Dielectric Comprising Two Or More Layers, E.g., Buffer Layers, Seed Layers, Gradient Layers (epo) Patents (Class 257/E21.01)
  • Publication number: 20110136317
    Abstract: Example embodiments relate to a semiconductor device including an oxide dielectric layer and a non-oxide dielectric layer, a method of fabricating the device, and a semiconductor module, an electronic circuit board, and an electronic system including the device. The semiconductor device may include a lower electrode, an oxide dielectric layer disposed on the lower electrode, a non-oxide dielectric layer disposed on the oxide dielectric layer, and an upper electrode disposed on the non-oxide dielectric layer.
    Type: Application
    Filed: March 23, 2010
    Publication date: June 9, 2011
    Inventors: Sang-Yeol Kang, Youn-Soo Kim, Jae-Hyoung Choi, Jae-Soon Lim, Min-Young Park, Suk-Jin Chung
  • Patent number: 7943917
    Abstract: A non-volatile memory cell and the fabrication method thereof are provided. The non-volatile memory cell comprises a top electrode, a bottom electrode and an oxide layer disposed between the top electrode and the bottom electrode. The oxide layer comprises a relatively low oxygen content layer adjacent to the bottom electrode, a relatively high oxygen content layer adjacent to the top electrode, and a transition layer disposed between the relatively high and the relatively low oxygen content layers. The transition layer has an oxygen concentration within a range between those of the relatively high and the relatively low oxygen content layers.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: May 17, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Chun-I Hsieh, Chang-Rong Wu
  • Patent number: 7939872
    Abstract: A multi-dielectric film including at least one first dielectric film that is a composite film made of zirconium-hafnium-oxide and at least one second dielectric film that is a metal oxide film made of amorphous metal oxide. Adjacent ones of the dielectric films are made of different materials.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Cheol Lee, Sang-Yeol Kang, Ki-Vin Lim, Hoon-Sang Choi, Eun-Ae Chung
  • Patent number: 7928011
    Abstract: A method and intermediate product for structuring a substrate is disclosed. At least one seed layer including a first metal compound is positioned at least partially on the substrate. The seed layer is subjected to a solution comprising ions of a second metal compound. The ions are reduced in the solution by reduction means so that the second metal compound is deposited as mask layer on the seed layer.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: April 19, 2011
    Assignee: Qimonda AG
    Inventors: Klaus Elian, Michael Sebald
  • Patent number: 7927947
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 19, 2011
    Assignee: Intermolecular, Inc.
    Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
  • Patent number: 7923355
    Abstract: A manufacturing method for a semiconductor device includes retaining a wafer in a reaction chamber, supplying first process gas including source gas and second process gas containing H2 or inert gas onto the wafer in a rectified state alternately in a predetermined cycle, rotating the wafer, and heating the wafer to form a film on the wafer.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 12, 2011
    Assignee: Nuflare Technology, Inc.
    Inventors: Masayoshi Yajima, Yoshikazu Moriyama
  • Patent number: 7888231
    Abstract: A capacitor and a method of fabricating the capacitor are provided herein. The capacitor can be formed by forming two or more dielectric layers and a lower electrode, wherein at least one of the two or more dielectric layers is formed before the lower electrode is formed.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hyun Lee, Sung-ho Park, Sang-jun Choi
  • Patent number: 7867869
    Abstract: The present invention provides a novel capacitor element, laminated thin-film device, and circuit wherein the capacitance dependency on voltage can be appropriately adjusted, and a technology for manufacturing such a capacitor element and laminated thin-film device. In the capacitor element that comprises a pair of electrode layers and a dielectric layer disposed between the electrode layers, a well region where an ion is implanted is disposed in the dielectric layer, and the C-V curve between the electrode layers is shifted or shifted and expanded in at least one direction of the plus direction and minus direction with respect to the voltage axis.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: January 11, 2011
    Assignee: Fujitsu Limited
    Inventors: John David Baniecki, Takeshi Shioga, Kazuaki Kurihara
  • Patent number: 7863202
    Abstract: An integrated circuit can be formed with a high-k dielectric layer. A first titanium oxide layer is deposited over a substrate using a first ALD process. A first metal oxide layer is also deposited over the substrate using a second ALD process. A second titanium oxide layer is deposited over the substrate using a third ALD process and a second metal oxide layer is deposited over the substrate using a fourth ALD process. The first and second metal oxides are preferably strontium oxide and/or aluminum oxide.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: January 4, 2011
    Assignee: Qimonda AG
    Inventor: Shrinivas Govindarajan
  • Patent number: 7863149
    Abstract: In a method for fabricating a capacitor that includes an electrode structure (80), an auxiliary layer (40) is formed over a substrate (10). A recess (60), which determines the shape of the electrode structure (80), is etched into the auxiliary layer (40), and the electrode structure of the capacitor is formed in the recess. As an example, the auxiliary layer can be a semiconductor layer (40).
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: January 4, 2011
    Assignee: Qimonda AG
    Inventors: Srivatsa Kundalgurki, Peter Moll, Dirk Manger, Kristin Schupke, Till Schloesser
  • Publication number: 20100320448
    Abstract: An electronic component, notably one including, for example, a TFT, a storage capacitor, or a crossing between electrically conductive layers of a stack device is disclosed. The electronic component comprises a substrate whereon a first electrically conductive layer forming electrode is provided. A second electrode formed by a second electrically conductive layer is separated from the first electrode by at least a dielectric layer, comprising an interlayer of an electrically insulating material, preferably having high resistance against view (a) electrical breakdown and a further layer of a photo-patternable electrically insulating material.
    Type: Application
    Filed: July 16, 2008
    Publication date: December 23, 2010
    Applicant: Polymer Vision Limited
    Inventors: Christoph Wilhelm Sele, Monica Johanna Beenhakkers, Gerwin Hermanus Gelinck, Nicolaas Aldegonda Jan Maria van Aerle, Hjalmar Edzer Ayco Huitema
  • Publication number: 20100301406
    Abstract: Dielectric layers containing a zirconium-doped tantalum oxide layer, where the zirconium-doped tantalum oxide layer is formed of one or more monolayers of tantalum oxide doped with zirconium, provide an insulating layer in a variety of structures for use in a wide range of electronic devices.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 2, 2010
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7838439
    Abstract: A stacked film has an insulating film containing hafnium formed above a silicon layer and a polysilicon layer formed on the insulating film. The stacked film is heated in an atmosphere containing oxygen and nitrogen and having the total pressure approximately equal to a partial pressure of the nitrogen.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 23, 2010
    Assignee: Semiconductor Technology Academic Research Center
    Inventors: Masaharu Oshima, Haruhiko Takahashi, Koji Usuda, Ziyuan Liu, Liu Guo-lin, Kazuto Ikeda, Masaki Yoshimaru
  • Patent number: 7825043
    Abstract: A method for fabricating a capacitor in a semiconductor device includes: forming a bottom electrode; forming a ZrxAlyOz dielectric layer on the bottom electrode using an atomic layer deposition (ALD) method, wherein the ZrxAlyOz dielectric layer comprises a zirconium (Zr) component, an aluminum (Al) component and an oxygen (O) component mixed in predetermined mole fractions of x, y and z, respectively; and forming a top electrode on the ZrxAlyOz dielectric layer.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kee-Jeung Lee
  • Patent number: 7799631
