses to the source or the drain, and at the same time as gettering is accomplished, the region in which the concentration is 1×1020 atoms/cm3 or less is made into a nucleus and the source region/drain region is recrystallized.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: April 12, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideto Ohnuma
  • Patent number: 6841797
    Abstract: A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: January 11, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsuo Isobe, Shunpei Yamazaki, Koji Dairiki, Hiroshi Shibata, Chiho Kokubo, Tatsuya Arao, Masahiko Hayakawa, Hidekazu Miyairi, Akihisa Shimomura, Koichiro Tanaka, Mai Akiba
  • Patent number: 6833561
    Abstract: The present invention relates to a structure and a fabrication method of a storage capacitor used in the pixel region of a display panel such as LCD or OELD. The present invention simultaneously forms a poly-crystalline silicon TFT and a storage capacitor in the pixel region of a display panel using MILC phenomena. By applying MILC inducing metal along at least two edges of storage capacitor, the time required to crystallize the silicon layer in storage capacitor region may be significantly reduced.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: December 21, 2004
    Inventors: Seung Ki Joo, Seok-Woon Lee
  • Patent number: 6825493
    Abstract: Sequential lateral solidification (SLS) crystallization of amorphous silicon using a mask having striped light transmitting portions. An amorphous silicon bearing substrate is located in an SLS apparatus. The amorphous silicon film is functionally divided into a driving region (for driving devices) and a display region (for TFT switches). Part of the driving region is crystallized by a laser that passes through the mask. The mask is then moved relative to the substrate by a translation distance that is less than half the width of the light transmitting portions. Thereafter, subsequent crystallizations are performed to crystallize the driving region. Then, part of the display region is crystallized by a laser that passes through the mask. The mask is then moved relative to the substrate by a translation distance that is more than half the width of the light transmitting portions. Thereafter, subsequent crystallizations are performed to crystallize the display region.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: November 30, 2004
    Assignee: LG.Philips LCD Co., Ltd.
    Inventor: Yun-Ho Jung
  • Patent number: 6815717
    Abstract: To a polycrystalline silicon layer crystallized by irradiation with laser light, a mixed gas comprised of ozone gas and H2O or N2O gas is fed at a processing temperature of 500° C. or below, or the polycrystalline silicon layer is previously treated with a solution such as ozone water or an aqueous NH3/hydrogen peroxide solution, followed by oxidation treatment with ozone, to form a silicon oxide layer with a thickness of 4 nm or more at the surface of the polycrystalline silicon layer for forming a thin-film transistor having characteristics that are less varying on a glass substrate previously not annealed.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: November 9, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhiko Horikoshi, Kiyoshi Ogata, Miwako Nakahara, Takuo Tamura, Yasushi Nakano, Ryoji Oritsuki, Toshihiko Itoga, Takahiro Kamo
  • Patent number: 6815269
    Abstract: A thin-film transistor is formed by a polycrystalline silicon film having a thin-film part and a thick-film part, the thin-film part minimally being used as a channel part. The polycrystalline silicon film is formed by laser annealing with an energy density that completely melts the thin-film part but does not completely melt the thick-film part. Because large coarse crystal grains growing from the boundary between the thin-film part and the thick-film part form the channel part, it is possible to use a conventional laser annealing apparatus to easily achieve high carrier mobility and low leakage current and the like.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: November 9, 2004
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Hiroshi Okumura
  • Patent number: 6812493
    Abstract: The present invention provides a thin film semiconductor element which is small in area with high on-current enough to be suitable for the power saving, miniaturization, and high definition display of a device. According to the present invention, an outer shape of a semiconductor thin film is processed and regions (a channel region, a source region, and a drain region) in the semiconductor thin film are formed by using, as masks, other element components such as a gate electrode. Specifically, ion-implanted regions are formed by implanting impurity ions into predetermined regions of the semiconductor thin film using, as a mask, the gate electrode overlapped on the thin film via an insulation film. Thereafter, the semiconductor is processed into a predetermined shape by etching using, as masks, previously formed element components such as the gate electrode.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: November 2, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Mikio Nishio
  • Patent number: 6812494
    Abstract: A semiconductor device with which a panel having a large area or a narrowly margined with the circumferential space minimized can be manufactured stably with a high yield. The semiconductor device comprises a TFT substrate having a plurality of pixels of a plurality of TFT (thin film transistors) provided on the substrate in which a peripheral wire is arranged along the outer periphery of the TFT substrate and connected to a constant potential.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: November 2, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Chiori Mochizuki, Minoru Watanabe
