Vertical Bipolar Transistor In Combination With Diode Only (epo) Patents (Class 257/E27.022)
  • Patent number: 11757017
    Abstract: After the various regions of a vertical power device are formed in or on the top surface of an n-type wafer, the wafer is thinned, such as by grinding. A drift layer may be n-type, and various n-type regions and p-type regions in the top surface contact a top metal electrode. A blanket dopant implant through the bottom surface of the thinned wafer is performed to form an n? buffer layer and a bottom p+ emitter layer. Energetic particles are injected through the bottom surface to intentionally damage the crystalline structure. A wet etch is performed, which etches the damaged crystal at a much greater rate, so some areas of the n? buffer layer are exposed. The bottom surface is metallized. The areas where the metal contacts the n? buffer layer form cathodes of an anti-parallel diode for conducting reverse voltages, such as voltage spikes from inductive loads.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: September 12, 2023
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M Moore, Vladimir Rodov, Richard A Blanchard
  • Patent number: 10398332
    Abstract: Methods, systems, and apparatus for signal detection are described. In one example, a detection assembly includes a signal detector. The signal detector is configured to receive a sensor signal having a peak magnitude and a first frequency and generate an output signal having a magnitude proportional to the peak magnitude of the sensor signal and having a second frequency less than the first frequency of the sensor signal.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: September 3, 2019
    Assignee: St. Jude Medical, Inc.
    Inventors: Xiaoyi Min, Stuart Rosenberg, Gabriel Mouchawar
  • Patent number: 10224451
    Abstract: A multi junction photodiode for molecular detection and discrimination and fabrication methods thereof. The multi junction photodiode includes a substrate having first conductive type dopants, an epitaxial layer having the first conductive type dopants, a deep well having second conductive type dopants, a first well having the first conductive type dopants, a second well having the second conductive type dopants, a third well having the first conductive type dopants, and a first doped region having the second conductive type dopants. The epitaxial layer is disposed on the substrate. The deep well is disposed in the epitaxial layer. The first well having three sides connected to the epitaxial layer is disposed in the deep well. The second well is disposed in the first well. The third well having three sides connected to the epitaxial layer is disposed in the second well. The first doped region is disposed in the third well.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: March 5, 2019
    Assignee: Personal Genomics, Inc.
    Inventors: Chiun-Lung Tsai, Jui-Feng Huang, Ming-Fang Hsu, Chih-Yang Chen
  • Patent number: 9589953
    Abstract: A Reverse Bipolar Junction Transistor (RBJT) integrated circuit comprises a bipolar transistor and a parallel-connected distributed diode, where the base region is connected neither to the collector electrode nor to the emitter electrode. The bipolar transistor has unusually high emitter-to-base and emitter-to-collector reverse breakdown voltages. In the case of a PNP-type RBJT, an N base region extends into a P? epitaxial layer, and a plurality of P++ collector regions extend into the base region. Each collector region is annular, and rings a corresponding diode cathode region. Parts of the epitaxial layer serve as the emitter, and other parts serve as the diode anode. Insulation features separate metal of the collector electrode from the base region, and from P? type silicon of the epitaxial layer, so that the diode cathode is separated from the base region. This separation prevents base current leakage and reduces power dissipation during steady state on operation.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: March 7, 2017
    Assignee: IXYS Corporation
    Inventor: Kyoung Wook Seok
  • Patent number: 8823053
    Abstract: The semiconductor device includes a plurality of first flat plates containing a material that absorbs an electromagnetic wave at a high frequency. Any of the first flat plates is disposed above the first connecting wire, and any other of the first flat plates is disposed above the second connecting wire.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 2, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoko Sakiyama, Kohei Morizuka
  • Patent number: 8659082
    Abstract: A semiconductor device having a super junction structure includes: multiple first columns extending in a current flowing direction; and multiple second columns extending in the current flowing direction. The first and second columns are alternately arranged in an alternating direction. Each first column provides a drift layer. The first and second columns have a boundary therebetween, from which a depletion layer expands in case of an off-state. At least one of the first columns and the second columns have an impurity dose, which is inhomogeneous by location with respect to the alternating direction.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: February 25, 2014
    Assignee: DENSO CORPORATION
    Inventor: Takeshi Miyajima
  • Patent number: 8643146
    Abstract: A carrier is prevented from being stored in a guard ring region in a semiconductor device. The semiconductor device has an IGBT cell including a base region and an emitter region formed in an n? type drift layer, and a p type collector layer arranged under the drift layer with a buffer layer interposed therebetween. A guard ring region having a guard ring is arranged around the IGBT cell. A lower surface of the guard ring region has a mesa structure provided by removing the collector layer.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: February 4, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hitoshi Uemura
  • Patent number: 8624355
    Abstract: A semiconductor device includes an n-type first guard ring layer provided between an emitter layer and a collector layer on a surface side of a base layer, and having a higher n-type impurity concentration than the base layer, and an n-type second guard ring layer provided between the first guard ring layer and a buried layer, connected to the first guard ring layer and the buried layer, and having a higher n-type impurity concentration than the base layer. The first guard ring layer has an n-type impurity concentration profile decreasing toward the second guard ring layer side, and the second guard ring layer has an impurity concentration profile decreasing toward the first guard ring layer side.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koji Shirai
  • Patent number: 8609502
    Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 17, 2013
    Assignee: DENSO CORPORATION
    Inventors: Masaki Koyama, Yutaka Fukuda
  • Patent number: 8587094
    Abstract: A semiconductor device having an active element and an MIM capacitor and a structure capable of reducing the number of the manufacturing steps thereof and a manufacturing method therefor are provided. The semiconductor device has a structure that the active element having an ohmic electrode and the MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode are formed on a semiconductor substrate, wherein the lower electrode and ohmic electrode have the same structure. In an MMIC 100 in which an FET as an active element and the MIM capacitor are formed on a GaAs substrate 10, for example, a source electrode 16a and a drain electrode 16b, which are ohmic electrodes of the FET, are manufactured simultaneously with a lower electrode 16c of the MIM capacitor. Here the electrodes are formed with the same metal.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: November 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hisao Kawasaki
  • Patent number: 8536655
    Abstract: Even in the case where negative current flows in a semiconductor device, the potential of a semiconductor substrate is prevented from becoming lower than the potential of a deep semiconductor layer which is a component of a circuit element, and a parasitic element is prevented from operating, which accordingly prevents malfunction of the semiconductor device. The semiconductor device includes the n-type semiconductor substrate, a power element, the circuit element, and an external circuit. The external circuit includes a power supply, a resistive element having one end connected to the power supply, and a diode having its anode electrode connected to the other end of the resistive element and its cathode electrode connected to the ground. To the other end of the resistive element, a semiconductor layer is connected.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yamamoto, Atsunobu Kawamoto
  • Patent number: 8507352
    Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 13, 2013
    Assignee: DENSO CORPORATION
    Inventors: Masaki Koyama, Yutaka Fukuda
  • Publication number: 20130127017
    Abstract: A Reverse Bipolar Junction Transistor (RBJT) integrated circuit comprises a bipolar transistor and a parallel-coupled distributed diode. The bipolar transistor involves many N-type collector regions. Each N-type collector region has a central hole so that P-type material from an underlying P-type region extends up into the hole. A collector metal electrode covers the central hole forming a diode contact at the top of the hole. When the distributed diode conducts, current flows from the collector electrode, down through the many central holes in the many collector regions, through corresponding PN junctions, and to an emitter electrode disposed on the bottom side of the IC. The RBJT and distributed diode integrated circuit has emitter-to-collector and emitter-to-base reverse breakdown voltages exceeding twenty volts. The collector metal electrode is structured to contact the collector regions, and to bridge over the base electrode, resulting in a low collector-to-emitter voltage when the RBJT is on.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: IXYS Corporation
    Inventor: Kyoung Wook Seok
  • Patent number: 8288824
    Abstract: A semiconductor device includes a vertical IGBT and a vertical free-wheeling diode in a semiconductor substrate. A plurality of base regions is disposed at a first-surface side portion of the semiconductor substrate, and a plurality of collector regions and a plurality of cathode regions are alternately disposed in a second-surface side portion of the semiconductor substrate. The base regions include a plurality of regions where channels are provided when the vertical IGBT is in an operating state. The first-side portion of the semiconductor substrate include a plurality of IGBT regions each located between adjacent two of the channels, including one of the base regions electrically coupled with an emitter electrode, and being opposed to one of the cathode regions. The IGBT regions include a plurality of narrow regions and a plurality of wide regions.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: October 16, 2012
    Assignee: DENSO CORPORATION
    Inventors: Yukio Tsuzuki, Hiromitsu Tanabe, Kenji Kouno
  • Publication number: 20120161286
    Abstract: This invention discloses a semiconductor power device formed in a semiconductor substrate. The semiconductor power device further includes a channel stop region near a peripheral of the semiconductor substrate wherein the channel stop region further includes a peripheral terminal of a diode corresponding with another terminal of the diode laterally opposite from the peripheral terminal disposed on an active area of the semiconductor power device. In an embodiment of this invention, the semiconductor power device is an insulated gate bipolar transistor (IGBT).
    Type: Application
    Filed: December 23, 2010
    Publication date: June 28, 2012
    Inventor: Anup Bhalla
  • Publication number: 20120068310
    Abstract: A carrier is prevented from being stored in a guard ring region in a semiconductor device. The semiconductor device has an IGBT cell including a base region and an emitter region formed in an n? type drift layer, and a p type collector layer arranged under the drift layer with a buffer layer interposed therebetween. A guard ring region having a guard ring is arranged around the IGBT cell. A lower surface of the guard ring region has a mesa structure provided by removing the collector layer.
    Type: Application
    Filed: June 13, 2011
    Publication date: March 22, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Hitoshi UEMURA
  • Patent number: 8106453
    Abstract: A semiconductor device having a super junction structure includes: multiple first columns extending in a current flowing direction; and multiple second columns extending in the current flowing direction. The first and second columns are alternately arranged in an alternating direction. Each first column provides a drift layer. The first and second columns have a boundary therebetween, from which a depletion layer expands in case of an off-state. At least one of the first columns and the second columns have an impurity dose, which is inhomogeneous by location with respect to the alternating direction.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: January 31, 2012
    Assignee: DENSO CORPORATION
    Inventor: Takeshi Miyajima
  • Patent number: 8102025
    Abstract: A semiconductor device includes: a semiconductor substrate; a IGBT region including a first region on a first surface of the substrate and providing a channel-forming region and a second region on a second surface of the substrate and providing a collector; a diode region including a third region on the first surface and providing an anode or a cathode and a fourth region on the second surface and providing the anode or the cathode; a periphery region including a fifth region on the first surface and a sixth region on the second surface. The first, third and fifth regions are commonly and electrically coupled, and the second, fourth and sixth regions are commonly and electrically coupled with one another.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: January 24, 2012
    Assignee: DENSO CORPORATION
    Inventors: Yoshihiko Ozeki, Norihito Tokura, Yukio Tsuzuki
  • Patent number: 7989885
    Abstract: A semiconductor device has a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type complementary to the first conductivity type arranged in or on the first semiconductor layer. The semiconductor device has a region of the first conductivity type arranged in the second semiconductor layer. A first electrode contacts the region of the first conductivity type and the second semiconductor layer. A trench extends into the first semiconductor layer, and a voltage dependent short circuit diverter structure has a highly-doped diverter region of the second conductivity type. This diverter region is arranged via an end of a channel region and coupled to a diode arranged in the trench.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: August 2, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Frank Dieter Pfirsch
  • Patent number: 7928470
    Abstract: A semiconductor device having a super junction MOS transistor includes: a semiconductor substrate; a first semiconductor layer on the substrate; a second semiconductor layer on the first semiconductor layer; a channel forming region on a first surface portion of the second semiconductor layer; a source region on a first surface portion of the channel forming region; a source contact region on a second surface portion of the channel forming region; a gate electrode on a third surface portion of the channel forming region; a source electrode on the source region and the source contact region; a drain electrode on a backside of the substrate; and an anode electrode on a second surface portion of the second semiconductor layer. The anode electrode provides a Schottky barrier diode.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 19, 2011
    Assignee: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Jun Sakakibara
  • Publication number: 20100314681
    Abstract: A structure of power semiconductor device integrated with clamp diodes sharing same gate metal pad is disclosed. This improved structure can prevent the degradation of breakdown voltage due to electric field in termination region blocked by polysilicon.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 16, 2010
    Applicant: FORCE MOS TECHNOLOGY CO. LTD.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20100308370
    Abstract: A trench insulation gate bipolar transistor (IGBT) power device with a monolithic deep body clamp diode comprising a plurality of trench gates surrounded by emitter regions of a first conductivity type near a top surface of a semiconductor substrate of the first conductivity type encompassed in base regions of a second conductivity type. The trench semiconductor power device further comprises a collector region of the second conductivity type disposed on a rear side opposite from the top surface of the semiconductor substrate corresponding to and underneath the trench gates surrounded by the emitter regions encompassed in the base regions constituting a plurality of insulation gate bipolar transistors (IGBTs). The IGBT power device further includes a deep dopant region of the second conductivity type having P-N junction depth deeper than the base region, disposed between and extending below the trench gates in the base region of the first conductivity type.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 9, 2010
    Inventor: Fwu-Iuan Hshieh
  • Publication number: 20100295094
    Abstract: An ESD protection apparatus includes a substrate, a transistor structure arranged in the substrate, and a diode structure arranged in the substrate, a high-resistance electrical connection being provided between the transistor structure and the diode structure in the substrate.
    Type: Application
    Filed: August 2, 2010
    Publication date: November 25, 2010
    Inventors: Sven Albers, Klaus Diefenbeck, Bernd Eisener, Gernot Langguth, Christian Lehrer, Karl-Heinz Malek, Eberhard Rohrer
  • Patent number: 7838907
    Abstract: In a semiconductor device in which a diode and a high electron mobility transistor are incorporated in the same semiconductor chip, a compound semiconductor layer of the high electron mobility transistor is formed on a main surface (first main surface) of a semiconductor substrate of the diode, and an anode electrode of the diode is electrically connected to an anode region via a conductive material embedded in a via hole (hole) reaching a p+ region which is the anode region of the main surface of the semiconductor substrate from a main surface of the compound semiconductor layer.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 23, 2010
    Assignee: Renesas Electronics Corporation
    Inventor: Masaki Shiraishi
  • Patent number: 7768101
    Abstract: A p-type collector region of an IGBT and an n-type cathode region of a free wheel diode are alternately formed in a second main surface of a semiconductor substrate. A back electrode is formed on the second main surface so as to be in contact with both of the p-type collector region and the n-type cathode region, and has a titanium layer, a nickel layer and a gold layer that are successively stacked from the side of the second main surface. A semiconductor device capable of obtaining a satisfactory ON voltage in any of conduction of an insulated gate field effect transistor and conduction of the free wheel diode as well as a manufacturing method thereof can thus be obtained.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 3, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Suzuki, Hideki Takahashi, Yoshifumi Tomomatsu
  • Patent number: 7718546
    Abstract: A method for fabricating a 3-D monolithic memory device. Silicon-oxynitride (SixOyNz) on amorphous carbon is used an effective, easily removable hard mask with high selectivity to silicon, oxide, and tungsten. A silicon-oxynitride layer is etched using a photoresist layer, and the resulting etched SixOyNz layer is used to etch an amorphous carbon layer. Silicon, oxide, and/or tungsten layers are etched using the amorphous carbon layer. In one implementation, conductive rails of the 3-D monolithic memory device are formed by etching an oxide layer such as silicon dioxide (SiO2) using the patterned amorphous carbon layer as a hard mask. Memory cell diodes are formed as pillars in polysilicon between the conductive rails by etching a polysilicon layer using another patterned amorphous carbon layer as a hard mask. Additional levels of conductive rails and memory cell diodes are formed similarly to build the 3-D monolithic memory device.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: May 18, 2010
    Assignee: Sandisk 3D LLC
    Inventors: Steven J. Radigan, Michael W. Konevecki
  • Patent number: 7602045
    Abstract: In a semiconductor device having a pair of IGBT and diode which are connected to each other in inverse-parallel in which a collector-electrode of the IGBT and a cathode-electrode of the diode are wired to each other, and an emitter-electrode of the IGBT and an anode-electrode of the diode are wired to each other, when a breakdown voltage of a junction of a p-type emitter layer and an n-type buffer layer of the IGBT is represented as BVec, and a forward voltage occurring while the diode transits from a state of blocking to a state of forward conduction is represented as VF, a relationship of VF<BVec is satisfied in a predetermined current value Id of a current flowing in the diode, and the maximal doping concentration of the n-type cathode layer of the diode is higher than that of the n-type buffer layer of the IGBT.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: October 13, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Takuo Nagase, Mutsuhiro Mori
  • Patent number: 7586130
    Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi