Including Semiconductor Component With At Least One Potential Barrier Or Surface Barrier Adapted For Light Emission Structurally Associated With Controlling Devices Having A Variable Impedance And Not Being Light Sensitive (epo) Patents (Class 257/E27.12)
  • Patent number: 10965098
    Abstract: A modulator integrated laser has a laser portion for emitting light and a modulation portion for modulating the light by an electric field absorption effect. The modulator integrated laser has a semiconductor substrate of a conductivity type in which the laser portion and the modulation portion are integrated. An impedance element with inductance and capacitance connected in parallel. The impedance element has a self-resonant characteristic exhibiting the highest impedance at a self-resonant frequency. The laser portion has first and second electrodes for a direct current voltage to be applied therebetween. The modulation portion has third and fourth electrodes for an alternate current voltage to be applied therebetween. The second electrode and the fourth electrode are electrically connected to each other through the semiconductor substrate. The impedance element is connected in series to the first electrode to minimize a flow of an alternate current.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: March 30, 2021
    Assignee: Lumentum Japan, Inc.
    Inventors: Koichiro Adachi, Yasunobu Matsuoka
  • Patent number: 10948658
    Abstract: Optical interconnection assemblies, glass interconnection substrates, and methods for making optical connections are disclosed. In one embodiment, an optical interconnection assembly includes a base substrate, a substrate optical waveguide coupled to the base substrate, the substrate optical waveguide having an end surface, an optical chip comprising an optical coupling surface, and a glass interconnection substrate. The glass interconnection substrate includes a first end optically coupled to the end surface of the substrate optical waveguide, a second end optically coupled to the optical coupling surface of the optical chip, and a curved portion disposed between the first end and the second end. The glass interconnection substrate further includes an optical waveguide at least partially positioned within the curved portion.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: March 16, 2021
    Assignee: Corning Optical Communications LLC
    Inventors: Chenueh Abongwa Florian Lohse, James Scott Sutherland
  • Patent number: 10598370
    Abstract: A mounting pedestal is disposed on a wheeled vehicle and a light emitter is mounted on the mounting pedestal. The mounting pedestal includes a metal layer and an insulating layer stacked on the metal layer. The insulating layer has a major surface facing in a direction of travel of the wheeled vehicle and a heat escape port in which solder that joins the light emitter and the metal layer is disposed. The mounting pedestal has a step which arranges the major surface into a plurality of major surfaces.
    Type: Grant
    Filed: September 3, 2017
    Date of Patent: March 24, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takahiro Miyake, Tomoyuki Nakano, Masahiro Kasano, Takashi Matsuda
  • Patent number: 10580925
    Abstract: An electrical device that includes a material stack present on a supporting substrate. An LED is present in a first end of the material stack having a first set of bandgap materials. A photovoltaic device is present in a second end of the material stack having a second set of bandgap materials. The first end of the material stack being a light receiving end, wherein a widest bandgap material for the first set of bandgap material is greater than a highest bandgap material for the second set of bandgap materials. A zinc oxide interface layer is present between the LED and the photovoltaic device. The zinc oxide layers or can also form a LED.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: March 3, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10431722
    Abstract: A light emitting element includes: a semiconductor stack structure that includes a light emitting part, and a light receiving part that receives light propagating in a lateral direction through a semiconductor layer from the light emitting part, wherein the light emitting part and the light receiving part share a quantum layer; and a light reflection layer that covers ? or more of a lateral surface of the quantum layer in the light receiving part.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: October 1, 2019
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Junichiro Hayakawa, Akemi Murakami, Takashi Kondo, Naoki Jogan, Jun Sakurai
  • Patent number: 10409015
    Abstract: Embodiments according to the present disclosure relate to an optical transmitting device and an optical receiving device which can minimize the alignment error between the light source and the photodetector on the substrate, miniaturize the devices, and require no separate guide member reducing manufacturing costs, while satisfying the design requirements for sub-miniaturization, and performing optical transmission and reception more efficiently.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: September 10, 2019
    Assignee: OPTOMIND INC.
    Inventors: Yung-sung Son, Sang Shin Lee, Yong-geon Lee
  • Patent number: 10304988
    Abstract: An electrical device that includes a material stack present on a supporting substrate. An LED is present in a first end of the material stack having a first set of bandgap materials. A photovoltaic device is present in a second end of the material stack having a second set of bandgap materials. The first end of the material stack being a light receiving end, wherein a widest bandgap material for the first set of bandgap material is greater than a highest bandgap material for the second set of bandgap materials.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 28, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10276739
    Abstract: An electrical device that includes a material stack present on a supporting substrate. An LED is present in a first end of the material stack having a first set of bandgap materials. A photovoltaic device is present in a second end of the material stack having a second set of bandgap materials. The first end of the material stack being a light receiving end, wherein a widest bandgap material for the first set of bandgap material is greater than a highest bandgap material for the second set of bandgap materials.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: April 30, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10249782
    Abstract: An electrical device that includes a material stack present on a supporting substrate. An LED is present in a first end of the material stack having a first set of bandgap materials. A photovoltaic device is present in a second end of the material stack having a second set of bandgap materials. The first end of the material stack being a light receiving end, wherein a widest bandgap material for the first set of bandgap material is greater than a highest bandgap material for the second set of bandgap materials. A zinc oxide interface layer is present between the LED and the photovoltaic device. The zinc oxide layers or can also form a LED.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10249783
    Abstract: An electrical device that includes a material stack present on a supporting substrate. An LED is present in a first end of the material stack having a first set of bandgap materials. A photovoltaic device is present in a second end of the material stack having a second set of bandgap materials. The first end of the material stack being a light receiving end, wherein a widest bandgap material for the first set of bandgap material is greater than a highest bandgap material for the second set of bandgap materials. A zinc oxide interface layer is present between the LED and the photovoltaic device. The zinc oxide layers or can also form a LED.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: April 2, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Ning Li, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 10217886
    Abstract: According to example embodiments, a photoelectric conversion device includes a first electrode including a light-receiving surface, a second electrode spaced apart from the first electrode and facing the first electrode, and an auxiliary layer between the second electrode and an exciton producing layer. The first electrode may be on the second electrode. The exciton producing layer may be between the first electrode and the second electrode. The exciton producing layer may be spaced apart from the second electrode by a distance corresponding to one of a crest and a trough of a standing wave of light to be converted into electricity.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 26, 2019
    Assignees: Samsung Electronics Co., Ltd., Shinshu University
    Inventors: Kyu Sik Kim, Musubu Ichikawa, Kwang Hee Lee, Kyung Bae Park, Toshiki Takeuchi
  • Patent number: 10093535
    Abstract: Provided is a method for manufacturing a microchannel resonator capable of measuring a mass and characteristics of an object using a principle in which a resonance frequency is changed according to a mass of a moving material, the method including: providing a silicon substrate; forming a cavity channel inside the silicon substrate; forming a hollow silicon oxide structure on the inner wall surface of the cavity channel by oxidizing the inner wall surface of the cavity channel; and partially removing the periphery of the hollow silicon oxide structure such that the hollow silicon oxide structure can resonate with respect to the silicon substrate.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: October 9, 2018
    Assignee: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION SOGANG UNIVERSITY
    Inventors: Jung Chul Lee, Joo Hyun Kim
  • Patent number: 10043941
    Abstract: Provided is a light emitting semiconductor structure that operates as a light emitting diode (LED). In embodiments of the invention, the light emitting semiconductor structure includes a first barrier region, a second barrier region, and a single quantum well having a preselected thickness between the first barrier region and the second barrier region. The preselected thickness according to embodiments is selected to achieve a predetermined charge density in the quantum well. The predetermined charge density according to embodiments results from a predetermined bias current applied to the semiconductor structure. The predetermined bias current according to embodiments comprises less than about 1 mA.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ning Li, Qinglong Li, Kunal Mukherjee, Devendra K. Sadana, Ghavam G. Shahidi
  • Patent number: 9764352
    Abstract: A planar lightwave circuit that can be optically coupled with an external device with low optical loss, while also providing low-power functional control over an optical signal propagating through the PLC is disclosed. The PLC includes a high-contrast waveguide region in a stress-inducing (SI) phase shifter is formed such that it can control the phase of the optical signal. The high-contrast-waveguide region is optically coupled to a low-contrast-waveguide region via a spotsize converter, thereby enabling optical coupling to off-chip devices with low optical loss. Formation of the SI phase shifter in a high-contrast-waveguide region enables improved responsivity and phase control, reduced voltage, and smaller required chip real estate. As a result, the present invention enables lower-cost and higher-performance PLC systems.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: September 19, 2017
    Assignee: OctroliX BV
