Multilayer (epo) Patents (Class 257/E23.041)
  • Patent number: 11664447
    Abstract: A semiconductor device and a method of making the same. The device includes a substrate mounted on a carrier, the substrate comprising a High Electron Mobility Transistor (HEMT) having a source, a gate and a drain. The carrier comprises an electrically conductive shielding portion for providing shielding against electromagnetic interference associated with switching of the device during operation. The electrically conductive shielding portion is electrically isolated from the source and from the backside of the substrate.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: May 30, 2023
    Assignee: Nexperia B.V.
    Inventors: Jeroen Croon, Coenraad Cornelis Tak
  • Patent number: 8956919
    Abstract: The present invention relates to a multi-row leadframe for semiconductor packaging, characterized by: forming a plating pattern on a leadframe material (first step); forming a protective pattern on the plating pattern (second step); and forming a nano pattern by using the protective pattern as a mask (third step), whereby a protective pattern is formed on an upper surface of a plating pattern to increase reliability of a product by preventing damage to a plating layer caused by etching solution during pattern formation of leadframe and to thereby solve the problem of using the plating layer as an etching mask.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: February 17, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Hyun A. Chun, Jae Bong Choi, Sung Won Lee, Sung Wuk Ryu, Hyuk Soo Lee, Sai Ran Eom
  • Patent number: 8937378
    Abstract: A lead frame and a semiconductor package including the lead frame are provided. The lead frame includes: a base material; a first metal layer which is formed on at least one side of the base material, of which a surface is roughly formed, and which includes copper or nickel; a second metal layer which is formed on a surface of the first metal layer, of which a surface is roughly formed, and which includes palladium or a palladium alloy; a third metal layer which is formed on a surface of the second metal layer, of which a surface is roughly formed, and which includes gold or a gold alloy; and a fourth metal layer which is formed on a surface of the third metal layer, of which a surface is roughly formed, and which includes metal that includes silver.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: January 20, 2015
    Assignee: MDS Co., Ltd.
    Inventors: Sung-kwan Paek, Se-chuel Park
  • Patent number: 8816500
    Abstract: A semiconductor device includes a semiconductor chip including a first main face and a second main face wherein the second main face is the backside of the semiconductor chip. Further, the semiconductor device includes an electrically conductive layer, in particular an electrically conductive layer, arranged on a first region of the second main face of the semiconductor chip. Further, the semiconductor device includes a polymer structure arranged on a second region of the second main face of the semiconductor chip, wherein the second region is a peripheral region of the second main face of the semiconductor chip and the first region is adjacent to the second region.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 26, 2014
    Assignee: Infineon Technologies AG
    Inventors: Manfred Schneegans, Ivan Nikitin
  • Patent number: 8669652
    Abstract: To provide an inexpensive lead component which can be easily connected to a semiconductor chip and which has satisfactory connectability. There is provided a lead component including a base material having a connection part for connecting to a semiconductor chip, comprising: a solder part having a Zn layer made of a Zn-bonding material rolled and clad-bonded on the base material, and an Al layer made of an Al-bonding material rolled and clad-bonded on the Zn layer, in a prescribed region including the connection part on the base material; and the solder part further comprising a metal thin film composed of one kind or two kinds or more of Au, Ag, Cu, Ni, Pd, and Pt covering a surface of the Al layer.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: March 11, 2014
    Assignee: Hitachi Cable, Ltd.
    Inventors: Shohei Hata, Yuichi Oda, Kazuma Kuroki, Hiromitsu Kuroda
  • Patent number: 8658471
    Abstract: The present invention relates to a multi-row leadframe for semiconductor packaging, characterized by: forming a plating pattern on a leadframe material (first step); forming a protective pattern on the plating pattern (second step); and forming a nano pattern by using the protective pattern as a mask (third step), whereby a protective pattern is formed on an upper surface of a plating pattern to increase reliability of a product by preventing damage to a plating layer caused by etching solution during pattern formation of leadframe and to thereby solve the problem of using the plating layer as an etching mask.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: February 25, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Hyun A. Chun, Jae Bong Choi, Sung Won Lee, Sung Wuk Ryu, Hyuk Soo Lee, Sai Ran Eom
  • Patent number: 8659131
    Abstract: The present invention relates to structure and manufacture method for multi-row lead frame and semiconductor package, the method characterized by forming a pad portion on a metal material (first step); performing a surface plating process or organic material coating following the first pattern formation (second step); forming a second pattern on the metal material (third step); and packaging a semiconductor chip following the second pattern formation (fourth step), whereby an under-cut phenomenon is minimized by applying a gradual etching.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 25, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Ji Yun Kim, Hyun Sub Shin, Sung Won Lee, Hyung Eui Lee, Yeong Uk Seo, Sung Wuk Ryu, Hyuk Soo Lee
  • Publication number: 20130285219
    Abstract: An integrated circuit power grid is provided with improved routing resources and bypass capacitance. A power grid for an integrated circuit comprises a plurality of thick metal layers having a plurality of metal traces, wherein at least one of the thick metal layers has a lower pitch than a substantial maximum pitch allowed under the design rules for a given integrated circuit fabrication technology. A power grid for an integrated circuit can also comprise a plurality of thin metal layers having a plurality of metal traces, wherein a plurality of the metal traces on different thin metal layers are connected by at least one via, wherein the at least one via is substantially surrounded by a metal trace on at least one thin metal level connected to a different power supply voltage than a power supply of one or more additional thin metal levels. The via can be positioned, for example, at an intersection of a given standard cell row and a given vertical strap.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Applicant: LSI CORPORATION
    Inventors: Scott A. Segan, Scott T. Van Horn, Gary E. Hall, Matthew J. Gehman, Richard Muscavage
  • Patent number: 8536695
    Abstract: The various embodiments of the present invention provide a novel chip-last embedded structure, wherein an IC is embedded within a one to two metal layer substrate. The various embodiments of the present invention are comparable to other two-dimensional and three-dimensional WLFO packages of the prior art as the embodiments have similar package thicknesses and X-Y form factors, short interconnect lengths, fine-pitch interconnects to chip I/Os, a reduced layer count for re-distribution of chip I/O pads to ball grid arrays (BGA) or land grid arrays (LGA), and improved thermal management options.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 17, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Fuhan Liu, Nitesh Kumbhat, Venkatesh Sundaram, Rao R. Tummala
  • Patent number: 8466546
    Abstract: A semiconductor package including a conductive clip preferably in the shape of a can, a semiconductor die, and a conductive stack interposed between the die and the interior of the can which includes a conductive platform and a conductive adhesive body.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: June 18, 2013
    Assignee: International Rectifier Corporation
    Inventors: Andy Farlow, Mark Pavier, Andrew N. Sawle, George Pearson, Martin Standing
  • Patent number: 8445382
    Abstract: A dual damascene process for forming conductive interconnects on an integrated circuit die. The process includes providing a layer (16) of porous, ultra low-k (ULK) dielectric material in which a via opening (30) is subsequently formed. A thermally degradable polymeric (“porogen”) material (42) is applied to the side wall sidewalls of the opening (30) such that the porogen material penetrates deeply into the porous ULK dielectric material (thereby sealing the pores and increasing the density thereof). Once a conductive material (36) has been provided with the opening (30) and polished back by means of chemical mechanical polishing (CMP), the complete structure is subjected to a curing step to cause the porogen material (44) with the ULK dielectric layer (16) to decompose and evaporate, thereby restoring the porosity (and low-k value) of the dielectric layer (16). Attached are a marked-up copy of the originally filed specification and a clean substitute specification in accordance with 37 C.F.R. §§1.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: May 21, 2013
    Assignee: NXP B.V.
