Including Bipolar Component (epo) Patents (Class 257/E27.072)
  • Patent number: 8937291
    Abstract: A disclosed memory device includes a three-dimension array structure that includes memory layers and transistor structures disposed between the memory layers. Each memory layer is connected to a common electrode, and each transistor structure includes transistors that share common column structures and common base structures. The transistors also each include a connector structure that is spaced apart from a common column structure by a common base structure.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: January 20, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Ming-Hsiu Lee, Wei-Chih Chien
  • Patent number: 8912576
    Abstract: A bipolar junction transistor built with a mesh structure of cells provided on a semiconductor body is disclosed. The mesh structure has at least one emitter cell with a first type of implant. At least one emitter cell has at least one side coupled to at least one cell with a first type of implant to serve as collector of the bipolar. The spaces between the emitter and collector cells are the intrinsic base of a bipolar device. At least one emitter cell has at least one vortex coupled to at least one cell with a second type of implant to serve as the extrinsic base of the bipolar. The emitter, collector, or base cells can be arbitrary polygons as long as the overall geometry construction can be very compact and expandable. The implant regions between cells can be separated with a space. A silicide block layer can cover the space and overlap into at least a portion of both implant regions.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 16, 2014
    Inventor: Shine C. Chung
  • Patent number: 8759911
    Abstract: Plural island-form emitter cells (22) having a p-base region (23) and an n+ emitter region (24) are provided, distanced from each other, on a main surface of an n? layer (21). A trench (25) deeper than the p-base region (23) is formed on either side of the emitter cell (22). A first gate electrode (26) is embedded in the trench (25) across a first gate insulating film (41). A second gate electrode (27) that electrically connects first gate electrodes (26) is provided, across a second gate insulating film (40), on a surface of a region of the p-base region (23) sandwiched by the n+ emitter region (24). A conductive region (28) that electrically connects second gate electrodes (27) is provided, across a third gate insulating film (42), on a surface of the n? layer (21). A contact region (29) that is isolated from the second gate electrode (27), and that short circuits the n+ emitter region (24) and p-base region (23), is provided.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 24, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hong-fei Lu
  • Publication number: 20130341753
    Abstract: A disclosed memory device includes a three-dimension array structure that includes memory layers and transistor structures disposed between the memory layers. Each memory layer is connected to a common electrode, and each transistor structure includes transistors that share common column structures and common base structures. The transistors also each include a connector structure that is spaced apart from a common column structure by a common base structure.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Ming-Hsiu LEE, Wei-Chih CHIEN
  • Patent number: 8610216
    Abstract: A structure for protecting an integrated circuit against electrostatic discharges, including a device for removing overvoltages between first and second power supply rails; and a protection cell connected to a pad of the circuit including a diode having an electrode, connected to a region of a first conductivity type, connected to the second power supply rail and having an electrode, connected to a region of a second conductivity type, connected to the pad and, in parallel with the diode, a thyristor having an electrode, connected to a region of the first conductivity type, connected to the pad and having a gate, connected to a region of the second conductivity type, connected to the first rail, the first and second conductivity types being such that, in normal operation, when the circuit is powered, the diode is non-conductive.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: December 17, 2013
    Assignee: STMicroelectronics S.A.
    Inventors: Philippe Galy, Christophe Entringer, Jean Jimenez
  • Patent number: 8581299
    Abstract: In a semiconductor device, at least one of the ratio (collector contact area/collector active area) in the High Side IGBT and the ratio (contact area on p+ region/p+ region area) is higher than the ratio in the Low Side IGBT. Thus, it is possible to develop without substantial changes and reduce the development burden.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Mikio Tsujiuchi, Tetsuya Nitta
  • Publication number: 20130234102
    Abstract: Some embodiments include methods of forming BJTs. A first type doped region is formed within semiconductor material. First and second trenches are formed within the semiconductor material to pattern an array of pedestals, and the trenches are filled with electrically insulative material. An upper portion of the first type doped region is counter-doped to form a first stack having a second type doped region over a first type doped region, and an upper portion of the first stack is then counter-doped to form a second stack having a second type doped region between a pair of first type doped regions. Some embodiments include a BJT array. A base implant region is between a pair of emitter/collector implant regions. Electrically insulative material is adjacent the base implant region, and contains at least about 7×1016 atoms/cm3 of base implant region dopant.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Federica Ottogalli, Luca Laurin
  • Publication number: 20130062662
    Abstract: In a semiconductor device, at least one of the ratio (collector contact area/collector active area) in the High Side IGBT and the ratio (contact area on p+ region/p30 region area) is higher than the ratio in the Low Side IGBT. Thus, it is possible to develop without substantial changes and reduce the development burden.
    Type: Application
    Filed: July 27, 2012
    Publication date: March 14, 2013
    Inventors: Mikio Tsujiuchi, Tetsuya Nitta
  • Publication number: 20110121402
    Abstract: In a BiCMOS device, a device isolation film separating the bipolar transistor region from the MOS region is taller than the substrate at least where it contacts the bipolar transistor region, and is preferably taller than the same layer where it contacts the MOS transistor region. This makes it possible to maintain the processing accuracy of a MOS transistor while stabilizing the diode current characteristics of the bipolar transistor.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 26, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Shinichi MIYAKE, Kazuaki TSUNODA
  • Patent number: 7893490
    Abstract: A high-voltage metal-oxide-semiconductor (HVMOS) device and methods for forming the same are provided. The HVMOS device includes a substrate; a first high-voltage n-well (HVNW) region buried in the substrate; a p-type buried layer (PBL) horizontally adjoining the first HVNW region; a second HVNW region on the first HVNW region; a high-voltage p-well (HVPW) region over the PBL; an insulating region at a top surface of the second HVNW region; a gate dielectric extending from over the HVPW region to over the second HVNW region, wherein the gate dielectric has a portion over the insulating region; and a gate electrode on the gate dielectric.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hui Huang, Ting-Pang Li, Fu-Hsin Chen
  • Patent number: 7834370
    Abstract: A semiconductor light emitting device includes a mount member and a semiconductor light emitting element arranged on the mount member. The mount member includes a substrate; an electrode assembly (a positive electrode, a negative electrode, and bumps) that are arranged on a top surface of a substrate and contacts the semiconductor light emitting element. A reflecting member is out of contact with the semiconductor light emitting element and the electrode assembly. According to this structure, a semiconductor light emitting device can be provided, which efficiently outputs output light using a material having a high reflectance regardless of whether the material is appropriate for an electrode.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: November 16, 2010
    Assignee: Panasonic Corporation
    Inventors: Kenichi Koya, Yukio Kishimoto
  • Publication number: 20100181621
    Abstract: An integrated circuit, design structures and methods of forming the integrated circuit which includes a signal pad ESD coupled to an I/O signal pad and a power supply ESD coupled to a source VDD. The signal pad ESD and the power supply ESD are integrated in a single ESD structure.
    Type: Application
    Filed: January 19, 2009
    Publication date: July 22, 2010
    Applicant: International Business Machines Corporation
    Inventors: Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, JR., Mujahid Muhammad
  • Publication number: 20090085153
    Abstract: A method of making a non-volatile memory device includes providing a substrate having a substrate surface, and forming a non-volatile memory array over the substrate surface. The non-volatile memory array includes an array of semiconductor diodes, and each semiconductor diode of the array of semiconductor diodes is disposed substantially parallel to the substrate surface.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: Steven Maxwell, Michael Konevecki, Mark H. Clark, Usha Raghuram