Making N- Or P- Doped Regions Or Layers, E.g., Using Diffusion (epo) Patents (Class 257/E21.056)
  • Patent number: 10304939
    Abstract: A method for manufacturing a semiconductor device capable of reducing an ON resistance. In the present invention, a drift layer is formed on a substrate. An ion implanted layer is formed in a surface of the drift layer. A surplus carbon region is formed in the drift layer. The drift layer is heated. In a case where the surplus carbon region is formed, the surplus carbon region is formed in a region deeper than an interface between the ion implanted layer and the drift layer. In a case where the drift layer is heated, impurity ions of the ion implanted layer are activated to form an activation layer, and interstitial carbon atoms are dispersed toward the activation layer.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: May 28, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Hamada, Masayuki Imaizumi
  • Patent number: 9917170
    Abstract: A method of forming a contact structure includes providing a silicon-carbide substrate having a highly doped silicon-carbide contact region formed in the substrate and extending to a main surface of the substrate. A carbon-based contact region is formed which is in direct contact with the highly doped silicon-carbide contact region and which extends to the main surface. A conductor is formed on the carbon-based contact region such that the carbon-based contact region is interposed between the conductor and the highly doped silicon-carbide contact region. A thermal budget for forming the carbon-based contact region is maintained below a level that induces metal silicidization of the highly doped silicon-carbide contact region.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 13, 2018
    Assignee: Infineon Technologies AG
    Inventors: Ravi Joshi, Romain Esteve, Markus Kahn, Gerald Unegg
  • Patent number: 9034670
    Abstract: A method (100; 100a; 100b; 100c) for manufacturing a solar cell from a semiconductor substrate (1) of a first conductivity type, the semiconductor substrate having a front surface (2) and a back surface (3). The method includes in a sequence: texturing (102) the front surface to create a textured front surface (2a); creating (103) by diffusion of a dopant of the first conductivity type a first conductivity-type doped layer (2c) in the textured front surface and a back surface field layer (4) of the first conductivity type in the back surface; removing (105; 104a) the first conductivity-type doped layer from the textured front surface by an etching process adapted for retaining texture of the textured front surface; creating (106) a layer of a second conductivity type (6) on the textured front surface by diffusion of a dopant of the second conductivity type into the textured front surface.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: May 19, 2015
    Assignee: Stichting Energieonderzoek Centrum Nederland
    Inventors: Paul Cornelis Barton, Ronald Cornelis Gerard Naber, Arno Ferdinand Stassen
  • Patent number: 8999805
    Abstract: A semiconductor device includes a first type region including a first conductivity type. The semiconductor device includes a second type region including a second conductivity type. The semiconductor device includes a channel region extending between the first type region and the second type region. The semiconductor device includes a gate region surrounding the channel region. The gate region includes a gate electrode. A gate electrode length of the gate electrode is less than about 10 nm. A method of forming a semiconductor device is provided.
    Type: Grant
    Filed: October 5, 2013
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jean-Pierre Colinge, Kuo-Cheng Ching, Ta-Pen Guo, Carlos H. Diaz
  • Patent number: 8952391
    Abstract: A silicon carbide vertical MOSFET having low ON-resistance and high blocking voltage. A first deposition film of low concentration silicon carbide of a first conductivity type is formed on the surface of a high concentration silicon carbide substrate of a first conductivity type. Formed on the first deposition film is a second deposition film that includes a high concentration gate region of a second conductivity type, with a first region removed selectively. A third deposition film is formed on the second deposition film, which includes a second region that is wider than the selectively removed first region, a high concentration source region of a first conductivity type, and a low concentration gate region of a second conductivity type. A low concentration base region of a first conductivity type is formed in contact with the first deposition film in the first and second regions.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: February 10, 2015
    Assignees: National Institute of Advanced Industrial Science and Technology, Sanyo Electric Co., Ltd.
