Including Insulator On Semiconductor, E.g. Soi (silicon On Insulator) (epo) Patents (Class 257/E27.112)
  • Publication number: 20110204444
    Abstract: A semiconductor integrated device of the invention can enhance a radiation resistance. In an exemplary embodiment, the semiconductor integrated device includes a semiconductor supporting substrate, an insulation layer provided on the semiconductor supporting substrate, and a silicon thin film provided on the insulation layer. A predetermined region in the silicon thin film that is adjacent to the boundary between the insulation layer and the silicon thin film (i.e., boundary neighboring region) has an impurity-concentration-increased region. In this region, the impurity concentration becomes higher as the position approaches the boundary.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 25, 2011
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Masao Okihara
  • Publication number: 20110198694
    Abstract: Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Man Fai NG, Bin YANG
  • Publication number: 20110198696
    Abstract: A semiconductor device and related fabrication methods are provided. One exemplary fabrication method forms a fin arrangement overlying an oxide layer, where the fin arrangement includes one or more semiconductor fin structures. The method continues by nitriding exposed portions of the oxide layer without nitriding the one or more semiconductor fin structures, resulting in nitrided portions of the oxide layer. Thereafter, a gate structure is formed transversely overlying the fin arrangement, and overlying the exposed portions of the oxide layer. The nitrided portions of the oxide layer substantially inhibit diffusion of oxygen from the oxide layer into the gate structure.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 18, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Kisik CHOI, Robert J. Miller
  • Publication number: 20110193169
    Abstract: Integrated circuits having complementary metal-oxide semiconductor (CMOS) and photonics circuitry and techniques for three-dimensional integration thereof are provided. In one aspect, a three-dimensional integrated circuit comprises a bottom device layer and a top device layer. The bottom device layer comprises a digital CMOS circuitry layer; and a first bonding oxide layer adjacent to the digital CMOS circuitry layer. The top device layer comprises a substrate; an analog CMOS and photonics circuitry layer formed in a silicon-on-insulator (SOI) layer adjacent to the substrate, the SOI layer having a buried oxide (BOX) with a thickness of greater than or equal to about one micrometer; and a second bonding oxide layer adjacent to a side of the analog CMOS and photonics circuitry layer opposite the substrate. The bottom device layer is bonded to the top device layer by an oxide-to-oxide bond between the first bonding oxide layer and the second bonding oxide layer.
    Type: Application
    Filed: April 16, 2011
    Publication date: August 11, 2011
    Applicant: International Business Machines Corporation
    Inventors: Solomon Assefa, Kuan-Neng Chen, Steven J. Koester, Yurii A. Vlasov
  • Publication number: 20110193168
    Abstract: A method for manufacturing a semiconductor device, which includes the steps of: forming a mask layer (20) on a gate insulating film (18), the mask layer (20) having openings over the portions of first and second semiconductor layers that are destined to become low-concentration impurity regions and source and drain regions; forming first conductivity type implantation regions (24b, 24c) in the first and second semiconductor layers respectively by implanting a first conductivity type impurity (22) to the first and second semiconductor layers through the openings in the mask layer (20); forming first and second gate electrodes (26b, 26c) to cover a portion of the first conductivity type implantation regions and portions of the first and second semiconductor layers that are destined to become channel regions; forming another mask layer (28) which has openings over portions of the first conductivity type implantation region (24b) of the first semiconductor layer, said portions being located at both ends of the fi
    Type: Application
    Filed: October 22, 2009
    Publication date: August 11, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Hiroyuki Kaigawa
  • Publication number: 20110193167
    Abstract: An integrated circuit structure includes a semiconductor substrate including an active region. A first shallow trench isolation (STI) region adjoins a first side of the active region. A gate electrode of a MOS device is over the active region and the first STI region. A source/drain stressor region of the MOS device includes a portion in the semiconductor substrate and adjacent the gate electrode. A trench is formed in the semiconductor substrate and adjoining a second side of the active region. The trench has a bottom no lower than a bottom of the source/drain region. An inter-layer dielectric (ILD) extends from over the gate electrode to inside the trench, wherein a portion of the ILD in the trench forms a second STI region. The second STI region and the source/drain stressor region are separated from each other by, and adjoining, a portion of the semiconductor substrate.
    Type: Application
    Filed: February 11, 2010
    Publication date: August 11, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ka-Hing Fung, Han-Ting Tsai, Chun-Fai Cheng, Haiting Wang, Wei-Yuan Lu, Hsien-Ching Lo
  • Publication number: 20110193165
    Abstract: In one embodiment, a floating body field-effect transistor includes a pair of source/drain regions having a floating body channel region received therebetween. The source/drain regions and the floating body channel region are received over an insulator. A gate electrode is proximate the floating body channel region. A gate dielectric is received between the gate electrode and the floating body channel region. The floating body channel region has a semiconductor SixGe(1-x)-comprising region. The floating body channel region has a semiconductor silicon-comprising region received between the semiconductor SixGe(1-x)-comprising region and the gate dielectric. The semiconductor SixGe(1-x)-comprising region has greater quantity of Ge than any quantity of Ge within the semiconductor silicon-comprising region. Other embodiments are contemplated, including methods of forming floating body field-effect transistors.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jun Liu, Michael P. Violette, Chandra Mouli, Howard Kirsch, Di Li
  • Patent number: 7993990
    Abstract: A semiconductor structure includes an epitaxial surface semiconductor layer having a first dopant polarity and a first crystallographic orientation, and a laterally adjacent semiconductor-on-insulator surface semiconductor layer having a different second dopant polarity and different second crystallographic orientation. The epitaxial surface semiconductor layer has a first edge that has a defect and an adjoining second edge absent a defect. Located within the epitaxial surface semiconductor layer is a first device having a first gate perpendicular to the first edge and a second device having a second gate perpendicular to the second edge. The first device may include a performance sensitive logic device and the second device may include a yield sensitive memory device.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 9, 2011
    Assignee: International Business Machines Corporation
    Inventors: Shreesh Narasimha, Paul David Agnello, Xiaomeng Chen, Judson R. Holt, Mukesh Vijay Khare, Byeong Y. Kim, Devendra K. Sadana
  • Patent number: 7994574
    Abstract: A double-structure silicon on insulator (SOI) substrate with a silicon layer, an insulation film (silicon oxide film), a silicon layer, and an insulation film in this order from the side of the surface. The upper-layer insulation film is formed so as to have a uniform distribution of depth while the lower-layer insulation film is formed so as to have a non-uniform distribution of depth so that a thick portion may be formed in the silicon layer along a predetermined path. The refractive index of Si is 3.5 and the refractive index of SiO2 is 1.5. The thick portion of the silicon layer provides a core and the insulation films corresponding to this thick portion provide clads, thereby forming an optical waveguide along the predetermined path. The silicon layer at the side of the surface has a uniform thickness, thereby enabling characteristics of MOS devices fabricated on various portions of the silicon layer to be met with each other easily and facilitating a design of the electrical device as a whole.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 9, 2011
    Assignee: Sony Corporation
    Inventor: Koichiro Kishima
  • Patent number: 7994577
    Abstract: An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 9, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jiaw-Ren Shih, Jian-Hsing Lee
  • Publication number: 20110186936
    Abstract: a method for producing a semiconductor device provided in such a manner that a first layer and a second layer are laminated to ensure that their TSVs are arranged in almost a straight line, including: first layer production steps including steps of preparing a substrate, forming a transistor of an input/output circuit on an upper surface of the substrate, forming an insulation layer so as to cover the transistor, and forming a TSV in the insulation layer; second layer production steps including steps of preparing a substrate, forming a transistor of a logic circuit on an upper surface of the substrate, forming an insulation layer so as to cover the transistor, and forming a TSV in the insulation layer; a connection step of connecting surfaces of the first layer and the second layer on a side opposite to substrates of the first layer and the second layer to ensure that the TSV of the first layer and the TSV of the second layer are arranged in almost a straight line; and a step of removing the substrate of the
    Type: Application
    Filed: February 2, 2011
    Publication date: August 4, 2011
    Inventors: Toshiaki IWAMATSU, Yuichi Hirano
  • Publication number: 20110186942
    Abstract: A method comprising: providing at least one first diamond film comprising polycrystalline diamond, e.g., nanocrystalline or ultrananocrystalline diamond, disposed on a substrate, wherein the first diamond film comprises a surface comprising diamond asperities and having a first diamond film thickness, removing asperities from the first diamond film to form a second diamond film having a second diamond film thickness, wherein the second thickness is either substantially the same as the first thickness, or the second thickness is about 100 nm or less thinner than the first diamond film thickness, optionally patterning the second diamond film to expose substrate regions and, optionally, depositing semiconductor material on the exposed substrate regions, and depositing a solid layer on the second diamond film to form a first layered structure.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 4, 2011
    Inventors: Charles West, John Carlisle, James Netzel, Ian Wylie, Neil Kane
  • Publication number: 20110186929
    Abstract: In an SOI semiconductor device, substrate diodes may be formed on the basis of a superior design of the contact level and the metallization layer, thereby avoiding the presence of metal lines connecting to both diode electrodes in the critical substrate diode area. To this end, contact trenches may be provided so as to locally connect one type of diode electrodes within the contact level. Consequently, additional process steps for planarizing the surface topography upon forming the contact level may be avoided.
    Type: Application
    Filed: October 29, 2010
    Publication date: August 4, 2011
    Inventors: Jens Heinrich, Kai Frohberg, Kerstin Ruttloff
  • Patent number: 7989240
    Abstract: A method of manufacturing an active matrix substrate that enables increased productivity due to a reduction in the number of patterning processes and low generation of particles during the patterning processes. The method includes forming a patterned electrode on a substrate, and covering the first electrode with an insulating film. A mono-crystalline semiconductor layer is then formed on the insulating film by attaching a first layer formed on a surface of a semiconductor wafer to the first insulating film, and peeling off a portion of the semiconductor wafer. The semiconductor layer is then patterned and doped, in part, by utilizing the patterned electrode as a photo mask for light illuminated from a lower side of the substrate. This results in part in mono-crystalline active layers for thin film transistors, which are then configured to form a pixel for an active matrix substrate.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: August 2, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Woong-Sik Choi
  • Publication number: 20110180862
    Abstract: Embodiments of the invention provide an integrated circuit for an embedded dynamic random access memory (eDRAM), a semiconductor-on-insulator (SOI) wafer in which such an integrated circuit may be formed, and a method of forming an eDRAM in such an SOI wafer.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, John E. Barth, JR., Herbert L. Ho, Edward J. Nowak, Wayne Trickle
  • Patent number: 7986000
    Abstract: A semiconductor device is formed on a SOI substrate having a semiconductor substrate, a buried oxide film formed on the semiconductor substrate, and a semiconductor layer formed on the buried oxide film, the semiconductor substrate having a first conductive type, the semiconductor layer having a second conductive type, wherein the buried oxide film has a first opening opened therethrough for communicating the semiconductor substrate with the semiconductor layer, the semiconductor layer is arranged to have a first buried portion buried in the first opening in contact with the semiconductor substrate and a semiconductor layer main portion positioned on the first buried portion and on the buried oxide film, the semiconductor substrate has a connection layer buried in a surface of the semiconductor substrate and electrically connected to the first buried portion in the first opening, the connection layer having the second conductive type, and the semiconductor device includes a contact electrode buried in a secon
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Mizukami, Kiyohito Nishihara, Masaki Kondo, Takashi Izumida, Hirokazu Ishida, Atsushi Fukumoto, Fumiki Aiso, Daigo Ichinose, Tadashi Iguchi
  • Patent number: 7985608
    Abstract: A method of manufacturing an active matrix substrate that enables increased productivity due to a reduction in the number of patterning processes and low generation of particles during the patterning processes. The method includes forming a patterned electrode on a substrate, and covering the first electrode with an insulating film. A mono-crystalline semiconductor layer is then formed on the insulating film by attaching a first layer formed on a surface of a semiconductor wafer to the insulating film, and peeling off a portion of the semiconductor wafer. The semiconductor layer is then patterned and doped, in part, by utilizing the patterned electrode as a photo mask for light illuminated from a lower side of the substrate. This results in part in mono-crystalline active layers for thin film transistors, which are then configured to form a pixel for an active matrix substrate.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: July 26, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Woong-Sik Choi
  • Patent number: 7985611
    Abstract: The present invention provides a method for manufacturing a micro-electro-mechanical system (MEMS) resonator device using the same device layer, dielectric layer, and conductive layer that is used to create other electrical devices in a complementary metal oxide semiconductor (CMOS) process.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: July 26, 2011
    Assignee: RF Micro Devices, Inc.
    Inventors: Tony Ivanov, Julio Costa, Jonathan Hale Hammond
  • Patent number: 7986029
    Abstract: A semiconductor structure having a hybrid crystal orientation is provided. The semiconductor structure includes an insulator layer, e.g., a buried oxide (BOX), on a first semiconductor layer, and a second semiconductor layer on the buried oxide, wherein the first and second semiconductor layers have a first and a second crystal orientation, respectively. A first region of the second semiconductor layer is replaced with an epitaxially grown layer of the first semiconductor layer, thereby providing a substrate having a first region with a first crystal orientation and a second region with a second crystal orientation. An isolation structure is formed to isolate the first and second regions. Thereafter, NMOS and PMOS transistors may be formed on the substrate in the region having the crystal orientation that is the most appropriate.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 26, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chiang-Ming Chuang, Kuang-Hsin Chen, I-Lu Wu
  • Publication number: 20110175165
    Abstract: An angled implantation process is used in implanting semiconductor fins of a semiconductor device and provides for covering some but not necessarily all of semiconductor fins of a first type with patterned photoresist, and implanting using an implant angle such that all semiconductor fins of a second type are implanted and none of the semiconductor fins of the first type, are implanted. A higher tilt or implant angle is achieved due to the reduced portions of patterned photoresist, that are used.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shao-Ming YU, Chang-Yun CHANG
  • Publication number: 20110175146
    Abstract: It is an object to achieve high performance of a semiconductor integrated circuit depending on not only a microfabrication technique but also another way and to achieve low power consumption of a semiconductor integrated circuit. A semiconductor device is provided in which a crystal orientation or a crystal axis of a single-crystalline semiconductor layer for a MISFET having a first conductivity type is different from that of a single-crystalline semiconductor layer for a MISFET having a second conductivity type. A crystal orientation or a crystal axis is such that mobility of carriers traveling in a channel length direction is increased in each MISFET. With such a structure, mobility of carriers flowing in a channel of a MISFET is increased, and a semiconductor integrated circuit can be operated at higher speed. Further, low voltage driving becomes possible, and low power consumption can be achieved.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Hideto OHNUMA
  • Publication number: 20110175152
    Abstract: An integrated circuit is provided that includes a fully depleted semiconductor device and a capacitor present on a semiconductor on insulator (SOI) substrate. The fully depleted semiconductor device may be a finFET semiconductor device or a planar semiconductor device. In one embodiment, the integrated circuit includes a substrate having a first device region and a second device region. The first device region of the substrate includes a first semiconductor layer that is present on a buried insulating layer. The buried insulating layer that is in the first device region is present on a second semiconductor layer of the substrate. The second device region includes the second semiconductor layer, but the first semiconductor layer and the buried insulating layer are not present in the second device region. The first device region includes the fully depleted semiconductor device. A capacitor is present in the second device region.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Bruce B. Doris, Ghavam G. Shahidi
  • Publication number: 20110175164
    Abstract: A semiconductor device and method for fabricating a semiconductor device include providing a strained semiconductor layer having a first strained axis, forming an active region within a surface of the strained semiconductor layer where the active region has a longitudinal axis along the strained axis and forming gate structures over the active region. Raised source/drain regions are formed on the active regions above and over the surface of the strained semiconductor layer and adjacent to the gate structures to form transistor devices.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Huiming Bu, Kangguo Cheng, Bruce B. Doris, Johnathan E. Faltermeier, Ali Khakifirooz, Devendra K. Sadana, Chun-chen Yeh
  • Patent number: 7982219
    Abstract: A pixel array includes scan lines, data lines, and pixels. Each pixel arranged in the nth row includes a first sub-pixel, a second sub-pixel, and a third sub-pixel. In the first sub-pixel, a first gate and a first drain of a first transistor are connected to the (n?1)th scan line and a first pixel electrode, respectively. In the second sub-pixel, a second gate of a second transistor is connected to the nth scan line, and a second drain is connected to a second pixel electrode and a first source of the first transistor. In the third sub-pixel, a third gate of a third transistor is connected to the (n+1)th scan line, a third drain is connected to a third pixel electrode and a second source of the second transistor, and a third source is connected to one of the data lines.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: July 19, 2011
    Assignee: Au Optronics Corporation
    Inventors: Jing-Tin Kuo, Kuo-Hsien Lee
  • Patent number: 7982266
    Abstract: A dielectrically isolated semiconductor device of high reliability is provided by realizing a fine and deep element isolating region which can prevent dislocation of an oxide film as an insulation layer by oxidation-induced stress. The dielectrically isolated semiconductor device includes an SOI substrate supporting an active element layer deeper than an expanded distance of a depletion layer subjected to the highest voltage applied to the device, and an element isolating region which encloses the active element layer. The element isolating region contains a deep trench which comes into contact with the insulation layer, and which is filled with n heavily doped layers on both side walls, second insulation films each adjacent to the n heavily doped layer and a polycrystalline semiconductor layer formed between the second insulation films.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: July 19, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Atsuo Watanabe, Mitsutoshi Honda, Norio Ishitsuka, Masahiro Ito, Toshihito Tabata, Shinichi Kurita, Hidekazu Kamioka
  • Publication number: 20110169084
    Abstract: A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Bin YANG, Rohit PAL, Michael HARGROVE
  • Publication number: 20110169089
    Abstract: An electrical device is provided that in one embodiment includes a semiconductor-on-insulator (SOI) substrate having a semiconductor layer with a thickness of less than 10 nm. A semiconductor device having a raised source region and a raised drain region of a single crystal semiconductor material of a first conductivity is present on a first surface of the semiconductor layer. A resistor composed of the single crystal semiconductor material of the first conductivity is present on a second surface of the semiconductor layer. A method of forming the aforementioned electrical device is also provided.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Ghavam G. Shahidi
  • Publication number: 20110170327
    Abstract: The invention provides a content-addressable memory cell formed by two transistors that are configured so that one of the transistors is for storing a data bit and the other for is storing the complement of the data bit. Each transistor has a back control gate that can be controlled to block the associated transistor. The device also includes a comparison circuit that is configured to operate the first and second transistors in read mode while controlling the back control gate of each of the transistors so as to block the passing transistor if a proposed bit and the stored bit correspond. Then, the presence or absence of current on a source line linked to the source of each of the transistors indicates whether the proposed bit and the stored bit are identical or not. The invention also provides methods for operating the content-addressable memory cells of this invention, as well as content-addressable memories having a plurality of the content-addressable memory cells of this invention.
    Type: Application
    Filed: December 21, 2010
    Publication date: July 14, 2011
    Inventors: Carlos Mazure, Richard Ferrant
  • Publication number: 20110169090
    Abstract: The invention relates to a semiconductor device produced on a semiconductor-on-insulator substrate that includes a thin layer of semiconductor material separated from a base substrate by a buried insulating layer, the device including a first conducting region in the thin layer, a second conducting region in the base substrate and a contact connecting the first region to the second region through the insulating layer. The invention also relates to a process for fabricating such semiconductor devices.
    Type: Application
    Filed: January 4, 2011
    Publication date: July 14, 2011
    Inventors: Carlos Mazure, Richard Ferrant
  • Publication number: 20110169088
    Abstract: A device and method is provided that in one embodiment provides a first semiconductor device including a first gate structure on a first channel region, in which a first source region and a first drain region are present on opposing sides of the first channel region, in which a metal nitride spacer is present on only one side of the first channel region. The device further includes a second semiconductor device including a second gate structure on a second channel region, in which a second source region and a second drain region are present on opposing sides of the second channel region. Interconnects may be present providing electrical communication between the first semiconductor device and the second semiconductor device, in which at least one of the first semiconductor device and the second semiconductor device is inverted. A structure having a reverse halo dopant profile is also provided.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Zhijiong Luo, Qingqing Liang, Haizhou Yin
  • Patent number: 7977747
    Abstract: The invention specifically relates to methods of fabricating a composite substrate by providing a first insulating layer on a support substrate at a thickness of e1 and providing a second insulating layer on a source substrate at a thickness of e2, with each layer having an exposed face for bonding; providing plasma activation energy in an amount sufficient to activate a portion of the thickness of the face of the first insulating layer emp1 and a portion of the thickness of the face of the second insulating layer emp1; providing a final insulating layer by molecular bonding the activated face of the first insulating layer with the activated face of the second insulating layer; and removing a back portion of the source substrate while retaining an active layer comprising a remaining portion of the source substrate bonded to the support substrate with the final insulating layer interposed therein to form the composite substrate.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: July 12, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Frédéric Allibert, Sébastien Kerdiles
  • Publication number: 20110163382
    Abstract: A body contacted semiconductor-on-insulator (SOI) metal gate containing transistor that has a reduced parasitic gate capacitance is provided in which a metal portion of a gate stack is removed over the body contact region and a silicon-containing material is formed that contacts the gate dielectric in the body contact region of an SOI substrate. This causes an increase of the effective gate dielectric thickness on the body contact region by greater than 5 angstroms (?). This results in a lower parasitic capacitance at the body contact region.
    Type: Application
    Filed: January 5, 2010
    Publication date: July 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Antonio L. P. Rotondaro
  • Publication number: 20110163381
    Abstract: It is an object to provide a method for manufacturing a semiconductor substrate in which contamination of a semiconductor layer due to an impurity is prevented and the bonding strength between a support substrate and the semiconductor layer can be increased. An oxide film containing first halogen is formed on a surface of a semiconductor substrate, and the semiconductor substrate is irradiated with ions of second halogen, whereby a separation layer is formed and the second halogen is contained in a semiconductor substrate. Then, heat treatment is performed in a state in which the semiconductor substrate and the support substrate are superposed with an insulating surface containing hydrogen interposed therebetween, whereby part of the semiconductor substrate is separated along the separation layer, so that a semiconductor layer containing the second halogen is provided over the support substrate.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20110163383
    Abstract: An integrated circuit is provided that integrates an bulk FET and an SOI FET on the same chip, where the bulk FET includes a gate conductor over a gate oxide formed over a bulk substrate, where the gate dielectric of the bulk FET has the same thickness and is substantially coplanar with the buried insulating layer of the SOI FET. In a preferred embodiment, the bulk FET is formed from an SOI wafer by forming bulk contact trenches through the SOI layer and the buried insulating layer of the SOI wafer adjacent an active region of the SOI layer in a designated bulk device region. The active region of the SOI layer adjacent the bulk contact trenches forms the gate conductor of the bulk FET which overlies a portion of the underlying buried insulating layer, which forms the gate dielectric of the bulk FET.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Applicant: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Shreesh Narasimha, Ning Su, Huiling Shang
  • Patent number: 7973364
    Abstract: According to one exemplary embodiment, a method for fabricating a one-transistor memory cell includes forming an opening by removing a portion of a gate stack of a silicon-on-insulator (SOI) device, where the SOI device is situated over a buried oxide layer. The method further includes forming a bottom gate of the one-transistor memory cell in a bulk substrate underlying the buried oxide layer. The method further includes forming a charge trapping region in the buried oxide layer. The charge trapping region is formed at an interface between a silicon layer underlying the gate stack and the buried oxide layer. The charge trapping region causes the one-transistor memory cell to have an increased sensing margin. The method further includes forming a top gate of the one-transistor memory cell in the opening. Also disclosed is an exemplary one-transistor memory cell fabricated utilizing the exemplary disclosed method.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: July 5, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Zoran Krivokapic
  • Publication number: 20110156038
    Abstract: An active device array substrate including a substrate, scan lines, data lines, active devices, a first dielectric layer, a common line, a second dielectric layer, a patterned conductive layer, a third dielectric layer, and pixel electrodes is provided. At least a part of the active devices are electrically connected to the scan lines and the data lines. The first dielectric layer covers the scan lines, the data lines and the active devices. The common line is disposed on the first dielectric layer. The second dielectric layer covers the common line and the first dielectric layer. The patterned conductive layer is disposed on the second dielectric layer. The third dielectric layer covers the patterned conductive layer and the second dielectric layer. The pixel electrodes are disposed on the third dielectric layer and electrically connected to the patterned conductive layer and the active devices.
    Type: Application
    Filed: April 30, 2010
    Publication date: June 30, 2011
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Ching-Jung Yang, Ke-Chih Chang, Kuo-Yu Huang, Yu-Cheng Chen
  • Patent number: 7968944
    Abstract: An Integrated Circuit (IC) chip that may be a bulk CMOS IC chip with silicon on insulator (SOI) Field Effect Transistors (FETs) and method of making the chip. The IC chip includes areas with pockets of buried insulator strata and FETs formed on the strata are SOI FETs. The SOI FETs may include Partially Depleted SOI (PD-SOI) FETs and Fully Depleted SOI (FD-SOI) FETs and the chip may include bulk FETs as well. The FETs are formed by contouring the surface of a wafer, conformally implanting oxygen to a uniform depth, and planarizing to remove the Buried OXide (BOX) in bulk FET regions.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Rajiv V. Joshi, Louis C. Hsu, Oleg Gluschenkov
  • Patent number: 7968388
    Abstract: A method for manufacturing a thin-film device includes forming a separation layer on a substrate, forming a base insulating layer on the separation layer, forming a thin-film device layer on the base insulating layer, bonding a transfer layer including the base insulating layer and the thin-film device layer to a transfer body with an adhesive, causing intralayer delamination or interfacial delamination in the separation layer, and removing the transfer layer from the substrate. The thin-film device layer includes a first wiring sublayer which is located at the bottom of the thin-film device layer and which is in contact with the base insulating layer, a dielectric sublayer which is in contact with a surface of the first wiring sublayer, a semiconductor sublayer electrically insulated from the first wiring sublayer with the dielectric sublayer, and a second wiring sublayer formed subsequently to the semiconductor sublayer.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: June 28, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Yuko Komatsu
  • Publication number: 20110147840
    Abstract: A semiconductor device comprises a substrate and a semiconductor body formed on the substrate. The semiconductor body comprises a source region; and a drain region. The source region or the drain region, or combinations thereof, comprises a first side surface, a second side surface, and a top surface. The first side surface is opposite the second side surface, the top surface is opposite the bottom surface. The source region or the drain region, or combinations thereof, comprise a metal layer formed on the substantially all of the first side surface, substantially all of the second side surface, and the top surface.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Stephen M. Cea, Rishabh Mehandru, Lucian Shifren, Kelin Kuhn
  • Publication number: 20110147883
    Abstract: Disclosed is a method for forming a buried material layer in a semiconductor body, and a semiconductor arrangement including a buried material layer.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Applicant: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Anton Mauder, Helmut Strack
  • Publication number: 20110140230
    Abstract: The present invention relates to a method of forming a SOI structure having a thin silicon layer by forming a first etch stop layer on a donor substrate, forming a second etch stop layer on the first etch stop layer, wherein the material of the second etch stop layer differs from the material of the first etch stop layer, forming a thin silicon layer on the second etch stop layer, preferably by epitaxy, and bonding the intermediate structure to a target substrate, followed by detaching the donor substrate by splitting initiated in the first etch stop layer at a weakened region and removing the remaining material of the etch stop layers to produce a final ETSOI structure. The invention also relates to the ETSOI structure produces by the described method.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 16, 2011
    Inventors: Nicolas Daval, Cecile Aulnette
  • Patent number: 7960730
    Abstract: Provided is a method of fabricating a semiconductive oxide thin-film transistor (TFT) substrate. The method includes forming gate wiring on an insulation substrate; and forming a structure in which a semiconductive oxide film pattern and data wiring are stacked on the gate wiring, wherein the semiconductive oxide film pattern is selectively patterned to have channel regions of first thickness and source/drain regions of greater second thickness and where image data is coupled to the source regions by data wiring formed on the source regions. According to a 4-mask embodiment, the data wiring and semiconductive oxide film pattern are defined by a shared etch mask.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: June 14, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-hun Lee, Dong-ju Yang, Tae-hyung Ihn, Do-hyun Kim, Sun-young Hong, Seung-jae Jung, Chang-oh Jeong, Eun-guk Lee
  • Patent number: 7960736
    Abstract: The present invention relates to a semiconductor-on-insulator structure including a semiconductor component comprised of substantially single-crystal semiconductor material layer and a single-crystal semiconductor material with an enhanced oxygen content layer; an oxide glass material layer; and a glass-ceramic layer.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: June 14, 2011
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Linda R. Pinckney
  • Patent number: 7960790
    Abstract: A double-gate transistor having front (upper) and back gates that are aligned laterally is provided. The double-gate transistor includes a back gate thermal oxide layer below a device layer; a back gate electrode below a back gate thermal oxide layer; a front gate thermal oxide above the device layer; a front gate electrode layer above the front gate thermal oxide and vertically aligned with the back gate electrode; and a transistor body disposed above the back gate thermal oxide layer, symmetric with the first gate. The back gate electrode has a layer of oxide formed below the transistor body and on either side of a central portion of the back gate electrode, thereby positioning the back gate self-aligned with the front gate. The transistor also includes source and drain electrodes on opposite sides of said transistor body.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Omer H. Dokumaci, Bruce B. Doris, Kathryn W. Guarini, Suryanararyan G. Hegde, Meikei Ieong, Erin Catherine Jones
  • Patent number: 7960791
    Abstract: Disclosed is a method of forming a pair of transistors by epitaxially growing a pair of silicon fins on a silicon germanium fin on a bulk wafer. In one embodiment a gate conductor between the fins is isolated from a conductor layer on the bulk wafer so a front gate may be formed. In another embodiment a gate conductor between the fins contacts a conductor layer on the bulk wafer so a back gate may be formed. In yet another embodiment both of the previous structures are simultaneously formed on the same bulk wafer. The method allow the pairs of transistors to be formed with a variety of features (e.g., strained fins, a space between two fins that is approximately 0.5 to 3 times greater than a width of a single fin, a first dielectric layer on the inner sidewalls of each pair of fins with a different thickness and/or a different dielectric material than a second dielectric layer on the outer sidewalls of each pair of fins, etc.).
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: June 14, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Publication number: 20110133776
    Abstract: This invention provides a semiconductor device structure formed on a conventional semiconductor-on-insulator (SeOI) substrate and including an array of patterns, each pattern being formed by at least one field-effect transistor, each FET transistor having, in the thin film, a source region, a drain region, a channel region, and a front control gate region formed above the channel region. The provided device further includes at least one FET transistor having a pattern including a back control gate region formed in the base substrate beneath the channel region, the back gate region being capable of being biased in order to shift the threshold voltage of the transistor to simulate a modification in the channel width of the transistor or to force the transistor to remain off or on whatever the voltage applied on its front control gate. This invention also provides methods of operating such semiconductor device structures.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 9, 2011
    Inventors: Carlos Mazure, Richard Ferrant
  • Publication number: 20110133281
    Abstract: Integrated circuits having complementary metal-oxide semiconductor (CMOS) and photonics circuitry and techniques for three-dimensional integration thereof are provided. In one aspect, a three-dimensional integrated circuit comprises a bottom device layer and a top device layer. The bottom device layer comprises a substrate; a digital CMOS circuitry layer adjacent to the substrate; and a first bonding oxide layer adjacent to a side of the digital CMOS circuitry layer opposite the substrate. The top device layer comprises an analog CMOS and photonics circuitry layer formed in a silicon-on-insulator (SOI) layer having a buried oxide (BOX) with a thickness of greater than or equal to about 0.5 micrometers; and a second bonding oxide layer adjacent to the analog CMOS and photonics circuitry layer. The bottom device layer is bonded to the top device layer by an oxide-to-oxide bond between the first bonding oxide layer and the second bonding oxide layer.
    Type: Application
    Filed: February 1, 2011
    Publication date: June 9, 2011
    Applicant: International Business Machines Corporation
    Inventors: Solomon Assefa, Kuan-Neng Chen, Steven J. Koester, Yurii A. Vlasov
  • Patent number: 7956414
    Abstract: A semiconductor substrate comprising: a semiconductor base; dielectric layers of mutually different film thicknesses formed on the semiconductor base; and semiconductor layers of mutually different film thicknesses formed on the dielectric layers.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: June 7, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Juri Kato
  • Patent number: 7956436
    Abstract: A method for forming a device wafer with a recyclable support by providing a wafer having first and second surfaces, with at least the first surface of the wafer comprising a semiconductor material that is suitable for receiving or forming electronic devices thereon, providing a supporting substrate having upper and lower surfaces, and providing the second surface of the wafer or the upper surface of the supporting substrate with void features in an amount sufficient to enable a connecting bond therebetween to form a construct wherein the bond is formed at an interface between the wafer and the substrate and is suitable to maintain the wafer and supporting substrate in association while forming or applying electronic devices to the first surface of the wafer, but which connecting bond is severable at the interface due to the void features to separate the substrate from the wafer so that the substrate can be reused.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: June 7, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: George K. Celler
  • Patent number: 7955914
    Abstract: A method is for producing an asymmetric architecture semiconductor device. The device includes a substrate, and in stacked relation, a first photosensitive layer, a non-photosensitive layer, and a second photosensitive layer. The method includes a first step of exposing a first zone in each of the photosensitive layers by a first beam of electrons traversing the non-photosensitive layer. A second step includes exposing at least one second zone of one of the two photosensitive layers by a second beam of electrons or photons or ions, thereby producing a widening of one of the first zones compared to the other first zone such that the second zone is in part superimposed on one of the first zones.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 7, 2011
    Assignees: STMicroelectronics SA, Commissariat a l'Energie Atomique
    Inventors: Serdar Manakli, Jessy Bustos, Philippe Coronel, Laurent Pain