    Inventor: Willem Frederik Adrianus Besling
  • Publication number: 20130043577
    Abstract: In a semiconductor device, a lead frame made of a copper alloy prevents exfoliation occurring near the surface of the lead frame. A copper oxide layer is formed on the base material made of a copper alloy by immersing the base material into a solution of a strong oxidizer. The copper oxide layer serves as an outermost layer and consists of a copper oxide other than a copper oxide in the form of needle crystals.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 21, 2013
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: FUJITSU SEMICONDUCTOR LIMITED
  • Patent number: 8319330
    Abstract: A semiconductor device having an improved whisker resistance in an exterior plating film is disclosed. The semiconductor device includes a tab with a semiconductor chip fixed thereto, plural inner leads, plural outer leads formed integrally with the inner leads, a plurality of wires for coupling electrode pads of the semiconductor chip and the inner leads with each other, and a sealing body for sealing the semiconductor chip. The outer leads project from the sealing body and an exterior plating film, which is a lead-free plating film, is formed on a surface of each of the outer leads.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: November 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tomohiro Murakami, Takahiko Kato, Masato Nakamura, Takeshi Terasaki
  • Publication number: 20120261805
    Abstract: The various embodiments of the present invention provide a low cost, low electrical loss, and low stress panel-based silicon interposer with TPVs. The interposer of the present invention has a thickness of about 100 microns to 200 microns and such thickness is achieved without utilizing a carrier and further wherein no grinding, bonding, or debonding methods are utilized, therefore distinguishing the interposer of the present invention from prior art embodiments.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: VENKATESH V. SUNDARAM, Fuhan Liu, Rao R. Tummala, Qiao Chen
  • Patent number: 8084861
    Abstract: Connection structure (5) for attaching a semiconductor chip (2) to a metal substrate (4) is provided which has a plurality of electrically conducting layers (11, 12, 13, 14) arranged in a stack. The stack has a contact layer (11) for providing an ohmic contact to a semiconductor chip (2), at least one mechanical decoupling layer (12) for mechanically decoupling the semiconductor chip (2) and the metal substrate (4), at least one diffusion barrier layer (13) and a diffusion solder layer (14) for providing a diffusion soldered mechanical bond and an electrical connection to a metal substrate (4). The mechanical decoupling layer (12) is positioned in the stack between the diffusion barrier layer (13) and the contact layer (11).
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: December 27, 2011
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Patent number: 8062961
    Abstract: Provided is a method for manufacturing a semiconductor device which includes: forming a removal layer over a base (support base); forming an interconnect layer over the removal layer; mounting semiconductor chip(s) over the interconnect layer; and separating the base from the interconnect layer while inducing the separation so as to originate from the removal layer, by irradiating a laser having a wavelength transparent with respect to the support base from the back side thereof, selectively to an unmounted region having no semiconductor chip(s) mounted thereon.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 22, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Norikazu Motohashi
  • Patent number: 8017434
    Abstract: Various methods and apparatus for holding a semiconductor chip package are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first plate adapted to hold a semiconductor chip package. The semiconductor chip package includes a carrier substrate and at least one semiconductor chip coupled to the carrier substrate. A second plate is formed with a first opening defining an interior peripheral surface adapted to compress an outer edge of the carrier substrate between the first plate and the second plate without engaging the at least one semiconductor chip.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: September 13, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kevin W. Lim, Seah S. Too, Azlina N. Nayan, Kee Hean Keok, Soon Tatt Ow Yong
  • Patent number: 7952210
    Abstract: There is provided a semiconductor package comprising: a multilayer thin film structure including a plurality of dielectric layers and at least one or more redistribution layers; a semiconductor chip positioned at one side of the multilayer thin film structure and electrically connected to the redistribution layer; and a solder bump formed at the other side of the multilayer thin film structure. The multilayer thin film structure functions as the substrate for the semiconductor package and realizes the light, thin, short and small BGA package without any additional substrate. A plurality of the packages can be simultaneously formed at wafer level or carrier level, to simplify the process and to be favorable for mass production.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 31, 2011
    Assignee: NEPES Corporation
    Inventors: Gi-Jo Jung, In Soo Kang, Jong Heon Kim, Seung Dae Baek
  • Patent number: 7936059
    Abstract: Broadly speaking, the present invention fills these needs by providing a lead frame package including a substrate stack having opposed sides, one of which includes a plurality of signal traces, with the remaining side including a ground plane. An integrated circuit is mounted to the substrate stack. The integrated circuit includes a plurality of bond pads. A plurality of leads is in electrical communication with a subset of the plurality of signal traces. A plurality of electrically conductive elements placing a sub-group of the plurality of bond pads in electrical communication with a sub-part of the plurality of electrically leads by being bonded signal traces of the subset, spaced-apart from the plurality of leads.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: May 3, 2011
    Assignee: Altera Corporation
    Inventor: Yuanlin Xie
  • Patent number: 7888185
    Abstract: Semiconductor device assemblies and systems that include at least one semiconductor device assembly include two or more semiconductor devices stacked one over another. Conductive pathways that extend around at least one side of at least one of the semiconductor devices provide electrical communication between conductive elements of the semiconductor devices, and optionally, a substrate. The conductive pathways may include self-supporting conductive leads or conductive traces carried by a substrate. Methods for forming semiconductor device assemblies having more than one semiconductor device include bending or wrapping at least one conductive pathway around a side of at least one semiconductor device and providing electrical communication between semiconductor devices of the assembly through the conductive pathways.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: February 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 7816187
    Abstract: A semiconductor package and a fabrication method thereof are provided in which a dielectric material layer formed with a plurality of openings is used and a solder material is applied into each of the openings. A first copper layer and a second copper layer are in turn deposited over the dielectric material layer and solder materials, and the first and second copper layers are patterned to form a plurality of conductive traces each of which has a terminal coated with a metal layer. A chip is mounted on the conductive traces and electrically connected to the terminals by bonding wires, with the dielectric material layer and solder materials being exposed to the outside. This package structure can flexibly arrange the conductive traces and effectively shorten the bonding wires, thereby improve trace routability and quality of electrical connection for the semiconductor package.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: October 19, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Yu-Po Wang, Chih-Ming Huang
  • Patent number: 7816770
    Abstract: To hermetically seal a cavity in a microelectronic component, a cap located in a sealing device is positioned above the orifice opening into the cavity. The cap plastically deforms to seal the cavity. The sealing device includes a cavity permitting the cavity of the microelectronic component to be filled. The sealing device slides along the component so as to be positioned opposite either the filling cavity, or the cap.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: October 19, 2010
    Assignees: Commissariat a l'Energie Atomique, Centre National d'Etudes Spatiales
    Inventor: Aymeric Lai
  • Patent number: 7811854
    Abstract: A system is described that can assemble substrates over one another to form a stacked substrate. The various layers of the stacked substrate can be separated from each other by using Coulomb forces. In addition, a beam substrate can be used to increase the separation. In addition, a first substrate can be flipped around and connected to the edge of a second substrate. The instructions for assembly and a FSM (Finite State Machine) can be included in the stacked substrate to pave the way for a self-constructing 3-D automaton. The beam substrate can be used to carry heat, fluids, electrical power or signals between the various layers of the stacked cells besides providing a mechanical support. A stacked substrate can be assembled into 3-D structures. These structures can have applications in antennas and RF circuits, for example.
    Type: Grant
    Filed: December 19, 2009
    Date of Patent: October 12, 2010
    Assignee: Metamems Corp.
    Inventor: Thaddeus John Gabara
  • Patent number: 7728427
    Abstract: A system is described that can assemble substrates over one another to form a stacked substrate. The various layers of the stacked substrate can be separated from each other by using Coulomb forces. In addition, a beam substrate can be used to increase the separation. The instructions for assembly and a FSM (Finite State Machine) can be included in the stacked substrate to pave the way for a self-constructing 3-D automaton. The beam substrate can be used to carry heat, fluids, electrical power or signals between the various layers of the stacked cells besides providing a mechanical support. A stacked substrate can be assembled into a cylindrical coil, a transformer or a coupled transformer depending on the construction of the beam structure. The magnetic coupling of the transformer can be altered by changing the distance between the separated substrates.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: June 1, 2010
    Assignee: LCtank LLC
    Inventor: Thaddeus John Gabara
  • Patent number: 7656033
    Abstract: A semiconductor device using lead technology includes a semiconductor chip with external side electrodes of semiconductor components disposed on its top side. On its rear side, the semiconductor chip is connected to a rear side internal lead adapted to the rear side of semiconductor chip. On its top side, the semiconductor chip is connected a plurality of top side internal leads. The top side internal leads are electrically connected to external leads of the semiconductor device.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: February 2, 2010
    Assignee: Infineon Technologies AG
    Inventors: Alexander Koenigsberger, Klaus Schiess
  • Patent number: 7626255
    Abstract: Provided is a device, an assembly comprising said device, a sub-assembly and an element suitable for use in the assembly. The device comprises a body of an electrically insulating material having a first side and an opposite second side, the body being provided with conductors according to a desired pattern, said conductors being anchored in the body. The body is provided with a through-hole extending from the first side to the second side of the body and having a surfacial area which is smaller on the first side than on the second side. Such a device can very suitably be used in an assembly comprising an element which is a sensor, preferably a chemical sensor, and particularly a biosensor.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: December 1, 2009
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Johannus Wilhelmus Weekamp, Menno Willem Jose Prins
  • Patent number: 7612456
    Abstract: An inventive electronic device includes a substrate, a bump of a first metal material provided on a surface of the substrate, a bonding film of a second metal material provided on a top surface of the bump for bonding the electronic device to an electrical connection portion of a second device, the second metal material having a lower melting point in an elemental state than an alloy of the first metal material and the second metal material, and a diffusion prevention film of a third metal material provided between the top surface of the bump and the bonding film as covering at least part of the top surface of the bump, the third metal material having a lower diffusion coefficient than the second metal material with respect to the first metal material.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: November 3, 2009
    Assignee: Rohm Co., Ltd.
    Inventors: Sadamasa Fujii, Taro Nishioka
  • Patent number: 7579590
    Abstract: A method for measuring the thickness of a layer is provided, comprising (a) providing a structure (101) comprising a first layer disposed on a second layer; (b) impinging (103) the structure with a first ion beam comprising a first isotope, thereby sputtering off a portion of the first layer which contains a second isotope and exposing a portion of the second layer; and (c) determining (105) the thickness of the first layer by measuring the amount of the second isotope which is sputtered off.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: August 25, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Zhi-Xiong (Jack) Jiang, David D. Sieloff
  • Patent number: 7557453
    Abstract: A semiconductor device comprises a first electrode-lead having a first Au film, a first Ni film, a Cu film, a second Au film and a second Ni film stacked in order, a second electrode-lead having a first Au film, a first Ni film, a Cu film, a second Au film and a second Ni film stacked in order and a semiconductor chip having a first electrode formed on a first surface of the semiconductor chip and a second electrode formed on a second surface of the semiconductor chip, the first electrode being formed on an opposite side of the second electrode. The semiconductor chip mounted on the first electrode-lead, the second electrode facing the first surface of the first electrode-lead. A first connection conductor is connected the first electrode of the semiconductor chip to the first surface of the second electrode-lead. The first electrode-lead, the second electrode-lead and the semiconductor chip are housed in a package.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: July 7, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Junichi Nakao
  • Publication number: 20090127678
    Abstract: A stacked assembly of semiconductor packages primarily comprises a plurality of stacked semiconductor packages. Each semiconductor package includes an encapsulant, at least a chip, and a plurality of external leads of a leadframe, where the external leads are exposed and extended from a plurality of sides of the encapsulant. Each external lead of an upper semiconductor package has a U-shaped cut end when package singulation. The U-shaped cut ends are configured for locking to the soldered portion of a corresponding external lead of a lower semiconductor package where the U-shaped cut ends and the soldered portions by soldering materials. Therefore, the stacked assembly has a larger soldering area and stronger lead reliability to enhance the soldering points to against the effects of impacts, thermal shocks, and thermal cycles.
    Type: Application
    Filed: November 21, 2007
    Publication date: May 21, 2009
    Inventor: Wen-Jeng Fan
  • Patent number: 7462926
    Abstract: A method of producing a leadframe is provided, the method including the steps of providing a substrate, plating the substrate with a layer of tin, plating a layer of nickel over the layer of tin, and thereafter plating one or more protective layers over the layer of nickel. The leadframe may thereafter be heated to produce one or more intermetallic layers comprising tin, which impedes the out-diffusion of copper from a base material of the leadframe to the surface thereof.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: December 9, 2008
    Assignee: ASM Assembly Automation Ltd.
    Inventors: Ran Fu, Deming Liu, Yiu Fai Kwan
  • Patent number: 7459788
    Abstract: An ohmic electrode structure of a nitride semiconductor device having a nitride semiconductor. The ohmic electrode structure is provided with a first metal film formed on the nitride semiconductor and a second metal film formed on the first metal film. The first metal film is composed of at least one material selected from a group consisting of V, Mo, Ti, Nb, W, Fe, Hf, Re, Ta and Zr. The second metal film is composed of at least one material different from that of the first metal film (102), selected from a group consisting of V, Mo, Ti, Nb, W, Fe, Hf, Re, Ta, Zr, Pt and Au.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: December 2, 2008
    Assignee: NEC Corporation
    Inventors: Tatsuo Nakayama, Yuji Ando, Hironobu Miyamoto, Masaaki Kuzuhara, Yasuhiro Okamoto, Takashi Inoue, Koji Hataya
  • Patent number: 7449367
    Abstract: An adhesive film for semiconductor use of the present invention is used in a method in which, after the adhesive film for semiconductor use is laminated to one side of a metal sheet, the metal sheet is processed to give a wiring circuit, a semiconductor die is mounted and molded, and the adhesive film is then peeled off. The adhesive film includes a resin layer A formed on one side or both sides of a support film, the 90 degree peel strength between the resin layer A and the metal sheet prior to the processing of the metal sheet laminated with the adhesive film for semiconductor use to give the wiring circuit is 20 N/m or greater at 25° C., and the 90 degree peel strengths, after molding with a molding compound the wiring circuit laminated with the adhesive film for semiconductor use, between the resin layer A and the wiring circuit and between the resin layer A and the molding compound are both 1000 N/m or less at at least one point in the temperature range of 0° C. to 250° C.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: November 11, 2008
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hidekazu Matsuura, Toshiyasu Kawai
  • Patent number: 7329944
    Abstract: A leadframe for a semiconductor device of the present invention is a leadframe for a semiconductor device having a stage section where a semiconductor chip is to be mounted, an inner lead section connected to the stage section, and an outer lead section connected to the inner lead section. The leadframe has (1) a nickel (Ni) layer 1, (2) a palladium (Pd) or palladium alloy layer 2, (3) a tin (Sn) or tin alloy layer or a zinc (Zn) or zinc alloy layer 3, 3a, or 3b, and (4) a gold (Au) layer 4, 4a, or 4b, all of which are formed on a base material B forming the leadframe in sequence from the surface of the leadframe.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: February 12, 2008
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Kazumitsu Seki, Harunobu Sato, Muneaki Kure
  • Patent number: 7268021
    Abstract: A lead frame having a structure that can discharge hydrogen adsorbed during deposition and can reduce a galvanic potential difference between plating layers and a method of manufacturing the same are provided. The method includes forming a Ni plating layer formed of Ni or a Ni alloy on a base metal layer formed of a metal, forming a Pd plating layer formed of Pd or an Pd alloy on the Ni plating layer, heat-treating the Ni plating layer and the Pd plating layer, and forming a protective plating layer on the heat-treated Pd plating layer.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: September 11, 2007
    Assignee: Samsung Techwin Co., Ltd.
    Inventors: Sung-kwan Paek, Se-chuel Park, Sang-hun Lee
  • Patent number: 7256481
    Abstract: A semiconductor device has a leadframe with a structure made of a base metal (105), wherein the structure consists of a chip mount pad (302) and a plurality of lead segments (303). Covering the base metal are, consecutively, a continuous nickel layer (201) on the base metal, a layer of palladium on the nickel, wherein the palladium layer (203) on the chip side of the structure is thicker than the palladium layer (202) opposite the chip, and a gold layer (204) on the palladium layer (202) opposite the chip. A semiconductor chip (310) is attached to the chip mount pad and conductive connections (312) span from the chip to the lead segments. Polymeric encapsulation compound (320) covers the chip, the connections, and portions of the lead segments, but leaves other segment portions available for solder reflow attachment to external parts.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 14, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: John P. Tellkamp
  • Publication number: 20070176267
    Abstract: A post-mold plated semiconductor device has an aluminum leadframe (105) with a structure including a chip mount pad and a plurality of lead segments without cantilevered lead portions. A semiconductor chip (210) is attached to the chip mount pad, and conductive connections (212) span from the chip to the aluminum of the lead segments. Polymeric encapsulation material (220), such as a molding compound, covers the chip, the connections, and portions of the aluminum lead segments without leaving cantilevered segment portions. Preferably by electroless plating, a zinc layer (301) and a nickel layer (302) are on those portions of the lead segments, which are not covered by the encapsulation material including the aluminum segment surfaces (at 203b) formed by the device singulation step, and a layer (303) of noble metal, preferably palladium, is on the nickel layer.
    Type: Application
    Filed: February 2, 2006
    Publication date: August 2, 2007
    Inventor: Donald Abbott
  • Patent number: 7247947
    Abstract: A semiconductor device includes a first semiconductor construct provided on a base plate and having a semiconductor substrate and external connection electrodes. An insulating layer is provided on the base plate around the first semiconductor construct. An upper layer insulating film is provided on the first semiconductor construct and insulating layer. Upper layer wiring lines are provided on the upper layer insulating film so that the upper layer wiring line is electrically connected to the external connection electrode. A second semiconductor construct is joined to and installed on connection pad portions. All jointing portions of the second semiconductor construct for the connection pad portions of the upper layer wiring lines are disposed in a region corresponding to the first semiconductor construct.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: July 24, 2007
    Assignee: Casio Computer Co., Ltd.
    Inventors: Takeshi Wakabayashi, Ichiro Mihara
  • Patent number: 7239019
    Abstract: An inter-layer dielectric structure and method of making such structure are disclosed. A composite dielectric layer, initially comprising a porous matrix and a porogen, is formed. Subsequent to other processing treatments, the porogen is decomposed and removed from at least a portion of the porous matrix, leaving voids defined by the porous matrix in areas previously occupied by the porogen. The resultant structure has a desirably low k value as a result of the porosity and materials comprising the porous matrix and porogen. The composite dielectric layer may be used in concert with other dielectric layers of varying porosity, dimensions, and material properties to provide varied mechanical and electrical performance profiles.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: July 3, 2007
    Assignee: Intel Corporation
    Inventors: Jihperng Leu, Grant M. Kloster, David H. Gracias, Lee D. Rockford, Peter K. Moon, Chris E. Barns
  • Publication number: 20070148971
    Abstract: A method includes forming a coating on a land contact of a package substrate, the coating including a first material disposed between a first layer and a second layer, each of the first layer and the second layer being made of a second material including gold. An apparatus includes a package substrate including a plurality of land contacts wherein each of the plurality of land contacts includes a coating including a first material disposed between a first layer and a second layer, each of the first layer and the second layer being made of a second material including gold.
    Type: Application
    Filed: December 28, 2005
    Publication date: June 28, 2007
    Inventors: Bijay Saha, Munehiro Toyama, Ehab Nasir, Omar Bchir, Charavana Gurumurthy
  • Patent number: 7187083
    Abstract: A solder preform having multiple layers including a solder layer filled with additives interposed between two unfilled layers for improved wettability. A solder preform having a sphere which contains a solder material filled with additives, and an unfilled surface layer for improved wettability. A thermal interface material having a bonding component and an additive component which is a CTE modifying component and/or a thermal conductivity enhancement component. Active solders containing intrinsic oxygen getters.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: March 6, 2007
    Assignee: Fry's Metals, Inc.
    Inventors: Brian G. Lewis, Bawa Singh, John P. Laughlin, David V. Kyaw, Anthony E. Ingham, Attiganal N. Sreeram, Leszek Hozer, Michael J. Liberatore, Gerard R. Minogue
  • Publication number: 20060175691
    Abstract: A semiconductor device (7) has gold coatings (1 to 5) which are applied to metallic or ceramic components (6) of the semiconductor device (7). The gold coatings (1 to 4) have a multifunctional multilayer metal coating (8) with a minimal gold layer (9). The gold layer has a thickness dG where dG?0.5 ?m. Moreover, at least one metallic interlayer (10) is arranged between the gold layer (9) and the metallic or ceramic components (6).
    Type: Application
    Filed: February 9, 2006
    Publication date: August 10, 2006
    Inventors: Jochen Dangelmaier, Donald Fowlkes, Volker Guengerich, Henrik Hoyer