    Abstract: A dielectric layer of a capacitor includes a first dielectric layer, a second dielectric layer formed over the first dielectric layer, the second dielectric layer having a dielectric constant lower than that of the first dielectric layer, and a third dielectric layer formed over the second dielectric layer, the third dielectric layer having a dielectric constant higher that of than the second dielectric layer, wherein the third dielectric layer has a greater thickness than each of the first and second dielectric layers.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: September 21, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jong-Bum Park
  • Patent number: 7786524
    Abstract: A semiconductor device includes a semiconductor substrate including a first region and a second region being adjacent to the first region; a floating gate electrode layer formed above the semiconductor substrate in the first region, the floating gate electrode layer including a first width; a dummy gate electrode layer formed above the semiconductor substrate in the second region, the dummy gate electrode layer including a second width being greater than the first width of the floating gate electrode layer; a first gate insulating film formed on the floating gate electrode layer, the first gate insulating film including a first thickness; a second gate insulating film formed on the dummy gate electrode layer, the second gate insulating film including a second thickness being greater than the first thickness of the first gate insulating film; and a control gate electrode layer formed on the first and the second gate insulating films.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroaki Hazama
  • Patent number: 7759718
    Abstract: A method of forming a dielectric layer in a capacitor adapted for use in a semiconductor device is disclosed. The method includes forming a first ZrO2 layer, forming an interfacial layer using a plasma treatment on the first ZrO2 layer, and forming a second ZrO2 layer on the interfacial layer.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-yeol Kang, Jong-cheol Lee, Ki-vin Im, Jae-hyun Yeo, Hoon-sang Choi, Eun-ae Chung
  • Patent number: 7732851
    Abstract: A capacitor and a method of fabricating the capacitor are provided herein. The capacitor can be formed by forming two or more dielectric layers and a lower electrode, wherein at least one of the two or more dielectric layers is formed before the lower electrode is formed.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hyun Lee, Sung-ho Park, Sang-jun Choi
  • Patent number: 7704765
    Abstract: It is an object of the present invention to provide a method for manufacturing a semiconductor device, capable of keeping a peeling layer from being peeled from a substrate in the phase before the completion of a semiconductor element and peeling a semiconductor element rapidly. It is considered that a peeling layer tends to be peeled from a substrate because the stress is applied to a peeling layer due to the difference in thermal expansion coefficient between a substrate and a peeling layer, or because the volume of a peeling layer is reduced and thus the stress is applied thereto by crystallization of the peeling layer due to heat treatment. Therefore, according to one feature of the invention, the adhesion of a substrate and a peeling layer is enhanced by forming an insulating film (buffer film) for relieving the stress on the peeling layer between the substrate and the peeling layer before forming the peeling layer over the substrate.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: April 27, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Junya Maruyama, Atsuo Isobe, Susumu Okazaki, Koichiro Tanaka, Yoshiaki Yamamoto, Koji Dairiki, Tomoko Tamura
  • Patent number: 7701037
    Abstract: A plurality of interdigitized conductive fingers are arranged to form a substantially square configuration in each of a plurality of layers separated by a high dielectric constant material, wherein each of the plurality of interdigitized conductive fingers includes at least one bend of substantially ninety degrees. The plurality of interdigitized conductive fingers includes a first set of fingers that are connected to an anode terminal, and a second set of fingers that are connected to a cathode terminal. The plurality of layers includes a bottommost layer that is in closest proximity to a substrate relative to other layers of the plurality of layers. The bottommost layer does not include any fingers connected to the anode terminal.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Eric Thompson
  • Publication number: 20100081248
    Abstract: A method for manufacturing a semiconductor device comprises forming a first plate electrode that defines a storage node region over a semiconductor substrate, forming a first dielectric film at sidewalls of the storage node region, forming a storage node over the storage node region, and forming a second dielectric film and a second plate electrode over the resulting structure, thereby preventing collapse of the storage node and also preventing generation of defects by electric short between capacitors.
    Type: Application
    Filed: June 30, 2009
    Publication date: April 1, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Dong Geun LEE
  • Publication number: 20100068829
    Abstract: A ferroelectric capacitor is formed on a semiconductor substrate, the ferroelectric capacitor comprising a lower electrode, a ferroelectric film and an upper electrode stacked in an order recited. A first capacitor protective film of aluminum oxide having a thickness equal to or thicker than 30 nm is formed covering the ferroelectric capacitor. A first insulating film of silicon oxide is formed on the first capacitor protective film by chemical vapor deposition using high density plasma.
    Type: Application
    Filed: November 23, 2009
    Publication date: March 18, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventor: Katsuyoshi Matsuura
  • Publication number: 20100052024
    Abstract: A capacitor insulating film may include, but is not limited to, strontium, titanium, and oxygen. The capacitor insulating film has a ratio of a spectrum intensity of (200) crystal face of the capacitor insulating film to a spectrum intensity of (111) crystal face of the capacitor insulating film in the range of 1.0 to 2.3. Each of the spectrum intensities of (200) crystal face and (111) crystal face is measured by an X-ray diffraction method.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 4, 2010
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Takakazu KIYOMURA, Toshiyuki HIROTA
  • Patent number: 7670913
    Abstract: The present invention provides a method for manufacturing a semiconductor device having multiple gate dielectric thickness layers. The method, in one embodiment, includes forming a masking layer over a semiconductor substrate in a first active region and a second active region of a semiconductor device, patterning the masking layer to expose the semiconductor substrate in the first active region, and subjecting exposed portions of the semiconductor substrate to a nitrogen containing plasma, thereby forming a first layer of gate dielectric material over the semiconductor substrate in the first active region.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroaki Niimi, Reima Tapani Laaksonen
  • Publication number: 20100001372
    Abstract: Stable contact hole forming is attained even when an aluminum oxide film is present between layers provided with contact holes. The process comprises the steps of forming a first element layer on a semiconductor substrate; forming a first interlayer insulating film on the first element layer; forming a second element layer on the first interlayer insulating film; forming a second interlayer insulating film on the second element layer; forming a hole resist pattern on the second interlayer insulating film; conducting a first etching for forming of holes by etching the second interlayer insulating film; and conducting a second etching for extending of holes to the first element layer by etching the first interlayer insulating film.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 7, 2010
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Yukimasa Miyazaki, Kouichi Nagai, Hideaki Kikuchi
  • Publication number: 20090305478
    Abstract: A method for manufacturing a capacitor of a semiconductor device includes forming a lower metal layer over a substrate, forming a dielectric layer over the lower metal layer, forming an upper metal layer over the dielectric layer, forming an upper electrode and a dielectric layer pattern by performing a reactive ion etching process with respect to the upper metal layer using the dielectric layer as an etch stop layer, and exposing a top surface of the lower metal layer, and performing a chemical down-stream etch (CDE) process to remove a by-product of a sidewall of the upper electrode.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 10, 2009
    Inventor: Taek-Seung Yang
  • Publication number: 20090246930
    Abstract: Disclosed is a metal capacitor including a lower electrode having hemispherical metal grains thereon. The metal capacitor includes a lower metal electrode containing Ti, hemispherical metal grains containing Pd and formed on the lower metal electrode containing Ti, a dielectric layer formed on the lower metal electrode containing Ti and the hemispherical metal grains containing Pd, and an upper metal electrode formed on the dielectric layer.
    Type: Application
    Filed: May 20, 2009
    Publication date: October 1, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seok-Woo HONG, Chang-Huhn LEE, Jae-Hun KIM
  • Publication number: 20090230511
    Abstract: A method for forming a capacitor of a semiconductor device ensures charging capacity and improves leakage current characteristic. In the capacitor forming method, a semiconductor substrate formed with a storage node contact is prepared first. Next, a storage electrode is formed such that the storage electrode is connected to the storage node contact. Also, a dielectric film comprised of a composite dielectric of a SrTiO3 film and an anti-crystallization film is formed on the storage electrode. Finally, a plate electrode is formed on the dielectric film.
    Type: Application
    Filed: May 26, 2009
    Publication date: September 17, 2009
    Inventor: Jong Bum PARK
  • Patent number: 7569452
    Abstract: A filter capacitor comprising a pre-sintered substrate supporting alternating active and ground electrode layers segregated by a dielectric layer is described. The substrate is of a ceramic material that maintains its shape and structure dimensions even after undergoing numerous sintering steps. Consequently, relatively thin active and ground electrode layers along with the intermediate dielectric layer can be laid down or deposited by a screen-printing technique. Using a relatively thin over-glaze in comparison to a thick upper dielectric layer finishes the capacitor. Consequently, a significant amount of space is saved in comparison to a comparably rated capacitor or, a capacitor of a higher rating can be provided in the same size as a conventional prior art capacitor. The pre-sintered ceramic substrate is used instead of conventional tape cast technology for the base dielectric.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 4, 2009
    Assignee: Greatbatch Ltd.
    Inventors: Richard Fu, Christine Frysz, Mingguang Zhu, Kenneth Billings
  • Patent number: 7569934
    Abstract: An improved wire bond is provided with the bond pads of semiconductor devices and the lead fingers of lead frames or an improved conductive lead of a TAB tape bond with the bond pad of a semiconductor device. More specifically, an improved wire bond is described wherein the bond pad on a surface of the semiconductor device comprises a layer of copper and at least one layer of metal and/or at least a barrier layer of material between the copper layer and one layer of metal on the copper layer to form a bond pad.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 7564114
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. A preferred embodiment comprises a method of forming an insulating material layer. The method includes forming an interface layer, removing a portion of the interface layer, annealing the interface layer, and forming a dielectric material over the interface layer.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: July 21, 2009
    Assignee: Qimonda North America Corp.
    Inventor: Shrinivas Govindarajan
  • Patent number: 7560392
    Abstract: Electrical components for microelectronic devices and methods for forming electrical components. One particular embodiment of such a method comprises depositing an underlying layer onto a workpiece, and forming a conductive layer on the underlying layer. The method can continue by disposing a dielectric layer on the conductive layer. The underlying layer is a material that causes the dielectric layer to have a higher dielectric constant than without the underlying layer being present under the conductive layer. For example, the underlying layer can impart a structure or another property to the film stack that causes an otherwise amorphous dielectric layer to crystallize without having to undergo a separate high temperature annealing process after disposing the dielectric layer onto the conductive layer. Several examples of this method are expected to be very useful for forming dielectric layers with high dielectric constants because they avoid using a separate high temperature annealing process.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: July 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, Dan Gealy, Vidya Srividya, Noel Rocklein
  • Patent number: 7547933
    Abstract: There are provided a capacitor lower electrode formed on an adhesive layer, whose surface roughness is 0.79 nm or less, and having a (111) orientation that is inclined from a perpendicular direction to an upper surface of a substrate by 2.3° or less, a ferroelectric layer having a structure the (111) orientation of which is inclined from the perpendicular direction to the upper surface of the substrate by 3.5° or less, and a capacitor upper electrode.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: June 16, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tomohiro Takamatsu, Junichi Watanabe, Ko Nakamura, Wensheng Wang, Naoyuki Sato, Aki Dote, Kenji Nomura, Yoshimasa Horii, Masaki Kurasawa, Kazuaki Takai
  • Publication number: 20090114896
    Abstract: Provided are a memory device that undergoes no structural phase change, maintains a uniform thin film, and can perform a high-speed switching operation, and a method of operating the same. The memory device includes a substrate, an abrupt MIT material layer, and a plurality of electrodes. The abrupt MIT material layer is disposed on the substrate and undergoes an abrupt metal-insulator transition by an energy change between electrons. The plurality of electrodes are brought into contact with the abrupt MIT material layer and are melted by heat to form a conductive path on the abrupt MIT material layer.
    Type: Application
    Filed: June 29, 2006
    Publication date: May 7, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bong-Jun Kim, Kwang-Yong Kang, Sun-Jin Yun, Yong-Wook Lee, Byung-Gyu Chae
  • Patent number: 7527982
    Abstract: In order to improve the characteristic of the PZT film (insulation film of capacitor) of the PZT capacitor, after forming the amorphous PZT film, the amorphous PZT film is crystallized from at least the upper surface of the amorphous PZT film to form the PZT crystal film by employing the process whose sequence is reverse to that of the conventional process. In this case, the amorphous PZT film, which contains excessive oxygen and formed on the upper surface of the amorphous PZT film, is used as a seed.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 5, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Osamu Arisumi
  • Publication number: 20090004886
    Abstract: A stacked film has an insulating film containing hafnium formed above a silicon layer and a polysilicon layer formed on the insulating film. The stacked film is heated in an atmosphere containing oxygen and nitrogen and having the total pressure approximately equal to a partial pressure of the nitrogen.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 1, 2009
    Inventors: Masaharu OSHIMA, Haruhiko TAKAHASHI, Koji USUDA, Ziyuan LIU, Liu GUO-LIN, Kazuto IKEDA, Masaki YOSHIMARU
  • Patent number: 7459731
    Abstract: An article of manufacture includes a substrate, a relaxed buffer layer disposed on the substrate, and a plurality of isolation regions formed in the relaxed buffer layer. The isolation regions include threading dislocations while the remainder of the relaxed buffer layer is substantially free of threading dislocations. The relaxed buffer layer may be formed from silicon germanium while the substrate may be formed from silicon. A capping layer may be disposed over the relaxed buffer layer.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: December 2, 2008
    Assignee: The Regents of the University of California
    Inventors: Ya-Hong Xie, Tae-Sik Yoon
  • Patent number: 7452783
    Abstract: In a capacitor having a high dielectric constant, the capacitor includes a cylindrical lower electrode, a dielectric layer and an upper electrode. A metal oxide layer is formed on inner, top and outer surfaces of the lower electrode as the dielectric layer. A first sub-electrode is formed on a surface of the dielectric layer along the profile of the lower electrode and a second sub-electrode is continuously formed on the first sub-electrode corresponding to the top surface of the lower electrode, so an opening portion of the lower electrode is covered with the second sub-electrode. The first and second sub-electrodes include first and second metal nitride layers in which first and second stresses are applied, respectively. Directions of the first and second stresses are opposite to each other. Accordingly, cracking is minimized in the upper electrode with the high dielectric constant, thereby reducing current leakage.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: November 18, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Joo Cho, Hyun-Seok Lim, Rak-Hwan Kim, Jung-Wook Kim, Hyun-Suk Lee
  • Publication number: 20080277783
    Abstract: A printed circuit board and a flip chip package using the same are designed to minimize thermal stress due to different thermal coefficients present in areas having metal lines and solder resist versus other areas on the printed circuit board. The printed circuit board includes an insulation layer; a first metal line formed on one surface of the insulation layer and having at one end thereof a bump land and a projection which integrally extends from the bump land; a second metal line formed on the other surface of the insulation layer and having at one end thereof a ball land; a via metal line formed through the insulation layer to connect the first and second metal lines to each other; and solder resists formed on the upper and lower surfaces of the insulation layer to expose the bump land and the ball land.
