Including Insulator On Semiconductor, E.g. Soi (silicon On Insulator) (epo) Patents (Class 257/E27.112)
  • Patent number: 7955940
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas Walter Dyer, Junedong Lee, Dominic J. Schepis
  • Publication number: 20110127608
    Abstract: A method of fabricating a semiconductor device is provided in which the channel of the device is present in an extremely thin semiconductor-on-insulator (ETSOI) layer, i.e., a semiconductor layer having a thickness of less than 20 nm. In one embodiment, the method begins with forming a first semiconductor layer and epitaxially growing a second semiconductor layer on a handling substrate. A first gate structure is formed on a first surface of the second semiconductor layer and source regions and drain regions are formed adjacent to the gate structure. The handling substrate and the first semiconductor layer are removed to expose a second surface of the second semiconductor layer that is opposite the first surface of the semiconductor layer. A second gate structure or a dielectric region is formed in contact with the second surface of the second semiconductor layer.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ghavam G. Shahidi
  • Publication number: 20110127529
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Publication number: 20110127609
    Abstract: The present invention aims at providing a semiconductor memory device that can be manufactured by a MOS process and can realize a stable operation. A storage transistor has impurity diffusion regions, a channel formation region, a charge accumulation node, a gate oxide film, and a gate electrode. The gate electrode is connected to a gate line and the impurity diffusion region is connected to a source line. The storage transistor creates a state where holes are accumulated in the charge accumulation node and a state where the holes are not accumulated in the charge accumulation node to thereby store data “1” and data “0”, respectively. An access transistor has impurity diffusion regions, a channel formation region, a gate oxide film, and a gate electrode. The impurity diffusion region is connected to a bit line.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Fukashi MORISHITA, Kazutami ARIMOTO
  • Publication number: 20110121369
    Abstract: An integrated circuit (IC) includes a fin field effect transistor (FinFET) radio frequency (RF) switch; and a planar complementary metal-oxide semiconductor field effect transistor (MOSFET). The planar MOSFET has a channel on a <100> wafer plane and the FinFET RF switch has a channel on a <100> fin plane. The FinFET RF switch and the planar MOSFET can be oriented at approximately 45° with respect to one another.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Alvin J. Joseph, Edward J. Nowak
  • Publication number: 20110121390
    Abstract: Semiconductor substrates and methods of manufacturing the same are provided. The semiconductor substrates include a substrate region, an insulation region and a floating body region. The insulation region is disposed on the substrate region. The floating body region is separated from the substrate region by the insulation region and is disposed on the insulation region. The substrate region and the floating body region are formed of materials having identical characteristics. The method of manufacturing the semiconductor substrate including forming at least one floating body pattern by etching a bulk substrate, separating the bulk substrate into a substrate region and a floating body region by etching a lower middle portion of the floating body pattern, and filling an insulating material between the floating body region and the substrate region.
    Type: Application
    Filed: January 26, 2011
    Publication date: May 26, 2011
    Inventors: Won-joo Kim, Tae-hee Lee, Dae-kil Cha, Yoon-dong Park
  • Patent number: 7947546
    Abstract: Some example embodiments of the invention comprise methods for and semiconductor structures comprised of: a MOS transistor comprised of source/drain regions, a gate dielectric, a gate electrode, channel region; a carbon doped SiGe region that applies a stress on the channel region whereby the carbon doped SiGe region retains stress/strain on the channel region after subsequent heat processing.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: May 24, 2011
    Assignees: Chartered Semiconductor Manufacturing, Ltd., International Business Machines Corporation (IBM)
    Inventors: Jin Ping Liu, Judson Robert Holt
  • Patent number: 7948027
    Abstract: An embedded bit line structure, in which, a substrate includes an insulator layer having an original top surface and a semiconductor layer on the original top surface of the insulator layer, and a bit line is disposed within the lower portion of the trench along one side of an active area. The bit line includes a first portion and a second portion. The first portion is located within the insulator layer and below the original top surface of the insulator layer. The second portion is disposed on the first portion to electrically connect the semiconductor layer of the active area. An insulator liner is disposed on the first portion of the bit line and between the second portion of the bit line and the semiconductor layer of the substrate opposite the active area for isolation. An STI is disposed within the trench to surround the active area for isolation.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: May 24, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Shing-Hwa Renn, Cheng-Chih Huang, Yung-Meng Huang
  • Publication number: 20110115553
    Abstract: SOI CMOS structures having at least one programmable electrically floating backplate are provided. Each electrically floating backplate is individually programmable. Programming can be performed by injecting electrons into each conductive floating backplate. Erasure of the programming can be accomplished by tunneling the electrons out of the floating backplate. At least one of two means can accomplish programming of the electrically floating backgate. The two means include Fowler-Nordheim tunneling, and hot electron injection using an SOI pFET. Hot electron injection using pFET can be done at much lower voltage than injection by tunneling electron injection.
    Type: Application
    Filed: November 16, 2009
    Publication date: May 19, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin Cai, Robert H. Dennard, Ali Khakifirooz, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 7943995
    Abstract: Provided are an NMOS device, a PMOS device and a SiGe HBT device which are implemented on an SOI substrate and a method of fabricating the same. In manufacturing a Si-based high speed device, a SiGe HBT and a CMOS are mounted on a single SOI substrate. In particular, a source and a drain of the CMOS are formed of SiGe and metal, and thus leakage current is prevented and low power consumption is achieved. Also, heat generation in a chip is suppressed, and a wide operation range may be obtained even at a low voltage.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 17, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Yeong Kang, Seung Yun Lee, Kyoung Ik Cho
  • Patent number: 7943405
    Abstract: A liquid crystal display panel and a fabricating method thereof comprising an image sensing capability, image scanning, and touch inputting. In the liquid crystal display device, a gate line and a data line are formed to intersect each other on a substrate to define a pixel area in which a pixel electrode is positioned. A first thin film transistor is positioned at an intersection area of the gate line and the data line. A sensor thin film transistor senses light having image information and supplied with a first driving voltage from the data line. A driving voltage supply line is positioned in parallel to the gate line to supply a second driving voltage to the sensor thin film transistor.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 17, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Hee Kwang Kang, Kyo Seop Choo
  • Publication number: 20110108919
    Abstract: The present invention provides a semiconductor structure including a buried resistor with improved control, in which the resistor is fabricated in a region of a semiconductor substrate beneath a well region that is also present in the substrate. In accordance with the present invention, the inventive structure includes a semiconductor substrate containing at least a well region; and a buried resistor located in a region of the semiconductor substrate that is beneath said well region. The present invention also provides a method of fabricating such a structure in which a deep ion implantation process is used to form the buried resistor and a shallower ion implantation process is used in forming the well region.
    Type: Application
    Filed: January 13, 2011
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Keith E. Downes, Ebenezer E. Eshun, John E. Florkey, Heidi L. Greer, Robert M. Rassel, Anthony K. Stamper, Kunal Vaed
  • Patent number: 7939863
    Abstract: Analog ICs frequently include circuits which operate over a wide current range. At low currents, low noise is important, while IC space efficiency is important at high currents. A vertically integrated transistor made of a JFET in parallel with an MOS transistor, sharing source and drain diffused regions, and with independent gate control, is disclosed. N-channel and p-channel versions may be integrated into common analog IC flows with no extra process steps, on either monolithic substrates or SOI wafers. pinchoff voltage in the JFET is controlled by photolithographically defined spacing of the gate well regions, and hence exhibits low variability.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: May 10, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Pinghai Hao, Marie Denison
  • Publication number: 20110101458
    Abstract: An SOI type semiconductor device having a silicon substrate and a buried oxide layer formed on the silicon substrate includes an internal circuit formed in a first region having at least one FD type transistor having a SOI structure, the internal circuit performing a function of the semiconductor device and a protection circuit formed in a second region having at least one PD type transistor having a SOI structure, the protection circuit protecting the internal circuit from electro static damage.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 5, 2011
    Applicant: OKI SEMICONDUCTOR CO., LTD.
    Inventor: Masao Okihara
  • Publication number: 20110101358
    Abstract: Disclosed herein is a semiconductor device which employs a thin-film transistor. In addition, the semiconductor device has a gate electrode, a gate insulation film, an organic semiconductor layer, a structure, a source electrode, a drain electrode, and an electrode material layer.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 5, 2011
    Applicant: SONY CORPORATION
    Inventors: Akihiro Nomoto, Hideki Ono
  • Publication number: 20110101490
    Abstract: A silicon-on-insulator wafer. The SOI wafer comprises a top silicon layer, a silicon substrate, and an oxide insulator layer disposed across the wafer and between the silicon substrate and the top silicon layer. The oxide insulator layer has at least one of a contoured top surface and a contoured bottom surface. Also provided are processes for manufacturing such a SOI wafer.
    Type: Application
    Filed: January 10, 2011
    Publication date: May 5, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: LEVENT GULARI
  • Publication number: 20110101459
    Abstract: Thin film transistors and fabrication methods thereof. A gate is formed overlying a portion of a substrate. A first vanadium oxide layer formed overlying the gate and the substrate. A gate-insulating layer is formed overlying the first vanadium oxide layer. A semiconductor layer is formed on a portion of the gate-insulating layer. A source and a drain are formed on a portion of the semiconductor layer.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 5, 2011
    Applicant: AU OPTRONICS CORP.
    Inventors: Feng-Yuan Gan, Han-Tu Lin
  • Patent number: 7935998
    Abstract: A structure and method of forming a body contact for a semiconductor-on-insulator trench device. The method including: forming set of mandrels on a top surface of a substrate, each mandrel of the set of mandrels arranged on a different corner of a polygon and extending above the top surface of the substrate, a number of mandrels in the set of mandrels equal to a number of corners of the polygon; forming sidewall spacers on sidewalls of each mandrel of the set of mandrels, sidewalls spacers of each adjacent pair of mandrels merging with each other and forming a unbroken wall defining an opening in an interior region of the polygon, a region of the substrate exposed in the opening; etching a contact trench in the substrate in the opening; and filling the contact trench with an electrically conductive material to form the contact.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni
  • Patent number: 7932560
    Abstract: A method of forming a substrate contact in a semiconductor device, comprising the steps of providing a semiconductor base substrate (2) having a buried oxide (BOX) layer (4) and a thin active semiconductor layer (103) on the BOX layer (4), forming a trench (104) in the active semiconductor layer (103) and the Box layer (4) to the semiconductor base substrate (2) below, and then depositing another active semiconductor (epitoxial) layer (6) over the remaining active semiconductor layer (103) and in the trench (104) to create the substrate contact. The trench (104) is etched at a location on the wafer corresponding to a scribe lane (106).
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 26, 2011
    Assignee: NXP B.V.
    Inventor: Piebe A. Zijlstra
  • Patent number: 7932575
    Abstract: A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The method for manufacturing the imaging device includes the steps of providing a substrate comprising an insulator layer, and an epitaxial layer substantially overlying the insulator layer; fabricating at least one imaging component at least partially overlying and extending into the epitaxial layer; forming a plurality of bond pads substantially overlying the epitaxial layer; fabricating a dielectric layer substantially overlying the epitaxial layer and the at least one imaging component; providing a handle wafer; forming a plurality of conductive trenches in the handle wafer; forming a plurality of conductive bumps on a first surface of the handle wafer substantially underlying the conductive trenches; and bonding the plurality of conductive bumps to the plurality of bond pads.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: April 26, 2011
    Assignee: SRI International
    Inventors: Mahalingam Bhaskaran, Pradyumna Kumar Swain, Peter Levine, Norman Goldsmith
  • Patent number: 7928513
    Abstract: A chip can include a CMOS structure having a bulk device disposed in a first region of a semiconductor substrate in conductive communication with an underlying bulk region of the substrate, the first region and the bulk region having a first crystal orientation. An SOI device is disposed in a semiconductor-on-insulator (“SOI”) layer separated from the bulk region of the substrate by a buried dielectric layer, the SOI layer having a different crystal orientation from the first crystal orientation. In one example, the bulk device includes a p-type field effect transistor (“PFET”) and the SOI device includes an n-type field effect transistor (“NFET”) device. Alternatively, the bulk device can include an NFET and the SOI device can include a PFET. When the SOI device has a gate conductor in conductive communication with a gate conductor of the bulk device, charging damage can occur to the SOI device, except for the presence of diodes in reverse-biased conductive communication with the bulk region.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 19, 2011
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Anda C. Mocuta, Jeffrey W. Sleight, Anthony K. Stamper
  • Patent number: 7928511
    Abstract: A semiconductor device (1) includes a plurality of photodiodes (20) on a semiconductor substrate (11). Cathodes (22) and a common anode (21) of the plurality of photodiodes (20 (20a, 20b)) are formed so as to be electrically independent from the semiconductor substrate (11), the plurality of photodiodes (20) have the common anode (21) and the plurality of separate cathodes (22), and an output of the common anode (21) is considered to be equivalent to a sum of outputs of the plurality of separate photodiodes (20). Alternatively, the plurality of photodiodes have a common cathode and a plurality of separate anodes, and an output of the common cathode is considered to be equivalent to a sum of outputs of a plurality of separate photodiodes. By completely electrically isolating the anode and the cathode of the photodiodes from the substrate, the noise characteristic can be reduced, and crosstalk can be reduced.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: April 19, 2011
    Assignee: Sony Corporation
    Inventor: Chihiro Arai
  • Patent number: 7927979
    Abstract: Techniques are disclosed that facilitate fabrication of semiconductors including structures and devices of varying thickness. One embodiment provides a method for semiconductor device fabrication that includes thinning a region of a semiconductor wafer upon which the device is to be formed thereby defining a thin region and a thick region of the wafer. The method continues with forming on the thick region one or more photonic devices and/or partially depleted electronic devices, and forming on the thin region one or more fully depleted electronic devices. Another embodiment provides a semiconductor device that includes a semiconductor wafer defining a thin region and a thick region. The device further includes one or more photonic devices and/or partially depleted electronic devices formed on the thick region, and one or more fully depleted electronic devices formed on the thin region. An isolation area can be formed between the thin region and the thick region.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 19, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Craig M. Hill, Andrew T S Pomerene, Daniel N. Carothers, Timothy J. Conway, Vu A. Vu
  • Publication number: 20110084338
    Abstract: An object is to reduce the adverse influence which a portion of a gate insulating layer where the thickness has decreased, that is, a step portion, has on semiconductor element characteristics so that the reliability of the semiconductor element is improved. A semiconductor layer is formed over an insulating surface; a side surface of the semiconductor layer is oxidized using wet oxidation to form a first insulating layer; a second insulating layer is formed over the semiconductor layer and the first insulating layer; and a gate electrode is formed over the semiconductor layer and the first insulating layer with the second insulating layer interposed therebetween.
    Type: Application
    Filed: December 9, 2010
    Publication date: April 14, 2011
    Inventor: Hideto Ohnuma
  • Patent number: 7923781
    Abstract: It is an object to achieve high performance of a semiconductor integrated circuit depending on not only a microfabrication technique but also another way and to achieve low power consumption of a semiconductor integrated circuit. A semiconductor device is provided in which a crystal orientation or a crystal axis of a single-crystalline semiconductor layer for a MISFET having a first conductivity type is different from that of a single-crystalline semiconductor layer for a MISFET having a second conductivity type. A crystal orientation or a crystal axis is such that mobility of carriers traveling in a channel length direction is increased in each MISFET. With such a structure, mobility of carriers flowing in a channel of a MISFET is increased, and a semiconductor integrated circuit can be operated at higher speed. Further, low voltage driving becomes possible, and low power consumption can be achieved.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: April 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideto Ohnuma
  • Patent number: 7919814
    Abstract: As well as achieving both downsizing and thickness reduction and sensitivity improvement of a semiconductor device that has: a MEMS sensor formed by bulk micromachining technique such as an acceleration sensor and an angular rate sensor; and an LSI circuit, a packaging structure of the semiconductor device having the MEMS sensor and the LSI circuit can be simplified. An integrated circuit having MISFETs and wirings is formed on a silicon layer of an SOI substrate, and the MEMS sensor containing a structure inside is formed by processing a substrate layer of the SOI substrate. In other words, by using both surfaces of the SOI substrate, the integrated circuit and the MEMS sensor are mounted on one SOI substrate. The integrated circuit and the MEMS sensor are electrically connected to each other by a through-electrode provided in the SOI substrate.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: April 5, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Yasushi Goto, Tsukasa Fujimori, Heewon Jeong, Kiyoko Yamanaka
  • Publication number: 20110068339
    Abstract: A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 24, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Toshimitsu KONUMA, Akira SUGAWARA, Yukiko UEHARA, Hongyong ZHANG, Atsunori SUZUKI, Hideto OHNUMA, Naoaki YAMAGUCHI, Hideomi SUZAWA, Hideki UOCHI, Yasuhiko TAKEMURA
  • Publication number: 20110068400
    Abstract: Circuits and methods for providing an SRAM or CAM bit cell. In one embodiment, a bit cell portion with thicker gate oxides in the storage cell transistors, and thinner gate oxides in a read port section having transistors are disclosed. The use of the thick gate oxides in the storage cell transistors provides a stable storage of data and lower standby leakage current. The use of the thinner gate oxides in the read port transistors provides fast read accesses and allows a lower Vcc,min in the read port. The methods used to form the dual gate oxide thickness SRAM cells have process steps compatible with the existing semiconductor manufacturing processes. Embodiments using high k gate dielectrics, dual gate dielectric materials in a single bit cell, and using finFET and planar devices in a bit cell are described. Methods for forming the structures are disclosed.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 24, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Wei Wang, Chang-Ta Yang, Yuh-Jier Mii
  • Publication number: 20110068403
    Abstract: Some embodiments of the present invention include providing carbon doped regions and raised source/drain regions to provide tensile stress in NMOS transistor channels.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Inventors: Michael L. Hattendorf, Jack Hwang, Anand Murthy, Andrew N. Westmeyer
  • Patent number: 7910995
    Abstract: A semiconductor device includes a semiconductor-on-insulator region on a substrate. The semiconductor-on-insulator region includes a first semiconductor region overlying a dielectric region. The device includes an MOS transistor and a bipolar transistor. The MOS transistor has a drain region, a body region, and a source region in the first semiconductor region. The MOS transistor also includes a gate. The device also includes a second semiconductor region overlying the substrate and adjacent to the drain region, and a third semiconductor region overlying the substrate and adjacent to the second semiconductor region. The bipolar transistor includes has the drain region of the MOS transistor as an emitter, the second semiconductor region as a base, and the third semiconductor region as a collector. Accordingly, the drain of the MOS transistor also functions as the emitter of the bipolar transistor. Additionally, the gate and the base are coupled by a resistive element.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 22, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: James Pan
  • Publication number: 20110057243
    Abstract: A non-volatile memory disposed in a SOI substrate is provided. The non-volatile memory includes a memory cell and a first conductive type doped region. The memory cell includes a gate, a charge storage structure, a bottom dielectric layer, a second conductive type drain region, and a second conductive type source region. The gate is disposed on the SOI substrate. The charge storage structure is disposed between the gate and the SOI substrate. The bottom dielectric layer is disposed between the charge storage layer and the SOI substrate. The second conductive type drain region and the second conductive type source region are disposed in a first conductive type silicon body layer next to the two sides of the gate. The first conductive type doped region is disposed in the first conductive type silicon body layer and electrically connected to the first conductive type silicon body layer beneath the gate.
    Type: Application
    Filed: November 11, 2010
    Publication date: March 10, 2011
    Applicant: eMemory Technology Inc.
    Inventors: Hsin-Ming Chen, Hai-Ming Lee, Shih-Jye Shen, Ching-Hsiang Hsu
  • Patent number: 7902603
    Abstract: A semiconductor device has plural columnar gate electrodes for plural MOSFETs formed in a row separately on a semiconductor substrate, and a semiconductor region which is formed in a part between the neighboring two columnar gate electrodes of the plural columnar gate electrodes to form a channel of the MOSFETs.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kouji Matsuo
  • Publication number: 20110049631
    Abstract: In one embodiment, a semiconductor integrated circuit is provided a first well region, a second well region, a first body bias supply unit and a second body bias supply unit. The first well region includes a first transistor having a first threshold voltage. The second well region includes a second transistor having an absolute value of a second threshold voltage higher than an absolute value of the first threshold voltage. The second well region is separated from the first well region. The second well region has the same conductive type as the first well region. The first body bias supply unit supplies a first body bias voltage to the first well region. The second body bias supply unit supplies a second body bias voltage to the second well region.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 3, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Yasuhito Itaka
  • Publication number: 20110049594
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Application
    Filed: September 1, 2009
    Publication date: March 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas Walter Dyer, Junedong Lee, Dominic J. Schepis
  • Publication number: 20110049630
    Abstract: A complementary metal-oxide semiconductor (CMOS) structure includes a substrate and a P-type field effect transistor (FET) and an N-type FET disposed adjacent to one another on the substrate. Each FET includes a silicon-on-insulator (SOI) region, a gate electrode disposed on the SOI region, a source stressor, and a drain stressor disposed across from the source stressor relative to the gate electrode, wherein proximities of the source stressor and the drain stressor to a channel of a respective FET are substantially equal.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: International Business Machines Corporation
    Inventors: Amlan Majumdar, Xinhui Wang
  • Patent number: 7897428
    Abstract: Integrated circuits having complementary metal-oxide semiconductor (CMOS) and photonics circuitry and techniques for three-dimensional integration thereof are provided. In one aspect, a three-dimensional integrated circuit comprises a bottom device layer and a top device layer. The bottom device layer comprises a substrate; a digital CMOS circuitry layer adjacent to the substrate; and a first bonding oxide layer adjacent to a side of the digital CMOS circuitry layer opposite the substrate. The top device layer comprises an analog CMOS and photonics circuitry layer formed in a silicon-on-insulator (SOI) layer having a buried oxide (BOX) with a thickness of greater than or equal to about 0.5 micrometers; and a second bonding oxide layer adjacent to the analog CMOS and photonics circuitry layer. The bottom device layer is bonded to the top device layer by an oxide-to-oxide bond between the first bonding oxide layer and the second bonding oxide layer.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Kuan-Neng Chen, Steven J. Koester, Yurii A. Vlasov
  • Publication number: 20110042745
    Abstract: A disclosed semiconductor device includes an MOS transistor having an N-type low-concentration drain region, a source region, an ohmic drain region, a P-type channel region, an ohmic channel region, a gate isolation film, and a gate electrode. The N-type low-concentration drain region includes two low-concentration drain layers in which the N-type impurity concentration of the upper layer is higher than that of the lower layer; the P-type channel region includes two channel layers in which the P-type impurity concentration of the upper layer is lower than that of the lower layer; and the gate electrode is formed on the P-type channel region and the N-type low-concentration drain region and disposed to be separated from the ohmic drain region when viewed from the top.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 24, 2011
    Applicant: RICOH COMPANY, LTD.
    Inventor: Takaaki NEGORO
  • Patent number: 7893494
    Abstract: In one embodiment, the present invention provides a semiconductor device that includes a substrate including a semiconducting layer positioned overlying an insulating layer the semiconducting layer including a semiconducting body and isolation regions present about a perimeter of the semiconducting body; a gate structure overlying the semiconducting layer of the substrate, the gate structure present on a first portion on an upper surface of the semiconducting body; and a silicide body contact that is in direct physical contact with a second portion of the semiconducting body that is separated from the first portion of the semiconducting body by a non-silicide semiconducting region.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: February 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Leland Chang, Anthony I. Chou, Shreesh Narasimha, Jeffrey W. Sleight
  • Publication number: 20110037125
    Abstract: A method of fabricating an electronic structure is provided that includes forming a first conductivity doped first semiconductor material on the SOI semiconductor layer of a substrate. The SOI semiconductor layer has a thickness of less than 10 nm. The first conductivity in-situ doped first semiconductor material is removed from a first portion of the SOI semiconductor layer, wherein a remaining portion of the first conductivity in-situ doped first semiconductor material is present on a second portion of SOI semiconductor layer. A second conductivity in-situ doped second semiconductor material is formed on the first portion of the SOI semiconductor layer, wherein a mask prohibits the second conductivity in-situ doped semiconductor material from being formed on the second portion of the SOI semiconductor layer. The dopants from the first and second conductivity in-situ doped semiconductor materials are diffused into the first semiconductor layer to form dopant regions.
    Type: Application
    Filed: August 17, 2009
    Publication date: February 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ghavam G. Shahidi
  • Publication number: 20110037123
    Abstract: A manufacturing method of a semiconductor substrate is provided, in which a bonding strength can be increased even when a substrate having low heat resistant temperature, e.g., a glass substrate, is used. Heat treatment is conducted at a temperature higher than or equal to a strain point of a support substrate in an oxidation atmosphere containing halogen, so that a surface of a semiconductor substrate is covered with an insulating film. A separation layer is formed in the semiconductor substrate. A blocking layer is provided. Then, heat treatment is conducted in a state in which the semiconductor substrate and the support substrate are superposed with the silicon oxide film therebetween, at a temperature lower than or equal to the support substrate, so that a part of the semiconductor substrate is separated at the separation layer. In this manner, a single crystal semiconductor layer is formed on the support substrate.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei YAMAZAKI
  • Patent number: 7888736
    Abstract: A semiconductor structure includes active multi-gate fin-type field effect transistor (MUGFET) structures and inactive MUGFET fill structures between the active MUGFET structures. The active MUGFET structures comprise transistors that change conductivity depending upon voltages within gates of the active MUGFET structures. Conversely, the inactive MUGFET fill structures comprise passive devices that do not change conductivity irrespective of voltages within gates of the inactive MUGFET fill structures. The gates of the active MUGFET structures are parallel to the gates of the inactive MUGFET fill structures, and the fins of the active MUGFET structures are the same size as the fins of the inactive MUGFET fill structures. The active MUGFET structures have the same pitch as the gates of the inactive MUGFET fill structures. The gates of the active MUGFET structures comprise active doping agents, but the inactive MUGFET fill structures do not contain the active doping agents.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent Anderson, Andres Bryant, Edward J. Nowak
  • Publication number: 20110031552
    Abstract: To provide, in FINFET whose threshold voltage is determined essentially by the work function of a gate electrode, a technology capable of adjusting the threshold voltage of FINFET without changing the material of the gate electrode. FINFET is formed over an SOI substrate comprised of a substrate layer, a buried insulating layer formed over the substrate layer, and a silicon layer formed over the buried insulating layer. The substrate layer has therein a first semiconductor region contiguous to the buried insulating layer. The silicon layer of the SOI substrate is processed into a fin. A ratio of the height of the fin to the width of the fin is adjusted to fall within a range of from 1 or greater but not greater than 2. In addition, a voltage can be applied to the first semiconductor region.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Inventors: Toshiaki IWAMATSU, Kozo Ishikawa, Kiyoshi Hayashi
  • Patent number: 7884448
    Abstract: The present invention relates to high performance three-dimensional (3D) field effect transistors (FETs). Specifically, a 3D semiconductor structure having a bottom surface oriented along one of a first set of equivalent crystal planes and multiple additional surfaces oriented along a second, different set of equivalent crystal planes can be used to form a high performance 3D FET with carrier channels oriented along the second, different set of equivalent crystal planes. More importantly, such a 3D semiconductor structure can be readily formed over the same substrate with an additional 3D semiconductor structure having a bottom surface and multiple additional surfaces all oriented along the first set of equivalent crystal planes. The additional 3D semiconductor structure can be used to form an additional 3D FET, which is complementary to the above-described 3D FET and has carrier channels oriented along the first set of equivalent crystal planes.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: February 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Haining S. Yang
  • Patent number: 7884422
    Abstract: A semiconductor memory including a plurality of cell units arranged in a row direction, each of the cell units includes: a semiconductor region; a first buried insulating film provided on the semiconductor region; a second buried insulating film provided on the first buried insulating film, which has higher dielectric constant than the first buried insulating film; a semiconductor layer provided on the second buried insulating film; and a plurality of memory cell transistors arranged in a column direction, each of the memory cell transistors having a source region, a drain region and a channel region defined in the semiconductor layer.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Mizukami, Riichiro Shirota, Fumitaka Arai
  • Publication number: 20110027950
    Abstract: A method is provided for integrating a germanium photodetector with a CMOS circuit. The method comprises: forming first and second isolation regions in a silicon substrate; forming a gate electrode in the first isolation region; implanting source/drain extensions in the silicon substrate adjacent to the gate electrode; forming a first sidewall spacer on the gate electrode; implanting source/drain regions in the silicon substrate; removing the first sidewall spacer from the gate electrode; forming a first protective layer over the first and second isolation regions; removing a portion of the first protective layer to form an opening over the second isolation region; forming a semiconductor material comprising germanium in the opening; forming a second protective layer over the first and second isolation regions; selectively removing the first and second protective layers from the first isolation region; and forming contacts to the transistor and to the semiconductor material.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 3, 2011
    Inventors: Robert E. Jones, Dean J. Denning, Gregory S. Spencer
  • Publication number: 20110024840
    Abstract: A silicon-on-insulator (SOI) transistor device includes a buried insulator layer formed over a bulk substrate; an SOI layer formed on the buried insulator layer; and a pair of silicon containing epitaxial regions disposed adjacent opposing sides of a gate conductor, the epitaxial regions corresponding to source and drain regions of the transistor device; wherein portions of the epitaxial regions are embedded in the buried insulator and are in contact with both vertical and bottom surfaces of the SOI layer corresponding to source and drain extension regions at opposing ends of a channel region of the transistor device.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Marwan H. Khater
  • Patent number: 7879658
    Abstract: A semiconductor device includes a silicon crystal layer on an insulating layer, the silicon crystal layer containing a crystal lattice mismatch plane, a memory cell array portion on the silicon crystal layer, the memory cell array portion including memory strings, each of the memory strings including nonvolatile memory cell transistors connected in series in a first direction, the memory strings being arranged in a second direction orthogonal to the first direction, the crystal lattice mismatch plane crossing the silicon crystal along the second direction without passing under gates of the nonvolatile memory cell transistors as viewed from a top of the silicon crystal layer, or crossing the silicon crystal along the first direction with passing under gates of the nonvolatile memory cell transistors as viewed from the top of the silicon crystal layer.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: February 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Ichiro Mizushima, Takashi Suzuki, Hirokazu Ishida, Yoshitaka Tsunashima
  • Patent number: 7879650
    Abstract: In a method of fabricating a CMOS structure, a bulk device can be formed in a first region in conductive communication with an underlying bulk region of the substrate. A first gate conductor may overlie the first region. An SOI device can be formed which has a source drain conduction path in a SOI layer, i.e., a semiconductor layer that is separated from the bulk region by a buried dielectric region. The crystal orientations of the SOI layer and the bulk region can be different. A first diode can be formed in a second region of the substrate in conductive communication with the bulk region. The first diode may be connected in a reverse-biased orientation to a first gate conductor above the SOI layer, such that a voltage on the gate conductor that exceeds the breakdown voltage can be discharged through the first diode to the bulk region of the substrate. A second diode may be formed in a third region of the substrate in conductive communication with the bulk region.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Anda C. Mocuta, Jeffrey W. Sleight, Anthony K. Stamper
  • Patent number: 7880231
    Abstract: A method and the resultant memory is described for forming an array of floating body memory cells and logic transistors on an SOI substrate. The floating bodies for the cells are formed over the buried oxide, the transistors in the logic section are formed in the bulk silicon.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 1, 2011
    Assignee: Intel Corporation
    Inventor: Peter L. D. Chang
  • Publication number: 20110018060
    Abstract: Methods and structures for improving substrate loss and linearity in SOI substrates. The methods include forming damaged crystal structure regions under the buried oxide layer of SOI substrates and the structures included damaged crystal structure regions under the buried oxide layer of the SOI substrate.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 27, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan Bernard Botula, David S. Collins, Alvin Jose Joseph, Howard Smith Landis, James Albert Slinkman, Anthony K. Stamper