    Inventors: Shinsuke Harada, Tsutomu Yatsuo, Kenji Fukuda, Mitsuo Okamoto, Kazuhiro Adachi, Seiji Suzuki
  • Patent number: 8928052
    Abstract: An optoelectronic semiconductor chip has a semiconductor layer sequence having an active layer that generates radiation between a layer of a first conductivity type and a layer of a second conductivity type. The layer of the first conductivity type is adjacent to a front side of the semiconductor layer sequence. The semiconductor layer sequence contains at least one cutout extending from a rear side, lying opposite the front side, of the semiconductor layer sequence through the active layer to the layer of the first conductivity type. The layer of the first conductivity type is electrically connected through the cutout by means of a first electrical connection layer which covers the rear side of the semiconductor layer sequence at least in places.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: January 6, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Engl, Lutz Hoeppel, Patrick Rode, Matthias Sabathil
  • Patent number: 8906811
    Abstract: A silicon/carbon alloy may be formed in drain and source regions, wherein another portion may be provided as an in situ doped material with a reduced offset with respect to the gate electrode material. For this purpose, in one illustrative embodiment, a cyclic epitaxial growth process including a plurality of growth/etch cycles may be used at low temperatures in an ultra-high vacuum ambient, thereby obtaining a substantially bottom to top fill behavior.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: December 9, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thorsten Kammler, Andy Wei, Ina Ostermay
  • Patent number: 8753937
    Abstract: The present invention provides a manufacturing method of a power transistor device. First, a semiconductor substrate of a first conductivity type is provided, and at least one trench is formed in the semiconductor substrate. Next, the trench is filled with a dopant source layer, and a first thermal drive-in process is performed to form two doped diffusion regions of a second conductivity type in the semiconductor substrate, wherein the doping concentration of each doped diffusion region close to the trench is different from the one of each doped diffusion region far from the trench. Then, the dopant source layer is removed and a tilt-angle ion implantation process and a second thermal drive-in process are performed to adjust the doping concentration of each doped diffusion region close to the trench.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: June 17, 2014
    Assignee: Anpec Electronics Corporation
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Chia-Hao Chang
  • Patent number: 8722481
    Abstract: When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: May 13, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan-Detlef Kronholz, Peter Javorka, Maciej Wiatr
  • Patent number: 8697555
    Abstract: The invention offers a method of producing a semiconductor device that can suppress the worsening of the property due to surface roughening of a wafer by sufficiently suppressing the surface roughening of the wafer in the heat treatment step and a semiconductor device in which the worsening of the property caused by the surface roughening is suppressed. The method of producing a MOSFET as a semiconductor device is provided with a step of preparing a wafer 3 made of silicon carbide and an activation annealing step that performs activation annealing by heating the wafer 3. In the activation annealing step, the wafer 3 is heated in an atmosphere containing a vapor of silicon carbide generated from the SiC piece 61, which is a generating source other than the wafer 3.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Fujikawa, Shin Harada, Yasuo Namikawa, Takeyoshi Masuda
  • Patent number: 8686515
    Abstract: A mesa-type bidirectional vertical power component, including a substrate of a first conductivity type; a layer of the second conductivity type on each side of the substrate; first regions of the first conductivity type in each of the layers of the second conductivity type; and, at the periphery of each of its surfaces, two successive grooves, the internal groove crossing the layers of the second conductivity type, second doped regions of the first conductivity type being formed under the surface of the external grooves and having the same doping profile as the first regions.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 1, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventors: Yannick Hague, Samuel Menard
  • Patent number: 8604529
    Abstract: A CMOS image sensor includes a substrate including silicon, a silicon germanium (SiGe) epitaxial layer formed over the substrate, the SiGe epitaxial layer formed through epitaxial growth and doped with a predetermined concentration level of impurities, an undoped silicon epitaxial layer formed over the SiGe epitaxial layer by epitaxial growth, and a photodiode region formed from a top surface of the undoped silicon epitaxial layer to a predetermined depth in the SiGe epitaxial layer.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: December 10, 2013
    Assignee: Intellectual Ventures II LLC
    Inventor: Han-Seob Cha
  • Patent number: 8524559
    Abstract: The present invention provides a power transistor device including a substrate, an epitaxial layer, a dopant source layer, a doped drain region, a first insulating layer, a gate structure, a second insulating layer, a doped source region, and a metal layer. The substrate, the doped drain region, and the doped source region have a first conductive type, while the epitaxial layer has a second conductive type. The epitaxial layer is formed on the substrate and has at least one through hole through the epitaxial layer. The first insulating layer, the gate structure, and the second insulating layer are formed sequentially on the substrate in the through hole. The doped drain region and doped source region are formed in the epitaxial layer at one side of the through hole. The metal layer is formed on the epitaxial layer and extends into the through hole to contact the doped source region.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 3, 2013
    Assignee: Anpec Electronics Corporation
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Chia-Hao Chang, Chia-Wei Chen
  • Patent number: 8519486
    Abstract: A semiconductor device includes a MOS transistor, a source electrode and a drain electrode on the MOS transistor each include a first carbon doped silicon layer including carbon at a first carbon concentration and phosphorus at a first phosphorus concentration and a second carbon doped silicon layer over the first silicon carbide layer, which includes phosphorus at a second phosphorus concentration higher than the first phosphorus concentration, and which includes carbon at a second carbon concentration less than or equal to the first carbon concentration.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: August 27, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8501571
    Abstract: A semiconductor device includes a MOS transistor, a source electrode and a drain electrode on the MOS transistor each include a first carbon doped silicon layer including carbon at a first carbon concentration and phosphorus at a first phosphorus concentration and a second carbon doped silicon layer over the first silicon carbide layer, which includes phosphorus at a second phosphorus concentration higher than the first phosphorus concentration, and which includes carbon at a second carbon concentration less than or equal to the first carbon concentration.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: August 6, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoyoshi Tamura
  • Patent number: 8481381
    Abstract: When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 9, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan-Detlef Kronholz, Peter Javorka, Maciej Wiatr
  • Patent number: 8384199
    Abstract: Circuit structures and methods of fabrication are provided for facilitating implementing a complete electronic system in a compact package. The circuit structure includes, in one embodiment, a chips-first multichip base layer with conductive structures extending therethrough. An interconnect layer is disposed over the front surface of the multichip layer and includes interconnect metallization electrically connected to contact pads of the chips and to conductive structures extending through the structural material. A redistribution layer, disposed over the back surface of the multichip layer, includes a redistribution metallization also electrically connected to conductive structures extending through the structural material.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 26, 2013
    Assignee: EPIC Technologies, Inc.
    Inventors: Charles W. Eichelberger, James E. Kohl
  • Patent number: 8324631
    Abstract: A SiC semiconductor substrate is disclosed which includes a SiC single crystal substrate, a nitrogen (N)-doped n-type SiC epitaxial layer in which nitrogen (N) is doped and a phosphorus (P)-doped n-type SiC epitaxial layer in which phosphorus (P) is doped. The nitrogen (N)-doped n-type SiC epitaxial layer and the phosphorus (P)-doped n-type SiC epitaxial layer are laminated on the silicon carbide single crystal substrate sequentially. The nitrogen (N)-doped n-type SiC epitaxial layer and the phosphorus (P)-doped n-type SiC epitaxial layer are formed by using two or more different dopants, for example, nitrogen and phosphorus, at the time of epitaxial growth. Basal plane dislocations in a SiC device can be reduced.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: December 4, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yoshiyuki Yonezawa, Takeshi Tawara
  • Patent number: 8242005
    Abstract: A first species is directed through a first mask with a first aperture and a second mask with a second aperture. The first aperture and second aperture may be different shapes or have different spacing. The first species may be implanted in pattern defining non-implanted regions surrounded by implanted regions. These implanted regions are a sum of said first ion species implanted through said first aperture and said second aperture. Thus, the non-implanted regions are surrounded by the implanted regions formed using the first mask and second mask. The first species also may deposit on or etch the workpiece.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: August 14, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Justin M. Ricci
  • Patent number: 8178410
    Abstract: A method for forming a power device includes the following steps. An epitaxial layer is formed on a substrate. A pad layer and hard mask are formed on the epitaxial layer. A trench is etched into the hard mask, the pad layer, and the epitaxial layer. The hard mask is removed. A buffer layer is formed on the sidewall of the trench. The trench is then filled with a dopant source layer comprising plural dopants. A drive-in process is performed to diffuse the dopants into the epitaxial layer through the buffer layer, thereby forming a diffusion region around the trench.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 15, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Yung-Fa Lin, Shou-Yi Hsu, Meng-Wei Wu, Main-Gwo Chen, Jing-Qing Chan, Yi-Chun Shih
  • Patent number: 8110897
    Abstract: The semiconductor device of the present invention includes: a gate insulating film formed on a semiconductor region of a first conductivity type; a gate electrode formed on the gate insulating film; and a channel doped layer of the first conductivity type formed in the semiconductor region beneath the gate electrode. The channel doped layer contains carbon as an impurity.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: February 7, 2012
    Assignee: Panasonic Corporation
    Inventor: Taiji Noda
  • Patent number: 8072043