    Type: Application
    Filed: June 8, 2007
    Publication date: November 13, 2008
    Inventors: Seong Cheol KIM, Myung Geun PARK
  • Patent number: 7442983
    Abstract: A method for making a semiconductor device is described. That method comprises forming an oxide layer on a substrate, and forming a high-k dielectric layer on the oxide layer. The oxide layer and the high-k dielectric layer are then annealed at a sufficient temperature for a sufficient time to generate a gate dielectric with a graded dielectric constant.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 28, 2008
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Gilbert Dewey, Suman Datta, Sangwoo Pae, Justin K. Brask, Jack Kavalieros, Matthew V. Metz, Adrian B. Sherrill, Markus Kuhn, Robert S. Chau
  • Patent number: 7416936
    Abstract: The present invention relates to a capacitor having a hafnium oxide and aluminum oxide alloyed dielectric layer and a method for fabricating the same. The capacitor includes: a lower electrode; a dielectric layer formed on the lower electrode; and an upper electrode formed on the dielectric layer, wherein a portion of the dielectric layer contacting one of the lower electrode and the upper electrode is formed by alloying hafnium oxide and aluminum oxide together.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: August 26, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Deok-Sin Kil, Jae-Sung Roh, Hyun-Chul Sohn
  • Patent number: 7417276
    Abstract: A thin film capacitor comprising a top electrode, a bottom electrode, and a dielectric film held between the top and bottom electrodes. The dielectric film is composed of at least cations Ba, Sr, and Ti and anion O. The concentration of Sr, Ti, and O ions are uniform along the growth direction of the dielectric film while the concentration of the Ba cation is non-uniform along the growth direction such that a reduced Ba-I region in which the average concentration of perovskite type Ba cations (Ba-I) is less than the average concentration of non-perovskite type Ba cations (Ba-II) exists at or near the boundary between at least one of the top and bottom electrodes, with ratio R=(atm % Ba-I)/[(atm % Ba-I)+(atm % Ba-II)] within a range of 0.1<R<0.2.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: August 26, 2008
    Assignee: Fujitsu Limited
    Inventors: John David Baniecki, Takeshi Shioga, Kazuaki Kurihara
  • Patent number: 7413931
    Abstract: The invention is directed to improvement of reliability of a chip size package type semiconductor device in a manufacturing method thereof. A support body is formed on a front surface of a semiconductor substrate with a first insulation film therebetween. Then, a part of the semiconductor substrate is selectively etched from its back surface to form an opening, and then a second insulation film is formed on the back surface. Next, the first insulation film and the second insulation film at a bottom of the opening are selectively etched, to expose pad electrodes at the bottom of the opening. Then, a third resist layer is selectively formed on a second insulation film at boundaries between sidewalls and the bottom of the opening on the back surface of the semiconductor substrate. Furthermore, a wiring layer electrically connected with the pad electrodes at the bottom of the opening and extending onto the back surface of the semiconductor substrate is selectively formed corresponding to a predetermined pattern.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: August 19, 2008
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Takashi Noma, Kazuo Okada, Hiroshi Yamada, Masanori Iida
  • Patent number: 7393796
    Abstract: A composite dielectric forming method includes atomic layer depositing alternate layers of hafnium oxide and lanthanum oxide over a substrate. The hafnium oxide can be thermally stable, crystalline hafnium oxide and the lanthanum oxide can be thermally stable, crystalline lanthanum oxide. A transistor may comprise the composite dielectric as a gate dielectric. A capacitor may comprise the composite dielectric as a capacitor dielectric.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: July 1, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7393746
    Abstract: A method forms a gate conductor over a substrate, forms spacers (e.g., nitride spacers) on sides of the gate conductor, and implants an impurity into exposed regions of the substrate not protected by the gate conductor and the spacers. Then the method forms a silicide on surfaces of the exposed regions of the substrate. The method forms a conformal protective layer (e.g., an oxide or other similar material) over the silicide, the spacers, and the gate conductor. Next, the method forms a non-conformal sacrificial layer (e.g., nitride or other material that can be selectively removed with respect to the protective layer) over the protective layer. A subsequent partial etching process partially etches the sacrificial layer such that relatively thinner regions of the sacrificial layer that are over the spacers are completely removed and the relatively thicker regions of the sacrificial layer that are over the substrate are not removed.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: July 1, 2008
    Assignees: International Business Machines Corporation, Samsung Electronics Co. Ltd., Infineon Technologies North America Corporation, Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Thomas W. Dyer, Sunfei Fang, Jiang Yan, Siddhartha Panda, Yong Meng Lee, JunJung Kim
  • Patent number: 7371633
    Abstract: A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: May 13, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Lee, Nae-In Lee
  • Publication number: 20080099809
    Abstract: A dielectric film is formed by depositing an amorphous strontium oxide film to a thickness of one to several atomic layers on a first electrode layer, then depositing an amorphous titanium oxide film to a thickness of one to several atomic layers on the amorphous strontium oxide film, and then heat-treating a laminated film of the amorphous strontium oxide film and the amorphous titanium oxide film at a temperature close to a crystallization start temperature, thereby converting the laminated film to a single-layer amorphous strontium titanate film containing a plurality of crystal grains therein. The laminated film may have a plurality of amorphous strontium oxide films and a plurality of amorphous titanium oxide films that are alternately laminated. A semiconductor device includes a capacitor having as its dielectric film a single-layer amorphous strontium titanate film containing a plurality of crystal grains therein.