  • Patent number: 6809388
    Abstract: A magnetic sensor based on efficient spin injection of spin-polarized electrons from ferromagnets into semiconductors and rotation of electron spin under a magnetic field. Previous spin injection structures suffered from very low efficiency (less than 5%). A spin injection device with a semiconductor layer sandwiched between &dgr;-doped layers and ferromagnets allows for very high efficient (close to 100%) spin polarization to be achieved at room temperature, and allows for high magneto-sensitivity and very high operating speed, which in turn allows devising ultra fast and sensitive magnetic sensors.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 26, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viatcheslav V. Ossipov, Alexandre M. Bratkovski
  • Publication number: 20040201023
    Abstract: An object is to enhance the orientation ratio of a crystalline semiconductor film obtained by crystallizing an amorphous semiconductor film while using as a substrate a less-heat-resistive material such as glass thereby. providing a semiconductor device using a crystalline semiconductor film with high quality equivalent to a single crystal. A first crystalline semiconductor film and a second crystalline semiconductor film are formed overlying a substrate, which integrally structure a crystalline semiconductor layer. The first and second crystalline semiconductor films are polycrystalline bodies aggregated with a plurality of crystal grains. However, the crystal grains are aligned toward a (101)-plane orientation at a ratio of 30 percent or greater, preferably 80 percent or greater.
    Type: Application
    Filed: April 30, 2004
    Publication date: October 14, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Mitsuki, Kenji Kasahara
  • Patent number: 6800541
    Abstract: A method of irradiation of plural pulse laser beams onto one position of a non-single crystal semiconductor, wherein the pulse laser beams are not higher in energy density than an energy density threshold value necessary for causing a micro-crystallization of the non-single crystal semiconductor.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: October 5, 2004
    Assignee: NEC Corporation
    Inventor: Hiroshi Okumura
  • Patent number: 6784456
    Abstract: A gate-overlap-drain structure is obtained by a single pair of a single impurity implantation process and a single laser anneal process, wherein the improved gate-overlap-drain structure includes lightly activated high impurity concentration regions exhibiting substantially the same function as the lightly doped drain regions, wherein the lightly activated high impurity concentration regions are bounded with high impurity concentration regions serving as source and drain regions. The boundaries are self-aligned to edges of a gate electrode. Side regions of the gate electrode overlap the lightly activated high impurity concentration regions.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: August 31, 2004
    Assignee: NEC Corporation
    Inventor: Kenji Sera
  • Patent number: 6777714
    Abstract: Concave and convex are formed on the substrate 1, the amorphous silicon layer 4 is formed on the metallic catalyst 3 dispersed and arranged in a dotted shape in the concave portion of the concave and convex, the crystal phases 5 having respective orientations from the metallic catalyst 3 are grown, further the crystal phases 5 are integrated with each other by continuing heat treatment and the polycrystalline silicon layer 6 is formed. A crystalline silicon semiconductor device and its method for fabrication which are costly advantageous and capable of efficiently forming the polycrystalline silicon layer of a predetermined thickness needed as a semiconductor device are provided.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: August 17, 2004
    Assignee: Hitachi Cable, Ltd.
    Inventors: Shinichi Muramatsu, Yasushi Minagawa, Fumihito Oka, Susumu Takahashi, Yoshiaki Yazawa
  • Patent number: 6774446
    Abstract: An efficient spin injection into semiconductors. Previous spin injection devices suffered from very low efficiency (less than 2% at room temperature) into semiconductors. A spin injection device with a &dgr;-doped layer placed between a ferromagnetic layer and a semiconductor allows for very high efficient (close to 100%) spin injection to be achieved at room temperature.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 10, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viatcheslav V. Osipov, Alexandre M. Bratkovski
  • Patent number: 6744069
    Abstract: Nickel is selectively held in contact with a particular region of an amorphous silicon film. Crystal growth parallel with a substrate is effected by performing a heat treatment. A thermal oxidation film is formed by performing a heat treatment in an oxidizing atmosphere containing a halogen element. During this step, the crystallinity is improved and the gettering of nickel elements proceeds. A thin-film transistor is formed so that the direction connecting source and drain regions coincides with the above crystal growth direction. As a result, a TFT having superior characteristics such as a mobility larger than 200 cm2/Vs and an S value smaller than 100 mV/dec. can be obtained.
    Type: Grant
    Filed: January 17, 1997
    Date of Patent: June 1, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Jun Koyama, Yasushi Ogata, Masahiko Hayakawa, Mitsuaki Osame, Hisashi Ohtani, Toshiji Hamatani
  • Publication number: 20040084679
    Abstract: In a method for manufacturing a semiconductor device and devices formed thereby, a semiconductor material layer (e.g., amorphous silicon or microcrystallized silicon film) is formed on a substrate. At least a region of the semiconductor material layer is irradiated with a laser for heating and melting the semiconductor material in the region. The manufacturing method is controlled to promote uniform cooling of the semiconductor material in the irradiated region. Uniform cooling of the semiconductor material after irradiation is promoted so that, after irradiation, a desirable polycrystalline microstructure is formed in the semiconductor material layer by lateral solidification from a boundary of the region.
    Type: Application
    Filed: October 20, 2003
    Publication date: May 6, 2004
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Junichiro Nakayama
  • Patent number: 6727517
    Abstract: Semiconductor crystal grains are formed by metal-induced lateral crystallisation. The positions of the grain boundaries normal to the crystallisation direction are controlled, to position the grains correctly for subsequent formation of electronic devices within them. In a first technique, the grains are positioned by depositing the metal in short strips which each induce the crystallisation of a single corresponding grain. In a second technique, the grains are positioned by pre-patterning the amorphous silicon which is used to form the grains. Electronic circuit elements can be formed in each grain. The resultant structure can be used in a microelectronic mechanical system. Several grains can be formed successively and circuit elements formed in each layer to form a three-dimensional integrated circuit.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: April 27, 2004
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Man-Sun John Chan, Philip C. H. Chan, Wing-Chung Victor Chan
  • Publication number: 20040069991
    Abstract: High quality epitaxial layers of monocrystalline materials (26) can be grown overlying monocrystalline substrates (22) such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer (24) comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. Some preferred electronic devices are described that use a layer or pattern of a perovskite cuprate (2125, 2305, 2310, 2315, 2405) such as YBa2Cu3O7−y(YBCO) or Y1−xPrxBa2Cu3O7−y(YPBCO, 0<x<1) over a buffer layer (2120) of lanthanum strontium aluminum tantalate (LSAT).
    Type: Application
    Filed: October 10, 2002
    Publication date: April 15, 2004
    Applicant: MOTOROLA, INC.
    Inventors: Gregory Dunn, Robert Croswell, Jeffrey Petsinger
  • Patent number: 6720578
    Abstract: A polycrystalline silicon thin film for a TFT and a display device using the same where the number of crystal grain boundaries exerts a fatal influence on movement of electric charge carrier, providing a distance “S” between active channels of the TFT having dual or multiple channels with a relation S=mGs·sec &thgr;−L, and also providing a display device in which uniformity of TFT characteristics is improved by synchronizing the number of the crystal grain boundaries included in each of the channels of the dual or multiple channels S=mGs·sec &thgr;−L Gs is a size of crystal grains of the polycrystalline silicon thin film, m is an integer of 1 or more, &thgr; is an inclined angle where fatal crystal grain boundaries, that is, “primary” crystal grain boundaries are inclined in a direction perpendicular to an active channel direction, and L represents a length of active channels for each TFT having dual or multiple channels.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: April 13, 2004
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Ki-Yong Lee
  • Patent number: 6713825
    Abstract: A thin film transistor and its fabrication method. The transistor includes a buffer layer on a substrate, and a poly-crystalline semiconductor layer on the buffer layer. The poly-crystalline semiconductor layer includes a channel layer, offset regions along sides of the channel layer, sequential doping regions along sides of the offset regions, and source and drain regions. The doping concentration is sequentially changed in the sequential doping region. A sloped gate insulation layer is on the poly-crystalline semiconductor layer. A gate electrode having a main gate electrode and auxiliary gate electrodes is on the sloped insulation layer. An interlayer is over the gate electrode and source and drain electrodes are formed in contact with the source and drain regions and on the interlayer. The poly-crystalline semiconductor layer is formed by ion doping a poly-crystalline semiconductor layer through the gate insulation layer while using the gate electrode as a mask.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: March 30, 2004
    Assignee: LG. Philips LCD Co., Ltd.
    Inventor: Han-Wook Hwang
  • Patent number: 6710408
    Abstract: The present invention discloses a TFT array substrate (and method for making the same) having the large storage capacitance for use in a liquid crystal display device. In a four-mask process, the conventional storage capacitor of the TFT array substrate includes the capacitor electrodes and the insulation layer and semiconductor layer as a dielectric layer. However, the present invention includes the capacitor electrodes and the insulation layer as a dielectric layer so that the thickness of the dielectric layer becomes thinner. Therefore, much more electric charges can be stored in the storage capacitor. That means the liquid crystal display device can have a high picture quality and a high definition. Moreover, the present invention has a structure that can achieve the high manufacturing yield.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: March 23, 2004
    Assignee: LG.Philips LCD Co., Ltd.
    Inventors: Byoung-Ho Lim, Yong-Wan Kim
  • Patent number: 6703289
    Abstract: A plurality of linear catalytic metal element portions are arranged at predetermined intervals just on or just beneath an amorphous silicon layer, and, in this state, the amorphous silicon layer is heat treated to crystallize the amorphous silicon layer and consequently to form a polycrystalline silicon layer. This construction can realize the provision of a method for the formation of an evenly oriented, high-quality crystalline silicon layer in a large area, and a crystalline silicon semiconductor device produced by this method.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 9, 2004
    Assignee: Hitachi Cable, Ltd.
    Inventors: Shinichi Muramatsu, Yasushi Minakawa, Fumihito Oka, Tadashi Sasaki
  • Patent number: 6677611
    Abstract: A practical operational amplifier circuit is formed using thin film transistors. An operational amplifier circuit is formed by thin film transistors formed on a quartz substrate wherein 90% or more of n-channel type thin film transistors have mobility at a value of 260 cm2/Vs or more and wherein 90% or more of p-channel type thin film transistors have mobility at a value of 150 cm2/Vs or more. The thin film transistors have active layers formed using a crystalline silicon film fabricated using a metal element that promoted crystallization of silicon. The crystalline silicon film is a collection of a multiplicity of elongate crystal structures extending in a certain direction, and the above-described characteristics can be achieved by matching the extending direction and the moving direction of carriers.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: January 13, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Hisashi Ohtani
  • Patent number: 6653657
    Abstract: To provide a TFT that can operate at a high speed by forming a crystalline semiconductor film while controlling the position and the size of a crystal grain in the film to use the crystalline semiconductor film for a channel forming region of the TFT. Instead of a metal or a highly heat conductive insulating film, only a conventional insulating film is used as a base film to introduce a temperature gradient. A level difference of the base insulating film is provided in a desired location to generate the temperature distribution in the semiconductor film in accordance with the arrangement of the level difference. The starting point and the direction of lateral growth are controlled utilizing the temperature distribution.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: November 25, 2003
    Assignee: Semoconductor Energy Laboratory Co., Ltd.
