Multilayer (epo) Patents (Class 257/E23.041)
-
Patent number: 12077870Abstract: A mask manufacturing method includes a step of providing a metal substrate having a plurality of virtual zones on its surface, using a plurality of nozzles to spray an etching solution on the surface, wherein the virtual zones include a first and a second zone, and the metal substrate has a first thickness and a second thickness respectively in an unit area of the first zone and the second zone, wherein the first thickness is greater than the second thickness; the step of using the nozzles to spray the etching solution on the surface further includes respectively using a first spraying pressure and a second spraying pressure to spray the etching solution on the first zone and the second zone, and the first spraying pressure is greater than the second spraying pressure. The invention also provides a mask manufacturing device.Type: GrantFiled: January 19, 2022Date of Patent: September 3, 2024Assignee: DARWIN PRECISIONS CORPORATIONInventors: Kuan-Ting Hou, Syue-Wun Fu
-
Patent number: 11664447Abstract: A semiconductor device and a method of making the same. The device includes a substrate mounted on a carrier, the substrate comprising a High Electron Mobility Transistor (HEMT) having a source, a gate and a drain. The carrier comprises an electrically conductive shielding portion for providing shielding against electromagnetic interference associated with switching of the device during operation. The electrically conductive shielding portion is electrically isolated from the source and from the backside of the substrate.Type: GrantFiled: October 27, 2016Date of Patent: May 30, 2023Assignee: Nexperia B.V.Inventors: Jeroen Croon, Coenraad Cornelis Tak
-
Patent number: 8956919Abstract: The present invention relates to a multi-row leadframe for semiconductor packaging, characterized by: forming a plating pattern on a leadframe material (first step); forming a protective pattern on the plating pattern (second step); and forming a nano pattern by using the protective pattern as a mask (third step), whereby a protective pattern is formed on an upper surface of a plating pattern to increase reliability of a product by preventing damage to a plating layer caused by etching solution during pattern formation of leadframe and to thereby solve the problem of using the plating layer as an etching mask.Type: GrantFiled: December 23, 2009Date of Patent: February 17, 2015Assignee: LG Innotek Co., Ltd.Inventors: Hyun A. Chun, Jae Bong Choi, Sung Won Lee, Sung Wuk Ryu, Hyuk Soo Lee, Sai Ran Eom
-
Patent number: 8937378Abstract: A lead frame and a semiconductor package including the lead frame are provided. The lead frame includes: a base material; a first metal layer which is formed on at least one side of the base material, of which a surface is roughly formed, and which includes copper or nickel; a second metal layer which is formed on a surface of the first metal layer, of which a surface is roughly formed, and which includes palladium or a palladium alloy; a third metal layer which is formed on a surface of the second metal layer, of which a surface is roughly formed, and which includes gold or a gold alloy; and a fourth metal layer which is formed on a surface of the third metal layer, of which a surface is roughly formed, and which includes metal that includes silver.Type: GrantFiled: January 11, 2012Date of Patent: January 20, 2015Assignee: MDS Co., Ltd.Inventors: Sung-kwan Paek, Se-chuel Park
-
Patent number: 8816500Abstract: A semiconductor device includes a semiconductor chip including a first main face and a second main face wherein the second main face is the backside of the semiconductor chip. Further, the semiconductor device includes an electrically conductive layer, in particular an electrically conductive layer, arranged on a first region of the second main face of the semiconductor chip. Further, the semiconductor device includes a polymer structure arranged on a second region of the second main face of the semiconductor chip, wherein the second region is a peripheral region of the second main face of the semiconductor chip and the first region is adjacent to the second region.Type: GrantFiled: December 14, 2012Date of Patent: August 26, 2014Assignee: Infineon Technologies AGInventors: Manfred Schneegans, Ivan Nikitin
-
Patent number: 8669652Abstract: To provide an inexpensive lead component which can be easily connected to a semiconductor chip and which has satisfactory connectability. There is provided a lead component including a base material having a connection part for connecting to a semiconductor chip, comprising: a solder part having a Zn layer made of a Zn-bonding material rolled and clad-bonded on the base material, and an Al layer made of an Al-bonding material rolled and clad-bonded on the Zn layer, in a prescribed region including the connection part on the base material; and the solder part further comprising a metal thin film composed of one kind or two kinds or more of Au, Ag, Cu, Ni, Pd, and Pt covering a surface of the Al layer.Type: GrantFiled: March 15, 2012Date of Patent: March 11, 2014Assignee: Hitachi Cable, Ltd.Inventors: Shohei Hata, Yuichi Oda, Kazuma Kuroki, Hiromitsu Kuroda
-
Patent number: 8659131Abstract: The present invention relates to structure and manufacture method for multi-row lead frame and semiconductor package, the method characterized by forming a pad portion on a metal material (first step); performing a surface plating process or organic material coating following the first pattern formation (second step); forming a second pattern on the metal material (third step); and packaging a semiconductor chip following the second pattern formation (fourth step), whereby an under-cut phenomenon is minimized by applying a gradual etching.Type: GrantFiled: September 25, 2009Date of Patent: February 25, 2014Assignee: LG Innotek Co., Ltd.Inventors: Ji Yun Kim, Hyun Sub Shin, Sung Won Lee, Hyung Eui Lee, Yeong Uk Seo, Sung Wuk Ryu, Hyuk Soo Lee
-
Patent number: 8658471Abstract: The present invention relates to a multi-row leadframe for semiconductor packaging, characterized by: forming a plating pattern on a leadframe material (first step); forming a protective pattern on the plating pattern (second step); and forming a nano pattern by using the protective pattern as a mask (third step), whereby a protective pattern is formed on an upper surface of a plating pattern to increase reliability of a product by preventing damage to a plating layer caused by etching solution during pattern formation of leadframe and to thereby solve the problem of using the plating layer as an etching mask.Type: GrantFiled: December 23, 2009Date of Patent: February 25, 2014Assignee: LG Innotek Co., Ltd.Inventors: Hyun A. Chun, Jae Bong Choi, Sung Won Lee, Sung Wuk Ryu, Hyuk Soo Lee, Sai Ran Eom
-
Publication number: 20130285219Abstract: An integrated circuit power grid is provided with improved routing resources and bypass capacitance. A power grid for an integrated circuit comprises a plurality of thick metal layers having a plurality of metal traces, wherein at least one of the thick metal layers has a lower pitch than a substantial maximum pitch allowed under the design rules for a given integrated circuit fabrication technology. A power grid for an integrated circuit can also comprise a plurality of thin metal layers having a plurality of metal traces, wherein a plurality of the metal traces on different thin metal layers are connected by at least one via, wherein the at least one via is substantially surrounded by a metal trace on at least one thin metal level connected to a different power supply voltage than a power supply of one or more additional thin metal levels. The via can be positioned, for example, at an intersection of a given standard cell row and a given vertical strap.Type: ApplicationFiled: April 30, 2012Publication date: October 31, 2013Applicant: LSI CORPORATIONInventors: Scott A. Segan, Scott T. Van Horn, Gary E. Hall, Matthew J. Gehman, Richard Muscavage
-
Patent number: 8536695Abstract: The various embodiments of the present invention provide a novel chip-last embedded structure, wherein an IC is embedded within a one to two metal layer substrate. The various embodiments of the present invention are comparable to other two-dimensional and three-dimensional WLFO packages of the prior art as the embodiments have similar package thicknesses and X-Y form factors, short interconnect lengths, fine-pitch interconnects to chip I/Os, a reduced layer count for re-distribution of chip I/O pads to ball grid arrays (BGA) or land grid arrays (LGA), and improved thermal management options.Type: GrantFiled: March 8, 2012Date of Patent: September 17, 2013Assignee: Georgia Tech Research CorporationInventors: Fuhan Liu, Nitesh Kumbhat, Venkatesh Sundaram, Rao R. Tummala
-
