With Contoured External Surface (e.g., Dome Shape To Facilitate Light Emission) Patents (Class 257/95)
  • Patent number: 7791090
    Abstract: A device having a carrier, a light-emitting structure, and first and second electrodes is disclosed. The light-emitting structure includes an active layer sandwiched between a p-type GaN layer and an n-type GaN layer, the active layer emitting light of a predetermined wavelength in the active layer when electrons and holes from the n-type GaN layer and the p-type GaN layer, respectively, combine therein. The first and second electrodes are bonded to the surfaces of the p-type and n-type GaN layers that are not adjacent to the active layer. The n-type GaN layer has a thickness less than 1.25 ?m. The carrier is bonded to the light emitting structure during the thinning of the n-type GaN layer. The thinned light-emitting structure can be transferred to a second carrier to provide a device that is analogous to conventional LEDs having contacts on the top surface of the LED.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: September 7, 2010
    Assignee: Bridgelux, Inc.
    Inventors: Steven D. Lester, Frank T. Shum
  • Patent number: 7791098
    Abstract: A nitride semiconductor light emitting device comprising an n-side nitride semiconductor layer and a p-side nitride semiconductor layer formed on a substrate, with a light transmitting electrode 10 formed on the p-side nitride semiconductor layer, and the p-side pad electrode 14 formed for the connection with an outside circuit, and the n-side pad electrode 12 formed on the n-side nitride semiconductor layer for the connection with the outside circuit, so as to extract light on the p-side nitride semiconductor layer side, wherein taper angles of end faces of the light transmitting electrode 10 and/or the p-side nitride semiconductor layer are made different depending on the position.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: September 7, 2010
    Assignee: Nichia Corporation
    Inventors: Takahiko Sakamoto, Yasutaka Hamaguchi
  • Patent number: 7790485
    Abstract: A method of manufacturing a semiconductor light emitting device. The method includes: mounting a semiconductor light emitting element on a flat substrate; covering the semiconductor light emitting element on the flat substrate by a cover layer in a domed shape to form a light emitting device, the cover layer including at least a phosphor layer and a coating resin layer that are laminated in order, so as to fill around the semiconductor light emitting element; measuring an emission condition of the light emitting device; and forming a convex lens unit on the outermost of the coating resin layer using a liquid droplet discharging apparatus to adjust an emission distribution of the light emitting device based on the measured emission condition.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuko Nomura, Kenichi Mori, Isao Takasu, Keiji Sugi, Isao Amemiya, Miho Yoda
  • Publication number: 20100220757
    Abstract: One embodiment of the present invention provides a semiconductor light-emitting element having both high light-extraction efficiency and excellent adhesion between a light-extraction surface and a sealing resin, and it also provides a process for production thereof. This element comprises a semiconductor multilayered film and a light-extraction surface. In the multilayered film, plural semiconductor layers and an active layer are stacked. The light-extraction surface is provided on the multilayered film, and plural micro-projections are formed thereon. These micro-projections have flat top faces parallel to the multilayered film, and they can be formed by an etching process. The etching process is performed by use of a dot pattern as a mask, and the dot pattern is formed by phase separation of a block copolymer.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 2, 2010
    Inventors: Ryota KITAGAWA, Akira FUJIMOTO, Koji ASAKAWA
  • Patent number: 7786501
    Abstract: A fabricating process of a thermal enhanced substrate is provided for fabricating thermal conduction blocks to increase the heat dissipation area. First, a metallic substrate having a first surface and a second surface opposite to the first surface is provided. A first shallow trench with a first depth is then formed on the first surface. A second shallow trench with a second depth is formed on the second surface, and a deep trench penetrating the first shallow trench and the second shallow trench is formed, where the metallic substrate is separated into many thermal conduction blocks by the deep trench. At least one metallic layer and at least one insulating material are laminated on the thermal conduction blocks, and the insulating material is filled into the deep trench and covers the thermal conduction blocks.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: August 31, 2010
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Tzu-Shih Shen
  • Patent number: 7781791
    Abstract: In a semiconductor light emitting element, a p-type layer (220), an active layer (230) and an n-type layer (240) are laminated on a substrate in this order. The n-type layer (240) is formed with a rectangular n-side electrode (241) whose width in one direction is equal to that of the n-type layer (240). The thickness t of the n-type layer (240) satisfies Formula 1 below. The semiconductor light emitting element includes a side surface (270) extending in the lamination direction and formed with a plurality of projections (271). Supposing that the wavelength of the light from the active-layer (230) is ? and the index of refraction of the n-type layer (240) or the p-type layer (220) is n, the average WA of widths at bottoms of the projections is set to satisfy WA??/n.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: August 24, 2010
    Assignee: Rohm Co., Ltd.
    Inventors: Mitsuhiko Sakai, Tadahiro Okazaki, Ken Nakahara
  • Patent number: 7781779
    Abstract: Light-emitting devices and associated methods are provided. The light emitting devices can have a wavelength converting material-coated emission surface.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: August 24, 2010
    Assignee: Luminus Devices, Inc.
    Inventor: Nikolay I. Nemchuk
  • Patent number: 7781790
    Abstract: A semiconductor light emitting element having a semiconductor light emitting structure on a first main surface of a substrate, wherein the first main surface of the substrate has a substrate protrusion portion thereon, wherein a bottom surface of a protrusion is wider than a top surface thereof in a cross section of the substrate and the top surface is included in the bottom surface in a top view of the substrate, the bottom surface has an approximately polygonal shape which has a convex portion on each constituent side of the bottom surface, and the top surface has an approximately circular shape.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: August 24, 2010
    Assignee: Nichia Corporation
    Inventors: Shunsuke Minato, Junya Narita, Yohei Wakai, Yukio Narukawa, Motokazu Yamada
  • Patent number: 7777241
    Abstract: A semiconductor sensor, solar cell or emitter or a precursor therefore having a substrate and textured semiconductor layer deposited onto the substrate. The layer can be textured as grown on the substrate or textured by replicating a textured substrate surface. The substrate or first layer is then a template for growing and texturing other semiconductor layers from the device. The textured layers are replicated to the surface from the substrate to enhance light extraction or light absorption. Multiple quantum wells, comprising several barrier and quantum well layers, are deposited as alternating textured layers. The texturing in the region of the quantum well layers greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. This is the case in nitride semiconductors grown along the polar [0001] or [000-1] directions.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: August 17, 2010
    Assignee: The Trustees of Boston University
    Inventors: Theodore D. Moustakas, Jasper S. Cabalu
  • Patent number: 7777242
    Abstract: A light emitting device which includes: a substrate; an n-type semiconductor layer which is composed of a nitride semiconductor, formed on the substrate and has an n-side electrode; a p-type semiconductor layer which is composed of a nitride semiconductor, and stacked above the n-type semiconductor layer; a light emitting layer which is disposed between the n-type semiconductor layer and the p-type semiconductor layer; a p-side electrode which is disposed on a transparent electrode formed on the p-side electrode in a light emitting area; a plurality of protrusions and depressions in an area other than the light emitting area; and an insulation film on an area except areas of the n-side electrode and the p-side electrode, wherein the n-side electrode and the p-side electrode are arranged on a same side of the substrate, wherein a thickness of the insulation film on a top of the protrusions and depressions is thicker than a thickness of the insulation film in the light emitting area.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 17, 2010
    Assignee: Nichia Corporation
    Inventor: Akinori Yoneda
  • Patent number: 7775687
    Abstract: A light emitting device having a simple structure and high decorating characteristics is provided. The light emitting device comprises an emission source for outputting lights having different colors from different emission parts; and a transmitting resin having a conically shaped reflection surface for reflecting lights output from each of the emission parts, and covering the light emitting source, wherein the emission source is provided so that one or more of the emission parts are located away from a central axis of the conical shape.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: August 17, 2010
    Assignee: Nichia Corporation
    Inventors: Masami Nishi, Atsushi Yamamoto
  • Patent number: 7777235
    Abstract: A light emitting diode with improved light collimation comprises a substrate-supported LED die disposed within a transparent dome. A portion of the dome laterally circumscribe the die comprises light reflecting material to reflect emitted light back to the die. A portion of the dome centrally overlying the die is substantially free of light reflecting material to permit exit of light within a desired radiation pattern. The LED die may be packaged for high temperature operation by disposing them on a ceramic-coated metal base which can be coupled to a heat sink. The packaged LED can be made by the low temperature co-fired ceramic-on-metal technique (LTCC-M).
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 17, 2010
    Assignee: Lighting Science Group Corporation
    Inventors: Joseph Mazzochette, Greg Blonder
  • Patent number: 7772595
    Abstract: There is provided a method of forming a nitride semiconductor layer, including the steps of firstly providing a substrate on which a patterned epitaxy layer with a pier structure is formed. A protective layer is then formed on the patterned epitaxy layer, exposing a top surface of the pier structure. Next, a nitride semiconductor layer is formed over the patterned epitaxy layer connected to the nitride semiconductor layer through the pier structure, wherein the nitride semiconductor layer, the pier structure, and the patterned epitaxy layer together form a space exposing a bottom surface of the nitride semiconductor layer. Thereafter, a weakening process is performed to remove a portion of the bottom surface of the nitride semiconductor layer and to weaken a connection point between the top surface of the pier structure and the nitride semiconductor layer. Finally, the substrate is separated from the nitride semiconductor layer through the connection point.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: August 10, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Der Guo, Chih-Ming Lai, Jenq-Dar Tsay, Po-Chun Liu
  • Patent number: 7772604
    Abstract: Embodiments of the present invention provide separate optical devices operable to couple to a separate LED, the separate optical device comprising an entrance surface to receive light from a separate LED when the separate optical device is coupled to the separate LED, an exit surface opposite from and a distance from the entrance surface and a set of sidewalls. The exit surface has at least a minimum area necessary to conserve brightness for a desired half-angle of light projected from the separate optical device. Furthermore, each sidewall is positioned and shaped so that at least a majority of rays having a straight transmission path from the entrance surface to that sidewall reflect to the exit surface with an angle of incidence at the exit surface at less than or equal to a critical angle at the exit surface.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 10, 2010
    Assignee: Illumitex
    Inventors: Dung T. Duong, Paul N. Winberg, Matthew R. Thomas
  • Publication number: 20100193769
    Abstract: In accordance with the invention, a light source for display and/or illumination is provided, the light source comprising a heterostructure including semiconductor layers, the heterostructure forming a waveguide between a first end and a second end, the heterostructure comprising a plurality of layers and comprising an optically active zone formed by the plurality of layers, the optically active zone capable of emitting light guided by said waveguide, at least two different radiative transitions being excitable in the optically active an electrical current between a p-side electrode and an n-side electrode, transition energies of said at least two different radiative transitions corresponding to wavelengths in the visible part of the optical spectrum, the light source further comprising means for preventing reflections of light from the waveguide by at least one of said first and second end back into the waveguide, thereby causing the light source to comprise a superluminescent light emitting diode.
    Type: Application
    Filed: November 2, 2009
    Publication date: August 5, 2010
    Applicant: EXALOS AG
    Inventors: Lorenzo Occhi, Valerio Laino, Christian Velez
  • Patent number: 7755100
    Abstract: There is provided a packaging apparatus of a terahertz device, the apparatus including: a terahertz device having an active region at which terahertz wave is radiated or detected; a device substrate mounting the terahertz device whose active region is positioned at an opening region formed at the center of the device substrate, and electrically connecting the terahertz device and an external terminal to each other; a ball lens block arranged and fixed to an upper part of the terahertz device; and upper and lower cases receiving the device substrate mounted with the terahertz device therein and opening region vertical upper and lower portions of the active region of the terahertz device.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 13, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Kuk Choi, Kwang Yong Kang, Mun Cheol Paek, Min Hwan Kwak
  • Patent number: 7750358
    Abstract: A semiconductor device made by mounting a light emitting element in a substrate, characterized in that an optically-transparent cover with a flat plate shape is installed on the light emitting element and a fluorescent substance film is formed on the cover.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: July 6, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Akinori Shiraishi, Mitsutoshi Higashi
  • Publication number: 20100163894
    Abstract: In the Group III nitride-based compound semiconductor light-emitting device of the invention, an non-light-emitting area is formed in a light-emitting layer. In a light-emitting diode where light is extracted on the side of an n-layer, an outer wiring trace portion and an inner wiring trace portion of an n-contact electrode impedes light emission from the light-emitting layer. Therefore, there are provided, at the interface between a p-layer and a p-contact electrode, high-resistance faces having a width wider than the orthogonal projections of contact areas between the outer and inner wiring trace portions and the n-layer on the interface between the p-contact electrode and the p-layer. Through this configuration, current flow is limited, and portions having a total area equivalent to that of the high-resistance faces of the light-emitting layer serve as non-light-emitting areas.
    Type: Application
    Filed: December 17, 2009
    Publication date: July 1, 2010
    Applicant: Toyoda Gosei Co., Ltd.
    Inventors: Toshiya Uemura, Naoki Arazoe
  • Patent number: 7745840
    Abstract: A solid-state light source includes a substrate, a solid-state light-emitting chip, a plurality of micro-members and a light-permeable encapsulation. The substrate has a substantially flat surface. The solid-state light-emitting chip is arranged on the substantially flat surface of the substrate and electrically connected to the substrate. The micro-members are arranged on the surface of the substrate and parallel with the solid-state light emitting chip. The light-permeable encapsulation is arranged on the surface of the substrate and covers the solid-state light-emitting chip and the micro-members.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: June 29, 2010
    Assignee: Foxsemicon Integrated Technology, Inc.
    Inventors: Chun-Wei Wang, Hung-Kuang Hsu, Wen-Jang Jiang
  • Patent number: 7746565
    Abstract: An optical lens includes a recessed part and a refracting part. The recessed part has a substantially circular plan view and a substantially V shaped cross-section. The recessed part forms an angle of no more than an angle of about 20° with respect to a vertical line. The recessed part has a plurality of curved surfaces including different radii so that a light incident into the recessed part is totally reflected from the curved surfaces. The refracting part has a substantially circular plan view extended from the recessed part. A light incident into the refracting part and the reflected light from the recessed part are refracted from the refracting part. Therefore, a luminance uniformity and a color uniformity are improved.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: June 29, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Wook Paek, Jin-Soo Kim, Eun-Jeong Kang, Jin-Sung Choi, Sang-Hoon Lee, Si-Joon Song
  • Patent number: 7745843
    Abstract: A light emitting device with an increased light extraction efficiency includes a two-dimensional periodic structure in a surface thereof and has two layers that together form an asymmetric refractive index distribution with respect to the active layer, which is in between the two layers. The light emitting device includes a substrate layer, a first layer, an active layer and a second layer that are stacked sequentially. The first layer includes at least one layer, including a semiconductor cladding layer of a first conductivity type. At least one layer of the first layer has a refractive index that is lower than a refractive index of the active layer and lower than a refractive index of a layer of the second layer that is adjacent to the active layer. Each constituent layer of the second layer has a refractive index that is lower than the refractive index of the active layer.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: June 29, 2010
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Toshihiko Baba, Takuya Kazama, Junichi Sonoda
  • Patent number: 7741649
    Abstract: In a semiconductor light emitting device, a semiconductor light emitting element has a light extracted surface on which a plurality of convex structures is formed. The convex structures each have a conical mesa portion constituting a refractive index gradient structure, a cylindrical portion constituting a diffraction grating structure, and a conical portion constituting a refractive index gradient structure. The mesa portion, cylindrical portion, and conical portion are arranged in this order from the light extracted surface. The period between the convex structures is longer than 1/(the refractive index of an external medium+the refractive index of the convex structures) of an emission wavelength and equal to or shorter than the emission wavelength. The circle-equivalent average diameter of the cylindrical portion is ? to 9/10 of that of the bottom of the mesa portion.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Fujimoto, Koji Asakawa, Kenichi Ohashi
  • Publication number: 20100139759
    Abstract: The present invention relates to an optical device and to a method of fabricating the same. In embodiments, the invention relates to a photovoltaic device or solar cell. The optical device comprises a first electrode and a second electrode and an active element disposed between the first and second electrodes. The active element comprising a plurality of semiconducting structures extending in a lengthwise direction from the first electrode and being in contact with the first and second electrodes; the active element comprises an np-junction. For the semiconducting structures, at least a part of the structures is of a general plate or flake shape. In embodiments, the semiconducting structures have at least one characteristic dimension in the nanometer range.
    Type: Application
    Filed: November 23, 2007
    Publication date: June 10, 2010
    Applicant: KOBENHAVNS UNIVERSITET
    Inventor: Martin Aagesen
  • Patent number: 7732802
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device comprises a substrate comprising a reflective pattern with a valley, a first nitride semiconductor layer on the substrate, an air gap formed between the reflective pattern and the first nitride semiconductor layer, an active layer on the first nitride semiconductor layer, and a second nitride semiconductor layer on the active layer.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: June 8, 2010
    Assignee: LG Innotek Co., Ltd.
    Inventors: Bum Chul Cho, Seung Hyun Yang
  • Patent number: 7728346
    Abstract: An LED illumination device can include a bridge connection circuit that includes five LED chips. The LED chips can be installed such that four LED chips, through which half-wave rectified current flows, are disposed in a generally cross-shaped opposed arrangement with the remaining LED chip interposed therebetween. The remaining LED chip can also have a full-wave rectified current flowing therethrough. Half-wave rectified currents having phases shifted by 180° (half the period) can flow through respective LED chips installed at a generally right angle. The placement range for the five LED chips can be limited, and the LED chips can be sealed with a wavelength conversion material.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 1, 2010
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Hiroshi Takikawa
  • Patent number: 7723740
    Abstract: A light emitting device that light of various colors by blending lights emitted by two or more kinds of fluorescent materials which are substantially directly excited by light emitted by an excitation source having principal emission peak in a range from 250 nm to 500 nm. Each of the fluorescent materials is of a direct-transition type.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: May 25, 2010
    Assignee: Nichia Corporation
    Inventors: Suguru Takashima, Masatoshi Kameshima, Hiroto Tamaki, Junji Takeichi, Yoshinori Murazaki, Shinpei Kinoshita
  • Patent number: 7723739
    Abstract: A semiconductor light emitting device includes an n-type nitride semiconductor layer 3 formed on one surface side of a single-crystal substrate 1 for epitaxial growth through a first buffer layer 2, an emission layer 5 formed on a surface side of the n-type nitride semiconductor layer 3, and a p-type nitride semiconductor layer 6 formed on a surface side of the emission layer 5. The emission layer 5 has an AlGaInN quantum well structure, and a second buffer layer 4 having the same composition as a barrier layer 5a of the emission layer 5 is provided between the n-type nitride semiconductor layer 3 and the emission layer 5. In the semiconductor light emitting device, it is possible to increase emission intensity of the ultraviolet radiation as compared with a conventional configuration while using AlGaInN as a material of the emission layer.
    Type: Grant
    Filed: September 4, 2006
    Date of Patent: May 25, 2010
    Assignees: Panasonic Electric Works Co., Ltd., Riken
    Inventors: Takayoshi Takano, Yukihiro Kondo, Junji Ikeda, Hideki Hirayama
  • Patent number: 7719020
    Abstract: An (Al, Ga, In)N and ZnO direct wafer bonded light emitting diode (LED), wherein light passes through electrically conductive ZnO. Flat and clean surfaces are prepared for both the (Al, Ga, In)N and ZnO wafers. A wafer bonding process is then performed between the (Al, Ga, In)N and ZnO wafers, wherein the (Al, Ga, In)N and ZnO wafers are joined together and then wafer bonded in a nitrogen ambient under uniaxial pressure at a set temperature for a set duration. After the wafer bonding process, ZnO is shaped for increasing light extraction from inside of LED.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: May 18, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Akihiko Murai, Christina Ye Chen, Daniel B. Thompson, Lee S. McCarthy, Steven P. DenBaars, Shuji Nakamura, Umesh K. Mishra
  • Patent number: 7719016
    Abstract: A light-emitting diode device and backlight apparatus and liquid-crystal display apparatus using light-emitting diode device are provided. A light-emitting diode device has a lens covered around a light-emitting diode chip and a processed portion for adjusting light going from the light-emitting diode chip along the central axis of the lens is provided at the light-emitting diode chip or the lens or being provided right above the lens. The light-emitting diode chip is processed near the central axis by a suitable method such as etching. Alternatively, a diffusion material containing low refractive index material portion or an angle selective film is provided on the lens. A light-emitting diode device is able to adjust a quantity of light emitted from the LED chip along the central axis of the lens so that light can be radiated with a desired angle distribution.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventors: Naoji Nada, Yoshihiro Oshima, Toshitaka Kawashima, Satoshi Tomioka, Junichi Osako
  • Patent number: 7714339
    Abstract: A light emitting diode (LED) includes a substrate, a first type epitaxial layer, a light emitting layer, a second type epitaxial layer and a plurality of nano-particles. The first type epitaxial layer is disposed on the substrate. The light emitting layer is disposed on the first type epitaxial layer. The second type epitaxial layer is disposed on the light emitting layer and has one surface formed with a plurality of recesses and a plurality of protrusions. The nano-particles are disposed on the protrusions of the second type epitaxial layer.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: May 11, 2010
    Assignee: Neoton Optoelectronics Corp.