    Abstract: A semiconductor component and a method for manufacturing such a semiconductor component which has a resistance behavior which depends heavily on the temperature. This resistance behavior is obtained by a special multi-layer structure of the semiconductor component, one layer being designed in such a way that, for example, multiple p-doped regions are present in an n-doped region, said regions being short-circuited on one side via a metal-plated layer. For example, the semiconductor component may be used for reducing current peaks, by being integrated into a conductor. In the cold state, the semiconductor component has a high resistance which becomes significantly lower when the semiconductor component is heated as a result of the flowing current.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: December 6, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Peter Flohrs, Alfred Goerlach, Peter Urbach, Wolfgang Feiler, Ning Qu, Klaus Heyers
  • Patent number: 7999268
    Abstract: The method described herein enables the introduction of external impurities into Silicon Carbide (SiC) to be conducted at a temperature between 1150-1400° C. Advantages include: a) low temperature diffusion procedure with greater control of the doping process, b) prevent roughness of SiC surface, c) less surface defects and d) better device performance and higher yield. The method described herein involves depositing a ceramic layer that contains the desired impurity and a certain element such as oxygen (in the form of oxide), or other elements/compounds that draw out the silicon and carbon atoms from the surface region of the SiC leaving behind carbon and silicon vacancies which then allow the external impurity to diffuse into the SiC more easily. In another embodiment, the deposited layer also has carbon atoms that discourage carbon from escaping from the SiC, thus generating a surface region of excess carbon in addition to the silicon vacancies.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 16, 2011
    Assignee: Auburn University
    Inventors: Chin-Che Tin, Adetayo Victor Adedeji, Ilkham Gafurovich Atabayev, Bakhtiyar Gafurovich Atabaev, Tojiddin Mutalovich Saliev, Erkin Nurovich Bakhranov, Mingyu Li, Balapuwaduge Suwan Pathum Mendis, Ayayi Claude Ahyi
  • Patent number: 7989329
    Abstract: A method and apparatus for removing excess dopant from a doped substrate is provided. In one embodiment, a substrate is doped by surfaced deposition of dopant followed by formation of a capping layer and thermal diffusion drive-in. A reactive etchant mixture is provided to the process chamber, with optional plasma, to etch away the capping layer and form volatile compounds by reacting with excess dopant. In another embodiment, a substrate is doped by energetic implantation of dopant. A reactive gas mixture is provided to the process chamber, with optional plasma, to remove excess dopant adsorbed on the surface and high-concentration dopant near the surface by reacting with the dopant to form volatile compounds. The reactive gas mixture may be provided during thermal treatment, or it may be provided before or after at temperatures different from the thermal treatment temperature. The volatile compounds are removed.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 2, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Kenneth S. Collins, Biagio Gallo, Hiroji Hanawa, Majeed A. Foad, Martin A. Hilkene, Kartik Santhanam, Matthew D. Scotney-Castle
  • Patent number: 7985652
    Abstract: A semiconductor device and method for manufacturing a tensile strained NMOS and a compressive strained PMOS transistor pair, wherein a stressor material is sacrificial is disclosed. The method provides for a substrate, which includes a source/drain for an NMOS transistor, and a PMOS transistor. A first barrier layer is formed on the substrate and a first stressor material is formed on the first barrier layer. The first barrier layer is selectively removed from the PMOS transistor. The substrate is flash annealed and the remaining first stressor material and barrier layer is removed from the substrate.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: July 26, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Hu Ke, Ta-Ming Kuan, Chih-Hsin Ko, Wen-Chin Lee
  • Patent number: 7939388
    Abstract: Before a plasma doping process is performed, there is generated a plasma of a gas containing an element belonging to the same group in the periodic table as the primary element of a silicon substrate 9, e.g., a monosilane gas, in a vacuum chamber 1. Thus, the inner wall of the vacuum chamber 1 is covered with a silicon-containing film. Then, a plasma doping process is performed on the silicon substrate 9.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 10, 2011
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Hisao Nagai, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno
  • Patent number: 7923341
    Abstract: A method for passivating short circuit defects in a thin film large area photovoltaic device in accordance with an exemplary embodiment is provided. The method employs a passivation agent and a counter electrode disposed in said passivation agent. The method includes controlling an application of current between the substrate of said photovoltaic device and said counter electrode so as to ensure high selectivity of modification of a transparent conductive oxide material of said photovoltaic module adjacent said short circuit defect, while leaving the transparent conductive oxide material of said photovoltaic module of non-defect areas in its unmodified form.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: April 12, 2011
    Assignee: United Solar Ovonic LLC
    Inventors: Greg DeMaggio, Hellmut Fritzsche, Ginger Pietka
  • Patent number: 7919403
    Abstract: A method of manufacturing a silicon carbide semiconductor device is provided that includes a step of forming in a surface of a silicon carbide wafer of first conductivity type a first region of second conductivity type having a predetermined space thereinside by ion-implanting aluminum as a first impurity and boron as a second impurity; a step of forming a JTE region in the surface of the silicon carbide wafer from the first region by diffusing the boron ion-implanted in the first region toward its neighboring zones by an activation annealing treatment; a step of forming a first electrode on the surface of the silicon carbide wafer at the space inside the first region and at an inner part of the first region; and a step of forming a second electrode on the opposite surface of the silicon carbide wafer. Thereby, a JTE region can be formed that has a wide range of impurity concentration and a desired breakdown voltage without increasing the number of steps of the manufacturing process.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 5, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yoichiro Tarui