    Type: Application
    Filed: October 24, 2007
    Publication date: May 1, 2008
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Naruhiko NAKANISHI
  • Patent number: 7354849
    Abstract: A method for carrying out a damascene process to form an interconnect comprises providing a semiconductor substrate having a trench etched into a dielectric layer, wherein the trench includes a barrier layer and an adhesion layer, depositing a copper seed layer onto the adhesion layer using an ALD process, depositing an iodine catalyst layer onto the copper seed layer using an ALD process, and depositing a copper layer onto the copper seed layer using an ALD process. The iodine catalyst layer causes the copper layer to fill the trench by way of a bottom-up fill mechanism. The trench fill is performed using a single ALD process, which minimizes the creation of voids and seams in the final copper interconnect.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: April 8, 2008
    Assignee: Intel Corporation
    Inventors: John J. Plombon, Adrien R. Lavoie, Juan E. Dominguez, Joseph H. Han, Harsono S. Simka
  • Patent number: 7341948
    Abstract: Disclosed is a method of making a semiconductor structure, wherein the method includes forming an interlayer dielectric (ILD) layer on a semiconductor layer, forming a conductive plating enhancement layer (PEL) on the ILD, patterning the ILD and PEL, depositing a seed layer into the pattern formed by the ILD and PEL, and then plating copper on the seed layer. The PEL serves to decrease the resistance across the wafer so to facilitate the plating of the copper. The PEL preferably is an optically transparent and conductive layer.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Shom Ponoth, Steven Shyng-Tsong Chen, John Anthony Fitzsimmons, Terry Allen Spooner
  • Patent number: 7314806
    Abstract: A metal-oxy-nitride seed dielectric layer can be formed on a metal-nitride lower electrode of a metal-insulator-metal (MIM) type capacitor. The metal-oxy-nitride seed dielectric layer can act as a barrier layer to reduce a reaction with the metal-nitride lower electrode during, for example, backend processing used to form upper levels of metallization/structures in an integrated circuit including the MIM type capacitor. Nitrogen included in the metal-oxy-nitride seed dielectric layer can reduce the type of reaction, which may occur in conventional type MIM capacitors. A metal-oxide main dielectric layer can be formed on the metal-oxy-nitride seed dielectric layer and can remain separate from the metal-oxy-nitride seed dielectric layer in the MIM type capacitor. The metal-oxide main dielectric layer can be stabilized (using, for example, a thermal or plasma treatment) to remove defects (such as carbon) therefrom and to adjust the stoichiometry of the metal-oxide main dielectric layer.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: January 1, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-hyoung Choi, Sung-tae Kim, Ki-chul Kim, Cha-young Yoo, Jeong-hee Chung, Se-hoon Oh, Jeong-sik Choi