    Inventor: Shuan-Ta Liu
  • Patent number: 7704763
    Abstract: A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) (42) of the LED and a surface of the N-face (42) is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face (42) is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: April 27, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Tetsuo Fujii, Yan Gao, Evelyn L. Hu, Shuji Nakamura
  • Patent number: 7700937
    Abstract: A single-photon generating device is configured to have a solid substrate including abase portion, and a pillar portion which is formed on the surface side of the base portion with a localized level existent in the vicinity of the tip of the base portion. The above pillar portion is formed to have a larger cross section on the base portion side than the cross section on the tip side, so that the light generated from the localized level is reflected on the surface, propagated inside the pillar portion, and output from the back face side of the base portion.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: April 20, 2010
    Assignees: Fujitsu Limited, The University of Tokyo
    Inventors: Shinichi Hirose, Motomu Takatsu, Tatsuya Usuki, Yasuhiko Arakawa
  • Patent number: 7700963
    Abstract: In a method for producing a nitride semiconductor light-emitting device according to the present invention, first, a nitride semiconductor substrate having groove portions formed is prepared. An underlying layer comprising nitride semiconductor is formed on the nitride semiconductor substrate including the side walls of the groove portions, in such a manner that the underlying layer has a crystal surface in each of the groove portions and the crystal surface is tilted at an angle of from 53.5° to 63.4° with respect to the surface of the substrate. Over the underlying layer, a light-emitting-device structure composed of a lower cladding layer containing Al, an active layer, and an upper cladding layer containing Al is formed. According to the present invention, thickness nonuniformity and lack of surface flatness, which occur when accumulating a layer with light-emitting-device structure of nitride semiconductor over the nitride semiconductor substrate, are alleviated while inhibiting occurrence of cracking.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: April 20, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Teruyoshi Takakura, Shigetoshi Ito, Takeshi Kamikawa
  • Patent number: 7700962
    Abstract: A light-emitting device (LED) is described which exhibits high extraction efficiency and an emission profile which is substantially more directional than from a Lambertian source. The device comprises a light generating layer disposed between first and second layers of semiconductor material, each having a different type of doping. An upper surface of the first layer has a tiling arrangement of inverted pyramidal or inverted frustro-pyramidal indentations in the semiconductor material filled by a material of different refractive index and which together comprise a photonic band structure. The indentations and their tiling arrangement are configured for efficient extraction of light from the device via the upper surface of the first layer and in a beam that is substantially more directional than from a Lambertian source. An enhanced device employs a reflector beneath the second layer to utilise the microcavity effect.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: April 20, 2010
    Assignee: Luxtaltek Corporation
    Inventors: James McKenzie, Tom Lee, Majd Zoorob
  • Patent number: 7700960
    Abstract: The present invention relates to a light emitting diode with enhanced luminance and light emitting performance due to increase in efficiency of current diffusion into an ITO layer, and a method of fabricating the light emitting diode. According to the present invention, there is manufactured at least one light emitting cell including an N-type semiconductor layer, an active layer and a P-type semiconductor layer on a substrate. The method of the present invention comprises the steps of (a) forming at least one light emitting cell with an ITO layer formed on a top surface of the P-type semiconductor layer; (b) forming a contact groove for wiring connection in the ITO layer through dry etching; and (c) filling the contact groove with a contact connection portion made of a conductive material for the wiring connection.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: April 20, 2010
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Dae Won Kim, Yeo Jin Yoon, Duck Hwan Oh, Jong Hwan Kim
  • Publication number: 20100090234
    Abstract: A nitride-based light emitting device capable of achieving an enhancement in emission efficiency and an enhancement in reliability is disclosed. The light emitting device includes a semiconductor layer, and a light extracting layer arranged on the semiconductor layer and made of a material having a refractive index equal to or higher than a reflective index of the semiconductor layer.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 15, 2010
    Inventors: Hyun Kyong CHO, Sun Kyung KIM, Jun Ho JANG
  • Patent number: 7692201
    Abstract: The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: April 6, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sun Woon Kim, Hyun Kyung Kim, Je Won Kim, In Seok Choi, Kyu Han Lee, Jeong Tak Oh
  • Patent number: 7687813
    Abstract: An (Al, Ga, In)N light emitting diode (LED) in which multi-directional light can be extracted from one or more surfaces of the LED before entering a shaped optical element and subsequently being extracted to air. In particular, the (Al, Ga, In)N and transparent contact layers (such as ITO or ZnO) are embedded in or combined with a shaped optical element comprising an epoxy, glass, silicon or other material molded into an inverted cone shape, wherein most of the light entering the inverted cone shape lies within a critical angle and is extracted. In addition, the present invention stands the LED on end, i.e., rotates the position of the LED within the shaped optical element by approximately 90° as compared to a conventional LED, in order to extract light more effectively from the LED.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: March 30, 2010
    Assignee: The Regents of the University of California
    Inventors: Shuji Nakamura, Steven P. DenBaars
  • Patent number: 7687821
    Abstract: A GaN-based LED comprises a substrate; an an-type GaN layer formed on the substrate; an active layer formed on a predetermined region of the n-type GaN layer; a p-type GaN layer formed on the active layer; a transparent electrode formed on the p-type GaN layer; a p-electrode formed on the transparent electrode; an n-type electrode formed on the n-type GaN layer on which the active layer is not formed; and a protective film formed on a resulting structure between the transparent electrode and the n-type electrode, the protective film being composed of a plasma-oxidized transparent layer.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 30, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Min Jeon, Jae Ho Han, Pil Geun Kang
  • Publication number: 20100072497
    Abstract: A light emitting diode chip includes a permanent substrate having a holding space formed on the permanent substrate; an insulating layer and a metal layer sequentially formed on the permanent substrate and the holding spacer; a die having a eutectic layer and a light-emitting region and bonded to the metal layer within the holding space via the eutectic layer coupling to the metal layer; a filler structure filled between the holding space and the die; and an electrode formed on the die and in contact with the light-emitting region.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Applicant: OPTO TECH CORPORATION
    Inventors: Chang-Da Tsai, Wei-Che Wu, Chia-Liang Hsu, Ching-Shih Ma
  • Patent number: 7683391
    Abstract: The present invention is directed towards a source of ultraviolet energy, wherein the source is a UV-emitting LED. In an embodiment of the invention, the UV-LED is characterized by a base layer material including a substrate, a p-doped semiconductor material, a multiple quantum well, a n-doped semiconductor material, upon which base material a p-type metal resides and wherein the LED's are provided with a rounded mesa configuration. In a specific embodiment, the p-type metal is positioned upon a rounded mesa, such as a parabolic mesa, formed out of the base structure materials.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 23, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Robert Wojnarowski, Stanton E. Weaver, Steven F. LeBoeuf
  • Patent number: 7683378
    Abstract: An AlGaInP based light emitting diode is provided with a distributed Bragg reflector comprising a combination of an AlGaAs layer and an AlInP layer, each having a film thickness determined by following formulas (1) to (3): t1={?0/(4×n1)}×???(1), t2={?0/(4×n2)}×(2??)??(2), and 0.5<?<0.9??(3) wherein t1 is a film thickness [nm] of the AlGaAs layer, t2 is a film thickness [nm] of the AlInP layer, ?0 is a wavelength [nm] of a light to be reflected, n1 is a refractive index of the AlGaAs layer to the wavelength of the light to be reflected, and n2 is a refractive index of the AlInP layer to the wavelength of the light to be reflected.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: March 23, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Manabu Kako, Takehiko Tani, Taiichiro Konno, Masahiro Arai
  • Patent number: 7683386
    Abstract: A substrate has at least one recess and/or protrusion formed in and/or on a surface thereof so as to scatter or diffract light generated in an active layer. The recess and/or protrusion is formed in such a shape that can reduce crystalline defects in semiconductor layers.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: March 23, 2010
    Assignee: Nichia Corporation
    Inventors: Hisanori Tanaka, Yasunobu Hosokawa, Yuuki Shibutani
  • Patent number: 7675075
    Abstract: An LED array chip (2), which is one type of a semiconductor light emitting device, includes an array of LEDs (6), a base substrate (4) supporting the array of the LEDs (6), and a phosphor film (48). The array of LEDs (6) is formed by dividing a multilayer epitaxial structure including a light emitting layer into a plurality of portions. The phosphor film (48) covers an upper surface of the array of the LEDs (6) and a part of every side surface of the array of LEDs (6). Here, the part extends from the upper surface to the light emitting layer.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: March 9, 2010
    Assignee: Panasonic Corporation
    Inventor: Hideo Nagai
  • Patent number: 7675079
    Abstract: In silicon-carbide based light emitting diodes (LEDs) and other similar applications, diamond crystals are used to provide an intermediate refractive index that permits more of the ultraviolet light generated in the diode to reach the phosphors, producing a brighter light with greater efficiency.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 9, 2010
    Inventor: Victor B. Kley
  • Patent number: 7667224
    Abstract: A semiconductor light emitting device comprises: a substrate; a semiconductor stacked structure; a first electrode; a second electrode; and a reflective film. The substrate has a top face and a rear face electrode forming portion opposed thereto, and is translucent to light in a first wavelength band. The rear face electrode forming portion is surrounded by a rough surface. The semiconductor stacked structure is provided on the top face of the substrate and includes an active layer that emits light in the first wavelength band. The first electrode is provided on the semiconductor stacked structure, and the second electrode is provided on the rear face electrode forming portion. The reflective film is coated on at least a portion of the rough surface.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: February 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichi Ohashi, Yasuharu Sugawara, Shuji Itonaga, Yasuhiko Akaike
  • Patent number: 7667236
    Abstract: A light emitting device (A) includes a semiconductor die (100).
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: February 23, 2010
    Assignee: Lumination LLC
    Inventors: Ivan Eliashevich, Hari Venugopalan, Xiang Gao, Michael J. Sackrison
  • Patent number: 7663151
    Abstract: A light emitting device chip is obtained by dicing a light emitting device wafer having a light emitting layer section 24 based on a double heterostructure in which a first-conductivity-type cladding layer 6, an active layer 5 and an second-conductivity-type cladding layer 4, each of which being composed of a compound semiconductor having a composition allowing lattice matching with GaAs, out of compound semiconductors expressed by formula (AlxGa1-x)yIn1-yP (where, 0?x?1, 0?y?1), are stacked in this order, and having the (100) surface appeared on the main surface thereof, and GaP transparent semiconductor layers 20, 90 stacked on the light emitting layer section 24 as being agreed with the crystal orientation thereof, so that the {100} surfaces appear on the side faces of the GaP transparent semiconductor layer.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: February 16, 2010
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hitoshi Ikeda, Kingo Suzuki, Akio Nakamura
  • Patent number: 7663150
    Abstract: An optoelectronic chip having a semiconductor body (14), which contains a radiation-emitting region (2), and a partial region (3) in which the surface (13) of the semiconductor body (14) is curved convexly toward a carrier (10). The lateral extent (2r) of the radiation-emitting region (2) is less than the lateral extent (2R) of the partial region (3). A method for producing such a chip is also described.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: February 16, 2010
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Ralph Wirth, Klaus Streubel
  • Patent number: 7659545
    Abstract: An illumination system has a mounting substrate (4) for mounting and electrically contacting a plurality of light-emitting diodes (R, A, G, B). A first category of the light-emitting diodes (G, B) comprises a first translucent substrate (11) provided with an active layer (1) on an outer surface (13) of the first translucent substrate facing the mounting substrate (4); electrical contacts are provided at a side facing the mounting substrate. A second category of the light-emitting diodes (R, A) comprises an active layer (2) arranged on a second translucent substrate (12); at least one electrical contact is provided at a side facing away from the mounting substrate. Each light-emitting diode of the first category is provided on a first sub mount (21). Each light-emitting diode of the second category is provided on a second sub mount (22). The first and second sub mount are provided on the mounting substrate.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: February 9, 2010
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Johannes Petrus Maria Ansems, Christoph Gerard August Hoelen