    Inventors: Ritsuko Kawasaki, Kenji Kasahara, Hisashi Ohtani
  • Patent number: 6639245
    Abstract: An a-Si film 12 is formed on the whole surface of a quartz substrate 11, and a protection film 13 is formed in a region to be used as a display unit on the a-Si film 12. Subsequently, after a catalyst metal is selectively introduced into the whole surface of a region to be used as a peripheral drive circuit on the a-Si film 12, crystal growth is allowed by heating the a-Si film 12 to form a CG silicon film 14 and a p-Si film 15. Then, the catalyst metal in the CG silicon film 14 and the p-Si film 15 is removed by gettering. The concentration of the catalyst metal in the CG silicon film 14 is in the range of 1×1013 atoms/cm13 or higher and lower than 1×1015 atoms/cm3. The concentration of the catalyst metal in the p-Si film for a display unit 15 is made lower than the concentration of the catalyst metal in the CG silicon film 14b for a peripheral drive circuit.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: October 28, 2003
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masahito Gotoh, Tohru Ueda
  • Patent number: 6624445
    Abstract: A semiconductor device using a crystalline semiconductor film is manufactured. The crystalline semiconductor film is formed by providing an amorphous silicon film with a catalyst metal for promoting a crystallization thereof and then heated for performing a thermal crystallization, following which the crystallized film is further exposed to a laser light for improving the crystallinity. The concentration of the catalyst metal in the semiconductor film and the location of the region to be added with the catalyst metal are so selected in order that a desired crystallinity and a desired crystal structure such as a vertical crystal growth or lateral crystal growth can be obtained. Further, active elements and driver elements of a circuit substrate for an active matrix type liquid crystal device are formed by such semiconductor devices having a desired crystallinity and crystal structure respectively.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: September 23, 2003
    Assignee: Semiconductor Energy Laboratory Co., LTD
    Inventors: Akiharu Miyanaga, Hisashi Ohtani, Yasuhiko Takemura
  • Patent number: 6614103
    Abstract: There is provided a flexible circuit module, including at least one rigid carrier, at least one solid state device mounted over a first side of the at least one rigid carrier, a flexible base supporting a second side of the at least one rigid carrier, a conductive interconnect pattern on the flexible base, and a plurality of feed through electrodes extending from the first side to the second side of the at least one rigid carrier and electrically connecting the conductive interconnect pattern with the at least one of a plurality of the solid state devices. The solid state devices may be LED chips to form an LED array module.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: September 2, 2003
    Assignee: General Electric Company
    Inventors: Kevin Matthew Durocher, Ernest Wayne Balch, Vikram B. Krishnamurthy, Richard Joseph Saia, Herbert Stanley Cole, Ronald Frank Kolc
  • Patent number: 6610998
    Abstract: A method and structure for crystallizing film is disclosed. The method includes the steps of forming a film on a substrate, forming a lens on the film to focus an electromagnetic wave on the film and directing the electromagnetic wave on the film inclusive of the lens to crystallize the film.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: August 26, 2003
    Assignee: Goldstar Electron Co., Ltd.
    Inventor: Min Hwa Park
  • Patent number: 6590228
    Abstract: A method is provided to optimize the channel characteristics of thin film transistors (TFTs) on polysilicon films. The method is well suited to the production of TFTs for use as drivers on liquid crystal display devices. Regions of polycrystalline silicon can be formed with different predominant crystal orientations. These crystal orientations can be selected to match the desired TFT channel orientations for different areas of the device. The crystal orientations are selected by rotating a mask pattern to a different orientation for each desired crystal orientation. The mask is used in connection with lateral crystallization ELA processes to crystallize deposited amorphous silicon films.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: July 8, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Apostolos Voutsas, John W. Hartzell, Yukihiko Nakata
  • Publication number: 20030111665
    Abstract: A method of forming a periodic index of refraction pattern in a superlattice of a solid material to achieve photonic bandgap effects at desired optical wavelengths is disclosed. A plurality of space group symmetries, including a plurality of empty-spaced buried patterns, are formed by drilling holes in the solid material and annealing the solid material to form empty-spaced patterns of various geometries. The empty-spaced patterns may have various sizes and may be formed at different periodicities, so that various photonic band structures can be produced for wavelength regions of interest.
    Type: Application
    Filed: November 26, 2002
    Publication date: June 19, 2003
    Inventors: Joseph E. Geusic, Kevin G. Donohoe
  • Patent number: 6576831
    Abstract: Directionally solidified, multicrystalline silicon having a low proportion of electrically active grain borders, its manufacturing and utilisation, as well as solar cells comprising said silicon and a method of manufacturing said cells.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: June 10, 2003
    Assignee: Deutsche Solar GmbH
    Inventors: Peter Woditsch, Gunther Stollwerck, Christian Hässler, Wolfgang Koch
  • Patent number: 6573531
    Abstract: System and methods for processing an amorphous silicon thin film sample into a single or polycrystalline silicon thin film are disclosed.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 3, 2003
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Robert S. Sposili, Mark A. Crowder