Patent number: 8466546Abstract: A semiconductor package including a conductive clip preferably in the shape of a can, a semiconductor die, and a conductive stack interposed between the die and the interior of the can which includes a conductive platform and a conductive adhesive body.Type: GrantFiled: April 21, 2006Date of Patent: June 18, 2013Assignee: International Rectifier CorporationInventors: Andy Farlow, Mark Pavier, Andrew N. Sawle, George Pearson, Martin Standing
-
Patent number: 8445382Abstract: A dual damascene process for forming conductive interconnects on an integrated circuit die. The process includes providing a layer (16) of porous, ultra low-k (ULK) dielectric material in which a via opening (30) is subsequently formed. A thermally degradable polymeric (“porogen”) material (42) is applied to the side wall sidewalls of the opening (30) such that the porogen material penetrates deeply into the porous ULK dielectric material (thereby sealing the pores and increasing the density thereof). Once a conductive material (36) has been provided with the opening (30) and polished back by means of chemical mechanical polishing (CMP), the complete structure is subjected to a curing step to cause the porogen material (44) with the ULK dielectric layer (16) to decompose and evaporate, thereby restoring the porosity (and low-k value) of the dielectric layer (16). Attached are a marked-up copy of the originally filed specification and a clean substitute specification in accordance with 37 C.F.R. §§1.Type: GrantFiled: March 20, 2006Date of Patent: May 21, 2013Assignee: NXP B.V.Inventor: Willem Frederik Adrianus Besling
-
Publication number: 20130043577Abstract: In a semiconductor device, a lead frame made of a copper alloy prevents exfoliation occurring near the surface of the lead frame. A copper oxide layer is formed on the base material made of a copper alloy by immersing the base material into a solution of a strong oxidizer. The copper oxide layer serves as an outermost layer and consists of a copper oxide other than a copper oxide in the form of needle crystals.Type: ApplicationFiled: October 25, 2012Publication date: February 21, 2013Applicant: FUJITSU SEMICONDUCTOR LIMITEDInventor: FUJITSU SEMICONDUCTOR LIMITED
-
Patent number: 8319330Abstract: A semiconductor device having an improved whisker resistance in an exterior plating film is disclosed. The semiconductor device includes a tab with a semiconductor chip fixed thereto, plural inner leads, plural outer leads formed integrally with the inner leads, a plurality of wires for coupling electrode pads of the semiconductor chip and the inner leads with each other, and a sealing body for sealing the semiconductor chip. The outer leads project from the sealing body and an exterior plating film, which is a lead-free plating film, is formed on a surface of each of the outer leads.Type: GrantFiled: July 13, 2011Date of Patent: November 27, 2012Assignee: Renesas Electronics CorporationInventors: Tomohiro Murakami, Takahiko Kato, Masato Nakamura, Takeshi Terasaki
-
Publication number: 20120261805Abstract: The various embodiments of the present invention provide a low cost, low electrical loss, and low stress panel-based silicon interposer with TPVs. The interposer of the present invention has a thickness of about 100 microns to 200 microns and such thickness is achieved without utilizing a carrier and further wherein no grinding, bonding, or debonding methods are utilized, therefore distinguishing the interposer of the present invention from prior art embodiments.Type: ApplicationFiled: April 16, 2012Publication date: October 18, 2012Applicant: Georgia Tech Research CorporationInventors: VENKATESH V. SUNDARAM, Fuhan Liu, Rao R. Tummala, Qiao Chen
-
Patent number: 8084861Abstract: Connection structure (5) for attaching a semiconductor chip (2) to a metal substrate (4) is provided which has a plurality of electrically conducting layers (11, 12, 13, 14) arranged in a stack. The stack has a contact layer (11) for providing an ohmic contact to a semiconductor chip (2), at least one mechanical decoupling layer (12) for mechanically decoupling the semiconductor chip (2) and the metal substrate (4), at least one diffusion barrier layer (13) and a diffusion solder layer (14) for providing a diffusion soldered mechanical bond and an electrical connection to a metal substrate (4). The mechanical decoupling layer (12) is positioned in the stack between the diffusion barrier layer (13) and the contact layer (11).Type: GrantFiled: July 26, 2006Date of Patent: December 27, 2011Assignee: Infineon Technologies AGInventor: Ralf Otremba
-
Patent number: 8062961Abstract: Provided is a method for manufacturing a semiconductor device which includes: forming a removal layer over a base (support base); forming an interconnect layer over the removal layer; mounting semiconductor chip(s) over the interconnect layer; and separating the base from the interconnect layer while inducing the separation so as to originate from the removal layer, by irradiating a laser having a wavelength transparent with respect to the support base from the back side thereof, selectively to an unmounted region having no semiconductor chip(s) mounted thereon.Type: GrantFiled: March 30, 2009Date of Patent: November 22, 2011Assignee: Renesas Electronics CorporationInventor: Norikazu Motohashi
-
Patent number: 8017434Abstract: Various methods and apparatus for holding a semiconductor chip package are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first plate adapted to hold a semiconductor chip package. The semiconductor chip package includes a carrier substrate and at least one semiconductor chip coupled to the carrier substrate. A second plate is formed with a first opening defining an interior peripheral surface adapted to compress an outer edge of the carrier substrate between the first plate and the second plate without engaging the at least one semiconductor chip.Type: GrantFiled: November 24, 2008Date of Patent: September 13, 2011Assignee: Advanced Micro Devices, Inc.Inventors: Kevin W. Lim, Seah S. Too, Azlina N. Nayan, Kee Hean Keok, Soon Tatt Ow Yong
-
Patent number: 7952210Abstract: There is provided a semiconductor package comprising: a multilayer thin film structure including a plurality of dielectric layers and at least one or more redistribution layers; a semiconductor chip positioned at one side of the multilayer thin film structure and electrically connected to the redistribution layer; and a solder bump formed at the other side of the multilayer thin film structure. The multilayer thin film structure functions as the substrate for the semiconductor package and realizes the light, thin, short and small BGA package without any additional substrate. A plurality of the packages can be simultaneously formed at wafer level or carrier level, to simplify the process and to be favorable for mass production.Type: GrantFiled: January 31, 2008Date of Patent: May 31, 2011Assignee: NEPES CorporationInventors: Gi-Jo Jung, In Soo Kang, Jong Heon Kim, Seung Dae Baek
-
Patent number: 7936059Abstract: Broadly speaking, the present invention fills these needs by providing a lead frame package including a substrate stack having opposed sides, one of which includes a plurality of signal traces, with the remaining side including a ground plane. An integrated circuit is mounted to the substrate stack. The integrated circuit includes a plurality of bond pads. A plurality of leads is in electrical communication with a subset of the plurality of signal traces. A plurality of electrically conductive elements placing a sub-group of the plurality of bond pads in electrical communication with a sub-part of the plurality of electrically leads by being bonded signal traces of the subset, spaced-apart from the plurality of leads.Type: GrantFiled: February 20, 2007Date of Patent: May 3, 2011Assignee: Altera CorporationInventor: Yuanlin Xie
-
Patent number: 7888185Abstract: Semiconductor device assemblies and systems that include at least one semiconductor device assembly include two or more semiconductor devices stacked one over another. Conductive pathways that extend around at least one side of at least one of the semiconductor devices provide electrical communication between conductive elements of the semiconductor devices, and optionally, a substrate. The conductive pathways may include self-supporting conductive leads or conductive traces carried by a substrate. Methods for forming semiconductor device assemblies having more than one semiconductor device include bending or wrapping at least one conductive pathway around a side of at least one semiconductor device and providing electrical communication between semiconductor devices of the assembly through the conductive pathways.Type: GrantFiled: August 17, 2006Date of Patent: February 15, 2011Assignee: Micron Technology, Inc.Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
-
Patent number: 7816187Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.Type: GrantFiled: September 4, 2008Date of Patent: October 19, 2010Assignee: Siliconware Precision Industries Co., Ltd.Inventors: Chien-Ping Huang, Yu-Po Wang, Chih-Ming Huang
-
Patent number: 7816770Abstract: To hermetically seal a cavity in a microelectronic component, a cap located in a sealing device is positioned above the orifice opening into the cavity. The cap plastically deforms to seal the cavity. The sealing device includes a cavity permitting the cavity of the microelectronic component to be filled. The sealing device slides along the component so as to be positioned opposite either the filling cavity, or the cap.Type: GrantFiled: December 13, 2005Date of Patent: October 19, 2010Assignees: Commissariat a l'Energie Atomique, Centre National d'Etudes SpatialesInventor: Aymeric Lai
-
Patent number: 7811854Abstract: A system is described that can assemble substrates over one another to form a stacked substrate. The various layers of the stacked substrate can be separated from each other by using Coulomb forces. In addition, a beam substrate can be used to increase the separation. In addition, a first substrate can be flipped around and connected to the edge of a second substrate. The instructions for assembly and a FSM (Finite State Machine) can be included in the stacked substrate to pave the way for a self-constructing 3-D automaton. The beam substrate can be used to carry heat, fluids, electrical power or signals between the various layers of the stacked cells besides providing a mechanical support. A stacked substrate can be assembled into 3-D structures. These structures can have applications in antennas and RF circuits, for example.Type: GrantFiled: December 19, 2009Date of Patent: October 12, 2010Assignee: Metamems Corp.Inventor: Thaddeus John Gabara
-
Patent number: 7728427Abstract: A system is described that can assemble substrates over one another to form a stacked substrate. The various layers of the stacked substrate can be separated from each other by using Coulomb forces. In addition, a beam substrate can be used to increase the separation. The instructions for assembly and a FSM (Finite State Machine) can be included in the stacked substrate to pave the way for a self-constructing 3-D automaton. The beam substrate can be used to carry heat, fluids, electrical power or signals between the various layers of the stacked cells besides providing a mechanical support. A stacked substrate can be assembled into a cylindrical coil, a transformer or a coupled transformer depending on the construction of the beam structure. The magnetic coupling of the transformer can be altered by changing the distance between the separated substrates.Type: GrantFiled: December 7, 2007Date of Patent: June 1, 2010Assignee: LCtank LLCInventor: Thaddeus John Gabara
-
Patent number: 7656033Abstract: A semiconductor device using lead technology includes a semiconductor chip with external side electrodes of semiconductor components disposed on its top side. On its rear side, the semiconductor chip is connected to a rear side internal lead adapted to the rear side of semiconductor chip. On its top side, the semiconductor chip is connected a plurality of top side internal leads. The top side internal leads are electrically connected to external leads of the semiconductor device.Type: GrantFiled: February 26, 2007Date of Patent: February 2, 2010Assignee: Infineon Technologies AGInventors: Alexander Koenigsberger, Klaus Schiess
-
Patent number: 7626255Abstract: Provided is a device, an assembly comprising said device, a sub-assembly and an element suitable for use in the assembly. The device comprises a body of an electrically insulating material having a first side and an opposite second side, the body being provided with conductors according to a desired pattern, said conductors being anchored in the body. The body is provided with a through-hole extending from the first side to the second side of the body and having a surfacial area which is smaller on the first side than on the second side. Such a device can very suitably be used in an assembly comprising an element which is a sensor, preferably a chemical sensor, and particularly a biosensor.Type: GrantFiled: October 14, 2004Date of Patent: December 1, 2009Assignee: Koninklijke Philips Electronics N.V.Inventors: Johannus Wilhelmus Weekamp, Menno Willem Jose Prins
-
Patent number: 7612456Abstract: An inventive electronic device includes a substrate, a bump of a first metal material provided on a surface of the substrate, a bonding film of a second metal material provided on a top surface of the bump for bonding the electronic device to an electrical connection portion of a second device, the second metal material having a lower melting point in an elemental state than an alloy of the first metal material and the second metal material, and a diffusion prevention film of a third metal material provided between the top surface of the bump and the bonding film as covering at least part of the top surface of the bump, the third metal material having a lower diffusion coefficient than the second metal material with respect to the first metal material.Type: GrantFiled: June 16, 2005Date of Patent: November 3, 2009Assignee: Rohm Co., Ltd.Inventors: Sadamasa Fujii, Taro Nishioka
-
Patent number: 7579590Abstract: A method for measuring the thickness of a layer is provided, comprising (a) providing a structure (101) comprising a first layer disposed on a second layer; (b) impinging (103) the structure with a first ion beam comprising a first isotope, thereby sputtering off a portion of the first layer which contains a second isotope and exposing a portion of the second layer; and (c) determining (105) the thickness of the first layer by measuring the amount of the second isotope which is sputtered off.Type: GrantFiled: August 1, 2007Date of Patent: August 25, 2009Assignee: Freescale Semiconductor, Inc.Inventors: Zhi-Xiong (Jack) Jiang, David D. Sieloff
-
Patent number: 7557453Abstract: A semiconductor device comprises a first electrode-lead having a first Au film, a first Ni film, a Cu film, a second Au film and a second Ni film stacked in order, a second electrode-lead having a first Au film, a first Ni film, a Cu film, a second Au film and a second Ni film stacked in order and a semiconductor chip having a first electrode formed on a first surface of the semiconductor chip and a second electrode formed on a second surface of the semiconductor chip, the first electrode being formed on an opposite side of the second electrode. The semiconductor chip mounted on the first electrode-lead, the second electrode facing the first surface of the first electrode-lead. A first connection conductor is connected the first electrode of the semiconductor chip to the first surface of the second electrode-lead. The first electrode-lead, the second electrode-lead and the semiconductor chip are housed in a package.Type: GrantFiled: October 30, 2006Date of Patent: July 7, 2009Assignee: Kabushiki Kaisha ToshibaInventor: Junichi Nakao
-
Publication number: 20090127678Abstract: A stacked assembly of semiconductor packages primarily comprises a plurality of stacked semiconductor packages. Each semiconductor package includes an encapsulant, at least a chip, and a plurality of external leads of a leadframe, where the external leads are exposed and extended from a plurality of sides of the encapsulant. Each external lead of an upper semiconductor package has a U-shaped cut end when package singulation. The U-shaped cut ends are configured for locking to the soldered portion of a corresponding external lead of a lower semiconductor package where the U-shaped cut ends and the soldered portions by soldering materials. Therefore, the stacked assembly has a larger soldering area and stronger lead reliability to enhance the soldering points to against the effects of impacts, thermal shocks, and thermal cycles.Type: ApplicationFiled: November 21, 2007Publication date: May 21, 2009Inventor: Wen-Jeng Fan
-
Patent number: 7462926Abstract: A method of producing a leadframe is provided, the method including the steps of providing a substrate, plating the substrate with a layer of tin, plating a layer of nickel over the layer of tin, and thereafter plating one or more protective layers over the layer of nickel. The leadframe may thereafter be heated to produce one or more intermetallic layers comprising tin, which impedes the out-diffusion of copper from a base material of the leadframe to the surface thereof.Type: GrantFiled: December 1, 2005Date of Patent: December 9, 2008Assignee: ASM Assembly Automation Ltd.Inventors: Ran Fu, Deming Liu, Yiu Fai Kwan
-
Patent number: 7459788Abstract: An ohmic electrode structure of a nitride semiconductor device having a nitride semiconductor. The ohmic electrode structure is provided with a first metal film formed on the nitride semiconductor and a second metal film formed on the first metal film. The first metal film is composed of at least one material selected from a group consisting of V, Mo, Ti, Nb, W, Fe, Hf, Re, Ta and Zr. The second metal film is composed of at least one material different from that of the first metal film (102), selected from a group consisting of V, Mo, Ti, Nb, W, Fe, Hf, Re, Ta, Zr, Pt and Au.Type: GrantFiled: February 28, 2005Date of Patent: December 2, 2008Assignee: NEC CorporationInventors: Tatsuo Nakayama, Yuji Ando, Hironobu Miyamoto, Masaaki Kuzuhara, Yasuhiro Okamoto, Takashi Inoue, Koji Hataya
-
Patent number: 7449367Abstract: An adhesive film for semiconductor use of the present invention is used in a method in which, after the adhesive film for semiconductor use is laminated to one side of a metal sheet, the metal sheet is processed to give a wiring circuit, a semiconductor die is mounted and molded, and the adhesive film is then peeled off. The adhesive film includes a resin layer A formed on one side or both sides of a support film, the 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet laminated with the adhesive film for semiconductor use to give the wiring circuit is 20 N/m or greater at 25° C., and the 90 degree peel strengths, after molding with a molding compound the wiring circuit laminated with the adhesive film for semiconductor use, between the resin layer A and the wiring circuit and between the resin layer A and the molding compound are both 1000 N/m or less at at least one point in the temperature range of 0° C. to 250° C.Type: GrantFiled: February 19, 2004Date of Patent: November 11, 2008Assignee: Hitachi Chemical Company, Ltd.Inventors: Hidekazu Matsuura, Toshiyasu Kawai
-
Patent number: 7329944Abstract: A leadframe for a semiconductor device of the present invention is a leadframe for a semiconductor device having a stage section where a semiconductor chip is to be mounted, an inner lead section connected to the stage section, and an outer lead section connected to the inner lead section. The leadframe has (1) a nickel (Ni) layer 1, (2) a palladium (Pd) or palladium alloy layer 2, (3) a tin (Sn) or tin alloy layer or a zinc (Zn) or zinc alloy layer 3, 3a, or 3b, and (4) a gold (Au) layer 4, 4a, or 4b, all of which are formed on a base material B forming the leadframe in sequence from the surface of the leadframe.Type: GrantFiled: March 22, 2006Date of Patent: February 12, 2008Assignee: Shinko Electric Industries Co., Ltd.Inventors: Kazumitsu Seki, Harunobu Sato, Muneaki Kure
-
Patent number: 7268021Abstract: A lead frame having a structure that can discharge hydrogen adsorbed during deposition and can reduce a galvanic potential difference between plating layers and a method of manufacturing the same are provided. The method includes forming a Ni plating layer formed of Ni or a Ni alloy on a base metal layer formed of a metal, forming a Pd plating layer formed of Pd or an Pd alloy on the Ni plating layer, heat-treating the Ni plating layer and the Pd plating layer, and forming a protective plating layer on the heat-treated Pd plating layer.Type: GrantFiled: November 4, 2004Date of Patent: September 11, 2007Assignee: Samsung Techwin Co., Ltd.Inventors: Sung-kwan Paek, Se-chuel Park, Sang-hun Lee
-
Patent number: 7256481Abstract: A semiconductor device has a leadframe with a structure made of a base metal (105), wherein the structure consists of a chip mount pad (302) and a plurality of lead segments (303). Covering the base metal are, consecutively, a continuous nickel layer (201) on the base metal, a layer of palladium on the nickel, wherein the palladium layer (203) on the chip side of the structure is thicker than the palladium layer (202) opposite the chip, and a gold layer (204) on the palladium layer (202) opposite the chip. A semiconductor chip (310) is attached to the chip mount pad and conductive connections (312) span from the chip to the lead segments. Polymeric encapsulation compound (320) covers the chip, the connections, and portions of the lead segments, but leaves other segment portions available for solder reflow attachment to external parts.Type: GrantFiled: November 30, 2005Date of Patent: August 14, 2007Assignee: Texas Instruments IncorporatedInventor: John P. Tellkamp
-
Publication number: 20070176267Abstract: A post-mold plated semiconductor device has an aluminum leadframe (105) with a structure including a chip mount pad and a plurality of lead segments without cantilevered lead portions. A semiconductor chip (210) is attached to the chip mount pad, and conductive connections (212) span from the chip to the aluminum of the lead segments. Polymeric encapsulation material (220), such as a molding compound, covers the chip, the connections, and portions of the aluminum lead segments without leaving cantilevered segment portions. Preferably by electroless plating, a zinc layer (301) and a nickel layer (302) are on those portions of the lead segments, which are not covered by the encapsulation material including the aluminum segment surfaces (at 203b) formed by the device singulation step, and a layer (303) of noble metal, preferably palladium, is on the nickel layer.Type: ApplicationFiled: February 2, 2006Publication date: August 2, 2007Inventor: Donald Abbott
-
Patent number: 7247947Abstract: A semiconductor device includes a first semiconductor construct provided on a base plate and having a semiconductor substrate and external connection electrodes. An insulating layer is provided on the base plate around the first semiconductor construct. An upper layer insulating film is provided on the first semiconductor construct and insulating layer. Upper layer wiring lines are provided on the upper layer insulating film so that the upper layer wiring line is electrically connected to the external connection electrode. A second semiconductor construct is joined to and installed on connection pad portions. All jointing portions of the second semiconductor construct for the connection pad portions of the upper layer wiring lines are disposed in a region corresponding to the first semiconductor construct.Type: GrantFiled: September 20, 2006Date of Patent: July 24, 2007Assignee: Casio Computer Co., Ltd.Inventors: Takeshi Wakabayashi, Ichiro Mihara
-
Patent number: 7239019Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.Type: GrantFiled: June 28, 2005Date of Patent: July 3, 2007Assignee: Intel CorporationInventors: Jihperng Leu, Grant M. Kloster, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
-
Publication number: 20070148971Abstract: A method includes forming a coating on a land contact of a package substrate, the coating including a first material disposed between a first layer and a second layer, each of the first layer and the second layer being made of a second material including gold. An apparatus includes a package substrate including a plurality of land contacts wherein each of the plurality of land contacts includes a coating including a first material disposed between a first layer and a second layer, each of the first layer and the second layer being made of a second material including gold.Type: ApplicationFiled: December 28, 2005Publication date: June 28, 2007Inventors: Bijay Saha, Munehiro Toyama, Ehab Nasir, Omar Bchir, Charavana Gurumurthy
-
Patent number: 7187083Abstract: A solder preform having multiple layers including a solder layer filled with additives interposed between two unfilled layers for improved wettability. A solder preform having a sphere which contains a solder material filled with additives, and an unfilled surface layer for improved wettability. A thermal interface material having a bonding component and an additive component which is a CTE modifying component and/or a thermal conductivity enhancement component. Active solders containing intrinsic oxygen getters.Type: GrantFiled: November 25, 2003Date of Patent: March 6, 2007Assignee: Fry's Metals, Inc.Inventors: Brian G. Lewis, Bawa Singh, John P. Laughlin, David V. Kyaw, Anthony E. Ingham, Attiganal N. Sreeram, Leszek Hozer, Michael J. Liberatore, Gerard R. Minogue
-
Publication number: 20060175691Abstract: A semiconductor device (7) has gold coatings (1 to 5) which are applied to metallic or ceramic components (6) of the semiconductor device (7). The gold coatings (1 to 4) have a multifunctional multilayer metal coating (8) with a minimal gold layer (9). The gold layer has a thickness dG where dG?0.5 ?m. Moreover, at least one metallic interlayer (10) is arranged between the gold layer (9) and the metallic or ceramic components (6).Type: ApplicationFiled: February 9, 2006Publication date: August 10, 2006Inventors: Jochen Dangelmaier, Donald Fowlkes, Volker Guengerich, Henrik Hoyer