Array Of Single Bipolar Transistors Only, E.g. Read Only Memory Structure (epo) Patents (Class 257/E27.076)
  • Patent number: 9024288
    Abstract: Embodiments of the present invention provide an array substrate, a manufacturing method thereof and a display device. The manufacturing method of an array substrate, comprising: forming a gate electrode on a base substrate by a first patterning process, and then depositing a gate insulating layer on the base substrate on which the gate electrode is formed; forming source and drain electrodes on the base substrate obtained after the above step, by a second patterning process; forming an active layer formed of a graphene layer, and a protective layer disposed on the active layer, on the base substrate obtained after the above steps, by a third patterning process; and forming a planarizing layer on the base substrate, obtained after the above steps, by a fourth patterning process, in which the planarizing layer is provided with a through hole through which the source or drain electrode is exposed.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 5, 2015
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Tuo Sun
  • Patent number: 8912576
    Abstract: A bipolar junction transistor built with a mesh structure of cells provided on a semiconductor body is disclosed. The mesh structure has at least one emitter cell with a first type of implant. At least one emitter cell has at least one side coupled to at least one cell with a first type of implant to serve as collector of the bipolar. The spaces between the emitter and collector cells are the intrinsic base of a bipolar device. At least one emitter cell has at least one vortex coupled to at least one cell with a second type of implant to serve as the extrinsic base of the bipolar. The emitter, collector, or base cells can be arbitrary polygons as long as the overall geometry construction can be very compact and expandable. The implant regions between cells can be separated with a space. A silicide block layer can cover the space and overlap into at least a portion of both implant regions.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 16, 2014
    Inventor: Shine C. Chung
  • Patent number: 8742451
    Abstract: A field-effect transistor involves a drain electrode, a drift region, a body region, a source region, a gate insulator layer, and a gate electrode. The drift region is disposed above the drain electrode. The body region extends down into the drift region from a first upper semiconductor surface. The source region is ladder-shaped and extends down in the body region from a second upper semiconductor surface. The first and second upper semiconductor surfaces are substantially planar and are not coplanar. A first portion of the body region is surrounded laterally by a second portion of the body region. The second portion of the body region and the drift region meet at a body-to-drift boundary. The body-to-drift boundary has a central portion that is non-planar. A gate insulator layer is disposed over the source region and a gate electrode is disposed over the gate insulator.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 3, 2014
    Assignee: IXYS Corporation
    Inventor: Kyoung Wook Seok
  • Patent number: 8546888
    Abstract: Methods and apparatus are provided. An isolation region is formed by lining a trench formed in a substrate with a first dielectric layer by forming the first dielectric layer adjoining exposed substrate surfaces within the trench using a high-density plasma process, forming a layer of spin-on dielectric material on the first dielectric layer so as to fill a remaining portion of the trench, and densifying the layer of spin-on dielectric material.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: October 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Zailong Bian, Xiaolong Fang
  • Patent number: 8390097
    Abstract: An IGBT comprises trenches arranged in strips, first emitter diffusion layers formed so as to extend in a direction intersecting the trenches, and contact regions formed to have a rectangular shape. The portions of the contact regions on the first emitter diffusion layers have a smaller width than the other portions, the width extending in the direction intersecting the trenches. This configuration allows for an increase in the emitter ballast resistance of the emitter diffusion layers, resulting in enhanced resistance to electrical breakdown due to short circuit.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 5, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takuya Hamaguchi, Hideki Haruguchi, Tetsujiro Tsunoda
  • Patent number: 8362535
    Abstract: A non-volatile memory cell includes a semiconductor substrate with isolation structures formed therein and thereby transistor region and capacitor region are defined therein. A conductor is disposed over the isolation structures, the transistor region and a first-type doped well disposed in the capacitor region. The conductor includes a capacitor portion disposed over the first-type doped well, a transistor portion disposed over the transistor region, a first edge disposed over the isolation structure at a side of the transistor region, and an opposite second edge disposed over the first-type doped well. Two first ion doped wells are disposed in the transistor region and respectively at two sides of the transistor portion, and constitutes a transistor with the transistor portion. A second ion doped region is disposed in the capacitor region excluding the conductor and constitutes a capacitor with the capacitor portion.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 29, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Hung-Lin Shih, Jr-Bin Chen, Pei-Ching Yin, Hui-Fang Tsai
  • Patent number: 7872326
    Abstract: A process for manufacturing an array of bipolar transistors, wherein deep field insulation regions of dielectric material are formed in a semiconductor body, thereby defining a plurality of active areas, insulated from each other and a plurality of bipolar transistors are formed in each active area. In particular, in each active area, a first conduction region is formed at a distance from the surface of the semiconductor body; a control region is formed on the first conduction region; and, in each control region, at least two second conduction regions and at least one control contact region are formed. The control contact region is interposed between the second conduction regions and at least two surface field insulation regions are thermally grown in each active area between the control contact region and the second conduction regions.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Michele Magistretti, Fabio Pellizzer, Augusto Benvenuti
  • Patent number: 7847373
    Abstract: A bipolar junction transistor may act as a select device for a semiconductor memory. The bipolar junction transistor may be formed of a stack of base and collector layers. Sets of parallel trenches are formed in a first direction down to the base and in a second direction down to the collector. The trenches may be used to form local enhancement implants into the exposed portion of the base and collector in each trench. As a result of the local enhancement implants, in some embodiments, leakage current may be reduced, active current capability may be higher, gain may be higher, base resistance may be reduced, breakdown voltage may be increased, and parasitic effects with adjacent junctions may be reduced.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 7, 2010
    Inventors: Agostino Pirovano, Augusto Benvenuti, Fabio Pellizzer, Giorgio Servalli
  • Patent number: 7649259
    Abstract: A semiconductor device includes a first wiring line group made of a metal, wiring lines of the first wiring line group being arranged in parallel with each other, a second wiring line group which is made of a semiconductor and crosses the first wiring line group, wiring lines of the second wiring line group being arranged in parallel with each other and being movable in the vicinity of each intersection with the wiring lines of the first wiring line group, and a plurality of metal regions which are formed to be joined with the wiring lines constituting the second wiring line group, and have a work function different from that of the metal forming the first wiring line group.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: January 19, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mizuki Ono, Yuichi Motoi
  • Patent number: 7622756
    Abstract: A technology which allows a reduction in the thermal resistance of a semiconductor device and the miniaturization thereof is provided. The semiconductor device has a plurality of unit transistors Q, transistor formation regions 3a, 3b, and 3e each having a first number (seven) of the unit transistors Q, and transistor formation regions 3c and 3d each having a second number (four) of the unit transistors Q. The transistor formation regions 3c and 3d are located between the transistor formation regions 3a, 3b, 3e, and 3f and the first number is larger than the second number.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: November 24, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Satoshi Sasaki, Yasunari Umemoto, Yasuo Osone, Tsutomu Kobori, Chushiro Kusano, Isao Ohbu, Kenji Sasaki
  • Publication number: 20080093652
    Abstract: A semiconductor device comprising: a transistor region formed on a semiconductor substrate and having a plurality of memory cell arrays formed of a plurality of memory cell transistors and select transistors one each of which is disposed on one and the other sides of said plurality of memory cell transistors; a diffused layer formed on the surface of said semiconductor substrate between the adjacent first and a second select transistors of said memory cell arrays in said transistor region; a first sidewall film formed on each of the opposed sidewalls of said first and second select transistors adjacent to each other; a second sidewall film formed on said first sidewall film; and a conducting layer formed between said first and second select transistors, so as to contact with said diffused layer, wherein the edge of a contact portion is positioned at a distance no less than the thickness of said second sidewall film from the sidewalls of said first and second select transistors.
    Type: Application
    Filed: October 11, 2007
    Publication date: April 24, 2008
    Inventor: Mutsumi Okajima
  • Patent number: 7317240
    Abstract: A device. The device includes two bipolar transistors electrically connected to each other. Each bipolar transistor of the two bipolar transistors may include a base contact and an emitter contact surrounding the base contact, wherein the emitters contacts of the two bipolar transistor are in electrical contact with each other. A first bipolar transistor of the two bipolar transistors may have a first wiring stack and a second bipolar transistor two bipolar transistors may have a second wiring stack, wherein the second wiring stack includes at least one more wiring level than the first wiring stack.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: January 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Hulvey, Stephen A. St. Onge
  • Patent number: 7312497
    Abstract: In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an dielectric (302, 304, 310) formed over control gate lines (134). Each control gate line provides control gates for one column of the memory cells. The adjacent control gate lines for the adjacent memory columns are spaced from each other. The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: December 25, 2007
    Assignee: ProMOS Technologies Inc.
    Inventor: Yi Ding
  • Patent number: 7276762
    Abstract: An NROM flash memory cell is implemented in an ultra-thin silicon-on-insulator structure. In a planar device, the channel between the source/drain areas is normally fully depleted. An oxide layer provides an insulation layer between the source/drain areas and the gate insulator layer on top. A control gate is formed on top of the gate insulator layer. In a vertical device, an oxide pillar extends from the substrate with a source/drain area on either side of the pillar side. Epitaxial regrowth is used to form ultra-thin silicon body regions along the sidewalls of the oxide pillar. Second source/drain areas are formed on top of this structure. The gate insulator and control gate are formed on top.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes