Heat Treating (epo) Patents (Class 257/E21.077)
-
Patent number: 9040424Abstract: A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The single crystal silicon substrate is exposed to an anisotropic etchant that undercuts the single crystal silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.Type: GrantFiled: March 9, 2012Date of Patent: May 26, 2015Assignee: MICRON TECHNOLOGY, INC.Inventors: Janos Fucsko, David H. Wells, Patrick Flynn, Whonchee Lee
-
Patent number: 9018050Abstract: A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.Type: GrantFiled: October 10, 2013Date of Patent: April 28, 2015Assignee: The Board of Trustees of the University of IllinoisInventors: Xiuling Li, Wen Huang
-
Patent number: 8999862Abstract: Methods of fabricating nano-scale structures are provided. A method includes forming a first hard mask pattern corresponding to first openings in a dense region, forming first guide elements on the first hard mask pattern aligned with the first openings, and forming second hard mask patterns in a sparse region to provide isolated patterns. A blocking layer is formed in the sparse region to cover the second hard mask patterns. A first domain and second domains are formed in the dense region using a phase separation of a block co-polymer layer. Related nano-scale structures are also provided.Type: GrantFiled: April 7, 2014Date of Patent: April 7, 2015Assignee: SK Hynix Inc.Inventors: Keun Do Ban, Cheol Kyu Bok, Myoung Soo Kim, Jung Hyung Lee, Hyun Kyung Shim, Chang Il Oh
-
Patent number: 8999811Abstract: An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.Type: GrantFiled: August 29, 2013Date of Patent: April 7, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
-
Patent number: 8994177Abstract: A method for far back end of the line (FBEOL) protection of a semiconductor device includes forming a patterned layer over a back end of the line (BEOL) stack, depositing a first conformal protection layer on the patterned layer which covers horizontal surfaces of a top surface and sidewalls of openings formed in the patterned layer. A resist layer is patterned over the first conformal protection layer such that openings in the resist layer correspond with the openings in the patterned layer. The first conformal protection layer is etched through the openings in the resist layer to form extended openings that reach a stop position. The resist layer is removed, and a second conformal protection layer is formed on the first conformal protection layer and on sidewalls of the extended openings to form an encapsulation boundary to protect at least the patterned layer and a portion of the BEOL stack.Type: GrantFiled: August 15, 2013Date of Patent: March 31, 2015Assignee: International Business Machines CorporationInventors: Tymon Barwicz, Robert L. Bruce, Swetha Kamlapurkar
-
Patent number: 8987753Abstract: Provided is a light emitting device, which includes a second conductive type semiconductor layer, an active layer, a first conductive type semiconductor layer, and a intermediate refraction layer. The active layer is disposed on the second conductive type semiconductor layer. The first conductive type semiconductor layer is disposed on the active layer. The intermediate refraction layer is disposed on the first conductive type semiconductor layer. The intermediate refraction layer has a refractivity that is smaller than that of the first conductive type semiconductor layer and is greater than that of air.Type: GrantFiled: July 1, 2013Date of Patent: March 24, 2015Assignee: LG Innotek Co., Ltd.Inventor: Hyo Kun Son
-
Patent number: 8952512Abstract: A wafer-level package structure of a light emitting diode and a manufacturing method thereof are provided in the present invention. The wafer-level package structure of a light emitting diode includes a die, a first insulating layer, at least two wires, bumps, an annular second insulating layer on the wires and the insulating layer, the annular second insulating layer surrounding an area between the bumps and there being spaces arranged between the second insulating layer and the bumps; a light reflecting cup on the second insulating layer; at least two discrete lead areas and leads in the lead areas. The technical solution of the invention reduces the area required for the substrate; and the electrodes can be extracted in the subsequent structure of the package without gold wiring to thereby further reduce the volume of the package.Type: GrantFiled: April 19, 2013Date of Patent: February 10, 2015Assignee: China Wafer Level CSP Ltd.Inventors: Junjie Li, Wenbin Wang, Qiuhong Zou, Guoqing Yu, Wei Wang
-
Patent number: 8946894Abstract: Methods and apparatuses for forming a package for high-power semiconductor devices are disclosed herein. A package may include a plurality of distinct thermal spreader layers disposed between a die and a metal carrier. Other embodiments are described and claimed.Type: GrantFiled: February 18, 2013Date of Patent: February 3, 2015Assignee: TriQuint Semiconductor, Inc.Inventors: Tarak A. Railkar, Deep C. Dumka
-
Patent number: 8932956Abstract: A method for far back end of the line (FBEOL) protection of a semiconductor device includes forming a patterned layer over a back end of the line (BEOL) stack, depositing a first conformal protection layer on the patterned layer which covers horizontal surfaces of a top surface and sidewalls of openings formed in the patterned layer. A resist layer is patterned over the first conformal protection layer such that openings in the resist layer correspond with the openings in the patterned layer. The first conformal protection layer is etched through the openings in the resist layer to form extended openings that reach a stop position. The resist layer is removed, and a second conformal protection layer is formed on the first conformal protection layer and on sidewalls of the extended openings to form an encapsulation boundary to protect at least the patterned layer and a portion of the BEOL stack.Type: GrantFiled: December 4, 2012Date of Patent: January 13, 2015Assignee: International Business Machines CorporationInventors: Tymon Barwicz, Robert L. Bruce, Swetha Kamlapurkar
-
Patent number: 8932907Abstract: A semiconductor device has an interposer frame mounted over a carrier. A semiconductor die has an active surface and bumps formed over the active surface. The semiconductor die can be mounted within a die opening of the interposer frame or over the interposer frame. Stacked semiconductor die can also be mounted within the die opening of the interposer frame or over the interposer frame. Bond wires or bumps are formed between the semiconductor die and interposer frame. An encapsulant is deposited over the interposer frame and semiconductor die. An interconnect structure is formed over the encapsulant and bumps of the first semiconductor die. An electronic component, such as a discrete passive device, semiconductor die, or stacked semiconductor die, is mounted over the semiconductor die and interposer frame. The electronic component has an I/O count less than an I/O count of the semiconductor die.Type: GrantFiled: December 13, 2012Date of Patent: January 13, 2015Assignee: STATS ChipPAC, Ltd.Inventors: NamJu Cho, HeeJo Chi, HanGil Shin
-
Patent number: 8927433Abstract: Provided is a technology for forming a conductive via hole to implement a three dimensional stacked structure of an integrated circuit. A method for forming a conductive via hole according to an embodiment of the present invention comprises: filling inside of a via hole structure that is formed in one or more of an upper portion and a lower portion of a substrate with silver by using a reduction and precipitation of silver in order to connect a plurality of stacked substrates by a conductor; filling a portion that is not filled with silver inside of the via hole structure by flowing silver thereinto; and sublimating residual material of silver oxide series, which is generated during the flowing, on an upper layer inside of the via hole structure filled with silver.Type: GrantFiled: December 15, 2010Date of Patent: January 6, 2015Assignee: Electronics and Telecommunications Research InstituteInventor: Jin-Yeong Kang
-
Patent number: 8921174Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.Type: GrantFiled: June 14, 2012Date of Patent: December 30, 2014Assignee: Peking UniversityInventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
-
Patent number: 8916474Abstract: In accordance with an embodiment of the present invention, a semiconductor module includes a first semiconductor package having a first semiconductor die, which is disposed in a first encapsulant. An opening is disposed in the first encapsulant. A second semiconductor package including a second semiconductor die is disposed in a second encapsulant. The second semiconductor package is disposed at least partially within the opening in the first encapsulant.Type: GrantFiled: February 18, 2013Date of Patent: December 23, 2014Assignee: Infineon Technologies AGInventors: Ralf Otremba, Josef H•glauer
-
Patent number: 8907390Abstract: Disclosed herein is a thermally-assisted magnetic tunnel junction structure including a thermal barrier. The thermal barrier is composed of a cermet material in a disordered form such that the thermal barrier has a low thermal conductivity and a high electric conductivity. Compared to conventional magnetic tunnel junction structures, the disclosed structure can be switched faster and has improved compatibility with standard semiconductor fabrication processes.Type: GrantFiled: November 11, 2010Date of Patent: December 9, 2014Assignee: Crocus Technology Inc.Inventor: Jason Reid
-
Patent number: 8906752Abstract: Ink compositions comprising polythiophenes and methicone that are formulated for inkjet printing the hole injecting layer (HIL) of an organic light emitting diode (OLED) are provided. Also provided are methods of inkjet printing the HILs using the ink compositions.Type: GrantFiled: December 4, 2013Date of Patent: December 9, 2014Assignee: Kateeva, Inc.Inventors: Inna Tregub, Rajsapan Jain, Michelle Chan
-
Patent number: 8906811Abstract: A silicon/carbon alloy may be formed in drain and source regions, wherein another portion may be provided as an in situ doped material with a reduced offset with respect to the gate electrode material. For this purpose, in one illustrative embodiment, a cyclic epitaxial growth process including a plurality of growth/etch cycles may be used at low temperatures in an ultra-high vacuum ambient, thereby obtaining a substantially bottom to top fill behavior.Type: GrantFiled: October 13, 2011Date of Patent: December 9, 2014Assignee: Advanced Micro Devices, Inc.Inventors: Thorsten Kammler, Andy Wei, Ina Ostermay
-
Patent number: 8906772Abstract: A system and method for forming graphene layers on a substrate. The system and methods include direct growth of graphene on diamond and low temperature growth of graphene using a solid carbon source.Type: GrantFiled: May 25, 2012Date of Patent: December 9, 2014Assignee: UChicago Argonne, LLCInventor: Anirudha V. Sumant
-
Patent number: 8895446Abstract: A method includes forming a plurality of trenches extending from a top surface of a semiconductor substrate into the semiconductor substrate, with semiconductor strips formed between the plurality of trenches. The plurality of trenches includes a first trench and second trench wider than the first trench. A first dielectric material is filled in the plurality of trenches, wherein the first trench is substantially fully filled, and the second trench is filled partially. A second dielectric material is formed over the first dielectric material. The second dielectric material fills an upper portion of the second trench, and has a shrinkage rate different from the first shrinkage rate of the first dielectric material. A planarization is performed to remove excess second dielectric material. The remaining portions of the first dielectric material and the second dielectric material form a first and a second STI region in the first and the second trenches, respectively.Type: GrantFiled: February 18, 2013Date of Patent: November 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Tang Peng, Tai-Chun Huang, Hao-Ming Lien
-
Patent number: 8896110Abstract: Embodiments of the present disclosure describe techniques and configurations for paste thermal interface materials (TIMs) and their use in integrated circuit (IC) packages. In some embodiments, an IC package includes an IC component, a heat spreader, and a paste TIM disposed between the die and the heat spreader. The paste TIM may include particles of a metal material distributed through a matrix material, and may have a bond line thickness, after curing, of between approximately 20 microns and approximately 100 microns. Other embodiments may be described and/or claimed.Type: GrantFiled: March 13, 2013Date of Patent: November 25, 2014Assignee: Intel CorporationInventors: Wei Hu, Zhizhong Tang, Syadwad Jain, Rajen S. Sidhu
-
Patent number: 8884343Abstract: A system in package and a method for manufacturing the same is provided. The system in package comprises a laminate body having a substrate arranged inside a laminate body. A semiconductor die is embedded in the laminate body and the semiconductor is bonded to contact pads of the substrate by help of a sintered bonding layer, which is made from a sinter paste. Lamination of the substrate and further layers providing the laminate body and sintering of the sinter paste may be performed in a single and common curing step.Type: GrantFiled: February 19, 2013Date of Patent: November 11, 2014Assignee: Texas Instruments IncorporatedInventors: Bernhard Lange, Juergen Neuhaeusler
-
Patent number: 8884407Abstract: A device includes a tube extending in a longitudinal direction and a hollow channel arranged in the tube. An end part of the tube is formed such that first electromagnetic radiation paths extending in the tube and outside of the hollow channel in the longitudinal direction are focused in a first focus.Type: GrantFiled: December 4, 2012Date of Patent: November 11, 2014Assignee: Infineon Technologies AGInventors: Michael Sternad, Rainer Pelzer
-
Patent number: 8859331Abstract: Methods of forming an oxide material layer are provided. The method includes mixing a precursor material with a peroxide material to form a precursor solution, coating the precursor solution on a substrate, and baking the coated precursor solution.Type: GrantFiled: June 15, 2012Date of Patent: October 14, 2014Assignee: Industry-Academic Cooperation Foundation, Yonsei UniversityInventors: Hyun Jae Kim, Dong Lim Kim, Joohye Jung, You Seung Rim
-
Patent number: 8853101Abstract: Methods for creating chemical guide patterns by DSA lithography for fabricating an integrated circuit are provided. In one example, an integrated circuit includes forming a bifunctional brush layer of a polymeric material overlying an anti-reflective coating on a semiconductor substrate. The polymeric material has a neutral polymeric block portion and a pinning polymeric block portion that are coupled together. The bifunctional brush layer includes a neutral layer that is formed of the neutral polymeric block portion and a pinning layer that is formed of the pinning polymeric block portion. A portion of the neutral layer or the pinning layer is selectively removed to define a chemical guide pattern. A block copolymer layer is deposited overlying the chemical guide pattern. The block copolymer layer is phase separated to define a nanopattern that is registered to the chemical guide pattern.Type: GrantFiled: March 15, 2013Date of Patent: October 7, 2014Assignee: GLOBALFOUNDRIES, Inc.Inventors: Richard A. Farrell, Gerard M. Schmid, xU Ji
-
Patent number: 8853757Abstract: Embodiments of an apparatus and methods for forming thick metal interconnect structures for integrated structures are generally described herein. Other embodiments may be described and claimed.Type: GrantFiled: February 8, 2011Date of Patent: October 7, 2014Assignee: Intel CorporationInventor: Kevin Lee
-
Patent number: 8846550Abstract: The negative effect of oxygen on some metal films can be reduced or prevented by contacting the films with a treatment agent comprising silane or borane. In some embodiments, one or more films in an NMOS gate stack are contacted with a treatment agent comprising silane or borane during or after deposition.Type: GrantFiled: March 14, 2013Date of Patent: September 30, 2014Assignee: ASM IP Holding B.V.Inventors: Eric Shero, Suvi Haukka
-
Patent number: 8841182Abstract: Methods of treating metal-containing thin films, such as films comprising titanium carbide, with a silane/borane agent are provided. In some embodiments a film including titanium carbide is deposited on a substrate by an atomic layer deposition (ALD) process. The process may include a plurality of deposition cycles involving alternating and sequential pulses of a first source chemical that includes titanium and at least one halide ligand, a second source chemical that includes metal and carbon, where the metal and the carbon from the second source chemical are incorporated into the thin film, and a third source chemical, where the third source chemical is a silane or borane that at least partially reduces oxidized portions of the titanium carbide layer formed by the first and second source chemicals. The treatment can form a capping layer on the metal carbide film.Type: GrantFiled: March 14, 2013Date of Patent: September 23, 2014Assignee: ASM IP Holding B.V.Inventors: Jerry Chen, Vladimir Machkaoutsan, Brennan Milligan, Jan Willem Maes, Suvi Haukka, Eric Shero, Tom E. Blomberg, Dong Li
-
Patent number: 8809132Abstract: A capping layer may be deposited over the active channel of a thin film transistor (TFT) in order to protect the active channel from contamination. The capping layer may affect the performance of the TFT. If the capping layer contains too much hydrogen, nitrogen, or oxygen, the threshold voltage, sub threshold slope, and mobility of the TFT may be negatively impacted. By controlling the ratio of the flow rates of the nitrogen, oxygen, and hydrogen containing gases, the performance of the TFT may be optimized. Additionally, the power density, capping layer deposition pressure, and the temperature may also be controlled to optimize the TFT performance.Type: GrantFiled: August 22, 2011Date of Patent: August 19, 2014Assignee: Applied Materials, Inc.Inventor: Yan Ye
-
Patent number: 8802550Abstract: First flash irradiation from flash lamps is performed on an upper surface of a semiconductor wafer supported on a temperature equalizing ring of a holder to cause the semiconductor wafer to jump up from the temperature equalizing ring into midair. While the semiconductor wafer is in midair above the temperature equalizing ring, second flash irradiation from the flash lamps is performed on the upper surface of the semiconductor wafer to increase the temperature of the upper surface of the semiconductor wafer to a treatment temperature. Cracking in the semiconductor wafer is prevented because the second flash irradiation is performed while the semiconductor wafer is in midair and subject to no restraints.Type: GrantFiled: September 5, 2012Date of Patent: August 12, 2014Assignee: Dainippon Screen Mfg. Co., Ltd.Inventor: Kenichi Yokouchi
-
Patent number: 8796149Abstract: Fabrication methods, device structures, and design structures for a bipolar junction transistor. An emitter is formed in a device region defined in a substrate. An intrinsic base is formed on the emitter. A collector is formed that is separated from the emitter by the intrinsic base. The collector includes a semiconductor material having an electronic bandgap greater than an electronic bandgap of a semiconductor material of the device region.Type: GrantFiled: February 18, 2013Date of Patent: August 5, 2014Assignee: International Business Machines CorporationInventors: James W. Adkisson, David L. Harame, Qizhi Liu
-
Patent number: 8796131Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.Type: GrantFiled: October 25, 2010Date of Patent: August 5, 2014Assignee: Advanced Technology Materials, Inc.Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
-
Patent number: 8779479Abstract: An object is to provide a semiconductor device with a novel structure. A semiconductor device includes a first transistor, which includes a channel formation region provided in a substrate including a semiconductor material, impurity regions, a first gate insulating layer, a first gate electrode, and a first source electrode and a first drain electrode, and a second transistor, which includes an oxide semiconductor layer over the substrate including the semiconductor material, a second source electrode and a second drain electrode, a second gate insulating layer, and a second gate electrode. The second source electrode and the second drain electrode include an oxide region formed by oxidizing a side surface thereof, and at least one of the first gate electrode, the first source electrode, and the first drain electrode is electrically connected to at least one of the second gate electrode, the second source electrode, and the second drain electrode.Type: GrantFiled: February 28, 2013Date of Patent: July 15, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunpei Yamazaki, Jun Koyama
-
Patent number: 8772826Abstract: It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer is comprised of a plurality of stacked semiconductor layers containing a chalcopyrite-based compound semiconductor. The semiconductor layers contain oxygen. A molar concentration of the oxygen in surfaces and their vicinities of the semiconductor layers where the semiconductor layers are stacked on each other is higher than average molar concentrations of the oxygen in the semiconductor layers.Type: GrantFiled: May 30, 2011Date of Patent: July 8, 2014Assignee: KYOCERA CorporationInventors: Hideaki Asao, Rui Kamada, Shuichi Kasai, Seiji Oguri, Isamu Tanaka, Nobuyuki Horiuchi, Kazumasa Umesato
-
Patent number: 8772173Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a gate structure, a source region, and a drain region formed thereon, and the gate structure includes a gate insulating layer and a gate electrode. The method also includes forming a first stress layer on the substrate, removing the first stress layer, and forming a second stress layer on the substrate.Type: GrantFiled: May 1, 2012Date of Patent: July 8, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Hyun-kwan Yu, Dong-suk Shin, Pan-kwi Park, Ki-eun Kim
-
Patent number: 8765555Abstract: A phase change memory cell includes a first electrode having a cylindrical portion. A dielectric material having a cylindrical portion is longitudinally over the cylindrical portion of the first electrode. Heater material is radially inward of and electrically coupled to the cylindrical portion of the first electrode. Phase change material is over the heater material and a second electrode is electrically coupled to the phase change material. Other embodiments are disclosed, including methods of forming memory cells which include first and second electrodes having phase change material and heater material in electrical series there-between.Type: GrantFiled: April 30, 2012Date of Patent: July 1, 2014Assignee: Micron Technology, Inc.Inventor: Damon E. Van Gerpen
-
Patent number: 8753985Abstract: Molecular layer deposition of silicon carbide is described. A deposition precursor includes a precursor molecule which contains silicon, carbon and hydrogen. Exposure of a surface to the precursor molecule results in self-limited growth of a single layer. Though the growth is self-limited, the thickness deposited during each cycle of molecular layer deposition involves multiple “atomic” layers and so each cycle may deposit thicknesses greater than typically found during atomic layer depositions. Precursor effluents are removed from the substrate processing region and then the surface is irradiated before exposing the layer to the deposition precursor again.Type: GrantFiled: September 27, 2012Date of Patent: June 17, 2014Assignee: Applied Materials, Inc.Inventors: Brian Underwood, Abhijit Basu Mallick, Nitin K. Ingle
-
Patent number: 8753980Abstract: A method of performing rapid thermal annealing on a substrate including heating the substrate to a first temperature in a rapid thermal annealing system having a front-side heating source and a backside heating source. The method further includes raising the temperature of the substrate from the first temperature to a second temperature greater than the first temperature. The backside heating source provides a greater amount of heat than the front-side heating source during the raising of the temperature of the substrate.Type: GrantFiled: January 30, 2013Date of Patent: June 17, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chun Hsiung Tsai, Chii-Ming Wu, Da-Wen Lin
-
Patent number: 8753983Abstract: A method includes providing a silicon-containing die and providing a heat sink having a palladium layer over a first surface of the heat sink. A first gold layer is located over one of a first surface of the die or the palladium layer. The silicon-containing die is bonded to the heat sink, where bonding includes joining the silicon-containing die and the heat sink such that the first gold layer and the palladium layer are between the first surface of the silicon-containing die and the first surface of the heat sink, and heating the first gold layer and the palladium layer to form a die attach layer between the first surface of the silicon-containing die and the first surface of the heat sink, the die attach layer comprising a gold interface layer having a plurality of intermetallic precipitates, each of the plurality of intermetallic precipitates comprising palladium, gold, and silicon.Type: GrantFiled: January 7, 2010Date of Patent: June 17, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Jin-Wook Jang, Lalgudi M. Mahalingam, Audel A. Sanchez, Lakshminarayan Viswanathan
-
Patent number: 8753946Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.Type: GrantFiled: February 4, 2012Date of Patent: June 17, 2014Assignees: NthDegree Technologies Worldwide Inc, NASA, an agency of the United StatesInventors: William Johnstone Ray, Mark David Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
-
Patent number: 8741773Abstract: Embodiments of the invention provide a method of forming nickel-silicide. The method may include depositing first and second metal layers over at least one of a gate, a source, and a drain region of a field-effect-transistor (FET) through a physical vapor deposition (PVD) process, wherein the first metal layer is deposited using a first nickel target material containing platinum (Pt), and the second metal layer is deposited on top of the first metal layer using a second nickel target material containing no or less platinum than that in the first nickel target material; and annealing the first and second metal layers covering the FET to form a platinum-containing nickel-silicide layer at a top surface of the gate, source, and drain regions.Type: GrantFiled: January 8, 2010Date of Patent: June 3, 2014Assignee: International Business Machines CorporationInventors: Asa Frye, Andrew Simon
-
Patent number: 8741702Abstract: An object is to manufacture a semiconductor device including an oxide semiconductor at low cost with high productivity in such a manner that a photolithography process is simplified by reducing the number of light-exposure masks. In a method for manufacturing a semiconductor device including a channel-etched inverted-staggered thin film transistor, an oxide semiconductor film and a conductive film are etched using a mask layer formed with the use of a multi-tone mask which is a light-exposure mask through which light is transmitted so as to have a plurality of intensities. In etching steps, a first etching step is performed by dry etching in which an etching gas is used, and a second etching step is performed by wet etching in which an etchant is used.Type: GrantFiled: October 20, 2009Date of Patent: June 3, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Shunichi Ito, Miyuki Hosoba, Hideomi Suzawa, Shinya Sasagawa, Taiga Muraoka
-
Patent number: 8729707Abstract: A method of manufacturing a semiconductor device includes forming an insulating film over a semiconductor substrate, forming a capacitor including a lower electrode, a capacitor dielectric film including a ferroelectric material, and an upper electrode over the insulating film, forming a first protective insulating film over a side surface and upper surface of the capacitor by a sputtering method, and forming a second protective insulating film over the first protective insulating film by an atomic layer deposition method.Type: GrantFiled: October 4, 2012Date of Patent: May 20, 2014Assignee: Fujitsu Semiconductor LimitedInventor: Wensheng Wang
-
Patent number: 8723340Abstract: The present invention relates to a process for the production of solar cells comprising a selective emitter using an improved etching-paste composition which has significantly improved selectivity for silicon layers.Type: GrantFiled: October 1, 2010Date of Patent: May 13, 2014Assignee: Merck Patent GmbHInventors: Werner Stockum, Oliver Doll, Ingo Koehler
-
Patent number: 8716149Abstract: Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having a gate structure. An atomic layer deposition (ALD) process is performed to deposit a spacer around the gate structure. The ALD process includes alternating flowing ionized radicals of a first precursor across the semiconductor substrate and flowing a chlorosilane precursor across the semiconductor substrate to deposit the spacer.Type: GrantFiled: May 29, 2012Date of Patent: May 6, 2014Assignee: GlobalFoundries, Inc.Inventors: Fabian Koehler, Sergej Mutas, Dina Triyoso, Itasham Hussain
-
Patent number: 8716737Abstract: An LED includes a first intermetallic layer, a first metal thin film layer, an LED chip, a substrate, a second metal thin film layer, and a second intermetallic layer. The first metal thin film layer is located on the first intermetallic layer. The LED chip is located on the first metal thin film layer. The second metal thin film layer is located on the substrate. The second intermetallic layer is located on the second metal thin film layer, and the first intermetallic layer is located on the second intermetallic layer. Materials of the first and the second metal thin film layer are selected from a group consisting of Au, Ag, Cu, and Ni. Materials of the intermetallic layers are selected from a group consisting of a Cu—In—Sn intermetallics, an Ni—In—Sn intermetallics, an Ni—Bi intermetallics, an Au—In intermetallics, an Ag—In intermetallics, an Ag—Sn intermetallics, and an Au—Bi intermetallics.Type: GrantFiled: June 22, 2012Date of Patent: May 6, 2014Assignee: Industrial Technology Research InstituteInventors: Hsiu Jen Lin, Jian Shian Lin, Shau Yi Chen, Chieh Lung Lai
-
Patent number: 8709957Abstract: A method for spalling local areas of a base substrate utilizing at least one stressor layer portion which is located on a portion, but not all, of an uppermost surface of a base substrate. The method includes providing a base substrate having a uniform thickness and a planar uppermost surface spanning across an entirety of the base substrate. At least one stressor layer portion having a shape is formed on at least a portion, but not all, of the uppermost surface of the base substrate. Spalling is performed which removes a material layer portion from the base substrate and provides a remaining base substrate portion. The material layer portion has the shape of the at least one stressor layer portion, while the remaining base substrate portion has at least one opening located therein which correlates to the shape of the at least one stressor layer.Type: GrantFiled: May 25, 2012Date of Patent: April 29, 2014Assignee: International Business Machines CorporationInventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Ibrahim Alhomoudi
-
Patent number: 8703534Abstract: A method of forming semiconductor assemblies is disclosed. The method includes providing an interposer with through interposer vias. The interposer includes a first surface and a second surface. The through interposer vias extend from the first surface to the second surface of the interposer. A first die is mounted on the first surface of the interposer. The first die comprises a first surface with first conductive contacts thereon. The interposer comprises material with coefficient of thermal expansion (CTE) similar to that of the first die. The first conductive contacts of the first die are coupled to the through interposer vias on the first surface of the interposer.Type: GrantFiled: January 29, 2012Date of Patent: April 22, 2014Assignee: United Test and Assembly Center Ltd.Inventors: Chin Hock Toh, Kriangsak Sae Le
-
Patent number: 8698291Abstract: A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).Type: GrantFiled: December 15, 2011Date of Patent: April 15, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Audel A. Sanchez, Fernando A. Santos, Lakshminarayan Viswanathan
-
Patent number: 8652893Abstract: A semiconductor device and its manufacturing method, wherein the NMOS device is covered by a layer of silicon nitride film having a high ultraviolet light absorption coefficient through PECVD, said silicon nitride film can well absorb ultraviolet light when being subject to the stimulated laser surface anneal so as to achieve a good dehydrogenization effect, and after dehydrogenization, the silicon nitride film will have a high tensile stress; since the silicon nitride film has a high ultraviolet light absorption coefficient, there is no need to heat the substrate, thus avoiding the adverse influences to the device caused by heating the substrate to dehydrogenize, and maintaining the heat budget brought about by the PECVD process.Type: GrantFiled: November 25, 2011Date of Patent: February 18, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
-
Patent number: 8637925Abstract: Embodiments of the invention provide a method of forming nickel-silicide. The method may include depositing first and second metal layers over at least one of a gate, a source, and a drain region of a field-effect-transistor (FET) through a physical vapor deposition (PVD) process, wherein the first metal layer is deposited using a first nickel target material containing platinum (Pt), and the second metal layer is deposited on top of the first metal layer using a second nickel target material containing no or less platinum than that in the first nickel target material; and annealing the first and second metal layers covering the FET to form a platinum-containing nickel-silicide layer at a top surface of the gate, source, and drain regions.Type: GrantFiled: February 29, 2012Date of Patent: January 28, 2014Assignee: International Business Machines CorporationInventors: Asa Frye, Andrew Simon
-
Patent number: 8633597Abstract: In a multi-module integrated circuit package having a package substrate and package contacts, a die is embedded in the package substrate with thermal vias that couple hotspots on the embedded die to some of the package contacts.Type: GrantFiled: March 1, 2010Date of Patent: January 21, 2014Assignee: QUALCOMM IncorporatedInventors: Fifin Sweeney, Milind P. Shah, Mario Francisco Velez, Damion B. Gastelum