  • Patent number: 7880172
    Abstract: A unit cell of a metal-semiconductor field-effect transistor (MESFET) includes a semi-insulating substrate having a surface, an implanted n-type channel region in the substrate, and implanted source and drain regions extending from the surface of the substrate into the implanted channel region. A gate contact is between the source and the drain regions, and an implanted p-type region is beneath the source region. The implanted p-type region has an end that extends towards the drain region, is spaced apart vertically from the implanted channel layer, and is electrically coupled to the source region. Methods of forming transistors including implanted channels and implanted p-type regions beneath the source region are also disclosed.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: February 1, 2011
    Assignee: Cree, Inc.
    Inventors: Jason P. Henning, Allan Ward, Alexander Suvorov
  • Patent number: 7867793
    Abstract: A light emitting diode (LED) is fabricated using an underfill layer that is deposited on either the LED or the submount prior to mounting the LED to a submount. The deposition of the underfill layer prior to mounting the LED to the submount provides for a more uniform and void free support, and increases underfill material options to permit improved thermal characteristics. The underfill layer may be used as support for the thin and brittle LED layers during the removal of the growth substrate prior to mounting the LED to the submount. Additionally, the underfill layer may be patterned to and/or polished back so that only the contact areas of the LED and/or submount are exposed. The patterns in the underfill may also be used as a guide to assist in the singulating of the devices.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: January 11, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company LLC
    Inventors: Grigoriy Basin, Robert S. West, Paul S. Martin
  • Patent number: 7834452
    Abstract: A device made of single-crystal silicon having a first side, a second side which is situated opposite to the first side, and a third side which extends from the first side to the second side, the first side and the second side each extending in a 100 plane of the single-crystal silicon, the third side extending in a first area in a 111 plane of the single-crystal silicon. The third side extends in a second area in a 110 plane of the single-crystal silicon. Furthermore, a production method for producing a device made of single-crystal silicon is described.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 16, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Arnd Kaelberer, Helmut Baumann, Roland Scheuerer, Heribert Weber
  • Patent number: 7767572
    Abstract: Methods of forming a barrier layer for an interconnection structure are provided. In one embodiment, a method for forming an interconnect structure includes providing a substrate having a first conductive layer disposed thereon, incorporating oxygen into an upper portion of the first conductive layer, depositing a first barrier layer on the first conductive layer, and diffusing the oxygen incorporated into the upper portion of the first conductive layer into a lower portion of the first barrier layer. In another embodiment, a method for forming an interconnection structure includes providing a substrate having a first conductive layer disposed thereon, treating an upper surface of the first conductive layer with an oxygen containing gas, depositing a first barrier layer on the treated conductive layer, and depositing a second conductive layer on the first barrier layer while driving a portion of oxygen atoms from the treated conductive layer into the first barrier layer.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 3, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Chong Jiang, Anthony Chih-Tung Chan
  • Patent number: 7727868
    Abstract: A method and device for reducing a dopant diffusion rate in a doped semiconductor region is provided. The methods and devices include selecting a plurality of dopant elements. Selection of a plurality of dopant elements includes selecting a first dopant element with a first atomic radius larger than a host matrix atomic radius and selecting a second dopant element with a second atomic radius smaller than a host matrix atomic radius. The methods and devices further include selecting amounts of each dopant element of the plurality of dopant elements wherein amounts and atomic radii of each of the plurality of dopant elements complement each other to reduce a host matrix lattice strain. The methods and devices further include introducing the plurality of dopant elements to a selected region of the host matrix and annealing the selected region of the host matrix.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: June 1, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Paul A. Farrar, Jerome M. Eldridge
  • Patent number: 7675068
    Abstract: A silicon carbide structure is disclosed that is suitable for use as a substrate in the manufacture of electronic devices such as light emitting diodes. The structure includes a silicon carbide wafer having a first and second surface and having a predetermined conductivity type and an initial carrier concentration; a region of implanted dopant atoms extending from the first surface into the silicon carbide wafer to a predetermined depth, with the region having a higher carrier concentration than the initial carrier concentration in the remainder of the wafer; and an epitaxial layer on the first surface of the silicon carbide wafer.
    Type: Grant
    Filed: October 5, 2005
    Date of Patent: March 9, 2010
    Assignee: Cree, Inc.
    Inventors: Davis Andrew McClure, Alexander Suvorov, John Adam Edmond, David Beardsley Slater, Jr.
  • Patent number: 7622741
    Abstract: A semiconductor device of a double diffused MOS structure employing a silicon carbide semiconductor substrate. The semiconductor device comprises a silicon carbide semiconductor epitaxial layer provided on a surface of the silicon carbide semiconductor substrate and having a first conductivity which is the same conductivity as the silicon carbide semiconductor substrate, and an impurity region formed by doping a surface portion of the silicon carbide semiconductor epitaxial layer with an impurity of a second conductivity, the impurity region having a profile such that a near surface thereof has a relatively low second-conductivity impurity concentration and a deep portion thereof has a relatively high second-conductivity impurity concentration.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: November 24, 2009
    Assignee: Rohm Co., Ltd.
    Inventor: Mineo Miura
  • Publication number: 20090212301
    Abstract: Edge termination structures for semiconductor devices are provided including a plurality of spaced apart concentric floating guard rings in a semiconductor layer that at least partially surround a semiconductor junction. The spaced apart concentric floating guard rings have a highly doped portion and a lightly doped portion. Related methods of fabricating devices are also provided herein.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 27, 2009
    Inventors: Qingchun Zhang, Charlotte Jones, Anant K. Agarwal
  • Publication number: 20090159897
    Abstract: A semiconductor processing component has an outer surface portion comprised of silicon carbide, the outer surface portion having a skin impurity level and a bulk impurity level.
    Type: Application
    Filed: December 15, 2008
    Publication date: June 25, 2009
    Applicant: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Yeshwanth Narendar, Richard F. Buckley
  • Patent number: 7550358
    Abstract: A method to create piezoresistive sensing elements and electrostatic actuator elements on trench sidewalls is disclosed. P-type doped regions are formed in the upper surface of an n-type substrate. A trench is formed in the substrate (e.g. by DRIE process) intersecting with the doped regions and defining a portion of the substrate which is movable in the plane of the substrate relative to the rest of the substrate. Then diffusion of P-type dopant into the trench side-walls creates piezoresistive elements and electrode elements for electrostatic actuation. Owing to the intersection of two doped regions, there are good electrical paths between the electrical elements on the trench side-walls and the previously P-type doped portions on the wafer surface. The trench intersects with insulating elements, so that insulating elements mutually insulate adjacent electrical elements. P-n junctions between the electrical elements and the substrate insulate the electrical elements from the substrate.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: June 23, 2009
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xinxin Li, Heng Yang, Yuelin Wang, Songlin Feng
  • Patent number: 7514318
    Abstract: A method for fabricating non-volatile memory cells is provided. The method includes providing a substrate, forming a first dopant region in the substrate, forming a second dopant region in the first dopant region, growing a first isolation region over a first portion of the substrate, the first dopant region, and the second dopant region, growing a second isolation region over a second portion of the substrate, the first dopant region, and the second dopant region, defining a contact region in the second dopant region, the contact region extending between the first isolation region and the second isolation region, depositing a gate oxide layer to form a first gate dielectric atop the first isolation region and a portion of the contact region, and overlaying a gate conductive layer on top of the gate oxide layer to form a first gate conductor atop the first gate dielectric.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: April 7, 2009
    Assignee: Micrel, Inc.
    Inventor: Paul M. Moore
  • Patent number: 7510977
    Abstract: A method for manufacturing a silicon carbide (SiC) semiconductor device is disclosed that uses dry etching with the use of high-density inductive coupled plasma (ICP). The method employs a first dry etching and a sequential second dry etching under conditions that differ from those used in the first dry etching. The dry etch process allows a trench to be deeply etched to a depth of more than 3 ?m in a SiC laminated semiconductor substrate and allows the bottom of the trench to be flat without forming a convexo-concave shape having an acute angle which has an influence on characteristics of a breakdown voltage due to electric field concentration being caused in the bottom.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: March 31, 2009
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Yasuyuki Kawada
  • Patent number: 7501673
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate and a doped conductive layer formed over the semiconductor substrate. A diffusion barrier layer is formed over the doped conductive layer. The diffusion barrier layer may be formed from an amorphous semiconductor material. An ohmic contact layer is formed over the diffusion barrier layer. A metal barrier layer is formed over the ohmic contact layer. A metal layer is formed over the metal barrier layer.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: March 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwa Park, Hee-Sook Park, Dae-Yong Kim, Jang-Hee Lee
  • Patent number: 7449712
    Abstract: A CMOS image sensor includes a substrate including silicon, a silicon germanium (SiGe) epitaxial layer formed over the substrate, the SiGe epitaxial layer formed through epitaxial growth and doped with a predetermined concentration level of impurities, an undoped silicon epitaxial layer formed over the SiGe epitaxial layer by epitaxial growth, and a photodiode region formed from a top surface of the undoped silicon epitaxial layer to a predetermined depth in the SiGe epitaxial layer.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: November 11, 2008
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventor: Han-Seob Cha
  • Publication number: 20070231979
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Application
    Filed: June 4, 2007
    Publication date: October 4, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dureseti CHIDAMBARRAO, Omer DOKUMACI, Oleg GLUSCHENKOV
  • Patent number: 7253533
    Abstract: A divided shadow mask for use in fabricating an organic light emitting diode display including a first shadow mask section having a plurality of openings; and at least a second shadow mask section having a plurality of openings.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: August 7, 2007
    Assignee: AU Optronics Corporation
    Inventor: Chung-Wen Ko
  • Patent number: 7233038
    Abstract: A method of implanting, for example, a phosphorous plug over a charge collection region and a method of forming a contact over the phosphorous plug implant and charge collection region. The method allows implantation of phosphorous or other materials without contamination of other contact regions. The method further allows implantation of a material with only one step and without an extra masking step.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: June 19, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Brent A. McClure
  • Patent number: 7208382
    Abstract: A method and structure is provided for an integrated circuit with a semiconductor substrate having an opening provided therein. A doped high conductivity region is formed from doped material in the opening and a diffused dopant region proximate the doped material in the opening. A structure is over the doped high conductivity region selected from a group consisting of a wordline, a gate, a dielectric layer, and a combination thereof.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: April 24, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jeffrey P. Erhardt, Kashmir S. Sahota, Emmanuil Lingunis, Nga-Ching Wong
  • Patent number: 7192853
    Abstract: A method is provided for forming a graded junction in a semiconductor material having a first conductivity type. Dopant having a second conductivity type opposite the first conductivity type is introduced into a selected region of the semiconductor material to define a primary dopant region therein. The perimeter of the primary dopant region defines a primary pn junction. While introducing dopant into the selected region of the semiconductor material, dopant is simultaneously introduced into the semiconductor material around the perimeter of the primary dopant region and spaced-apart from the primary pn junction. The dopant in the both the primary dopant region and in the dopant around the perimeter of the primary dopant region is then diffused to provide a graded dopant region.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: March 20, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Andrew Strachan, Vladislav Vashchenko
  • Patent number: 7144829
    Abstract: A first thermal treatment, which is performed at a temperature within 650–750° C. for 30–240 minutes, and thereafter a second thermal treatment, which is performed at a temperature within 900–1100° C. for 30–120 minutes, are performed as the initial thermal treatments on a semiconductor wafer composed of silicon. Further, before forming a gate insulating film, the temperature is increased to 1000° C. at a temperature increasing rate of 8° C./min in a nitrogen ambient, and a thermal treatment is performed at a temperature of 1000° C. for 30 minutes as a third thermal treatment.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: December 5, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Kenji Yoneda