    Inventors: Rene Gerrit Heideman, Arne Leinse
  • Patent number: 9690045
    Abstract: Embodiments are provided for a waveguide polarizer comprising a series of bends. The waveguide polarizer is suitable for used in optical waveguide devices or circuits, where a polarized light is required, such as for single polarization output. The polarizer design is independent of the function of the optical devices. In an embodiment, an optical polarizer comprises an optical waveguide configured to propagate light at a designated polarization mode, and comprising a bend in a same plane of the propagated light. The bend has a geometry configured to contain in the optical waveguide the designated polarization mode of the propagated light and radiate outside the optical waveguide a second polarization mode of the propagated light.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: June 27, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dominic John Goodwill, Jia Jiang
  • Patent number: 9658399
    Abstract: Embodiments are provided for a waveguide polarizer comprising a series of bends. The waveguide polarizer is suitable for used in optical waveguide devices or circuits, where a polarized light is required, such as for single polarization output. The polarizer design is independent of the function of the optical devices. In an embodiment, an optical polarizer comprises an optical waveguide configured to propagate light at a designated polarization mode, and comprising a bend in a same plane of the propagated light. The bend has a geometry configured to contain in the optical waveguide the designated polarization mode of the propagated light and radiate outside the optical waveguide a second polarization mode of the propagated light.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: May 23, 2017
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dominic John Goodwill, Jia Jiang
  • Patent number: 9543816
    Abstract: A vibrator includes a frame, a swing unit, and an elastic member. The swing unit is disposed within the frame and holds a magnet. The elastic member connects the swing unit and the frame. The swing unit is movable with respect to the frame while deforming the elastic member. The frame, the swing unit, and the elastic member are integrally molded with each other.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: January 10, 2017
    Assignee: MINEABEA CO., LTD.
    Inventor: Manabu Nakamura
  • Patent number: 9040982
    Abstract: An electrical device with light-responsive layers is disclosed. One or more electrically conducting stripes, each insulated from each other, are deposited on a smooth surface of a substrate. Then metal oxide layers, separated by a composite diffusion layer, are deposited. On top of the topmost metal oxide layer another set of elongated conductive strips are disposed in contact with the topmost metal oxide layer such that junctions are formed wherever the top and bottom conducting stripes cross. The resulting device is light responsive only when a certain sign of bias voltage is applied and may be used as a photodetector. An advantage that may be realized in the practice of some disclosed embodiments of the device is that this device may be formed without the use of conventional patterning, thereby significantly reducing manufacturing difficulty.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: May 26, 2015
    Assignee: Research Foundation of the City University of New York
    Inventor: Fred J. Cadieu
  • Patent number: 9012953
    Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 21, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
  • Patent number: 9012932
    Abstract: A white LED assembly includes a string of series-connected blue LED dice mounted on a substrate. The substrate has a plurality of substrate terminals. A first of the substrate terminals is coupled to be a part of first end node of the string. A second of the substrate terminals is coupled to be a part of an intermediate node of the string. A third of the substrate terminals is coupled to be a part of a second end node of the string. Other substrate terminals may be provided and coupled to be parts of corresponding other intermediate nodes of the string. A single contiguous amount of phosphor covers all the LED dice, but does not cover any of the substrate terminals. In one example, the amount of phosphor contacts the substrate and has a circular periphery. All the LEDs are mounted to the substrate within the circular periphery.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 21, 2015
    Assignee: Bridgelux, Inc.
    Inventors: Tao Xu, Michael Solomensky
  • Patent number: 8987764
    Abstract: According to an embodiment, a semiconductor light emitting device includes a semiconductor layer, a p-side electrode, n-side electrode and a resin layer. The semiconductor layer has a first face and a second face opposite to the first face, and includes a light emitting layer. The p-side electrode is provided on the semiconductor layer on the second face side. The n-side electrode is provided on the semiconductor layer on the second face side. The resin layer is provided on the first face and transmits light emitted from the light emitting layer, the resin layer including a top surface opposite to the first face and four side faces provided along an outer edge of the first face and connected to the top surface, the resin layer including a scattering substance scattering the light emitted from the light emitting layer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Tomizawa, Akihiro Kojima, Miyoko Shimada, Yosuke Akimoto, Yoshiaki Sugizaki, Hideto Furuyama
  • Patent number: 8941127
    Abstract: A first transistor in which an image signal is input to one of a first source and a first drain through an image signal line and a first scan signal is input to the first gate through a first scan signal line; a capacitor whose one of two electrodes is electrically connected to the other of the first source and the first drain of the first transistor; a second transistor in which one of a second source and a second drain is electrically connected to the other of the first source and the first drain of the first transistor and a second scan signal is input to a second gate through a second scan signal line; and a liquid crystal element whose first electrode is electrically connected to the other of the second source and the second drain of the second transistor.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: January 27, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Toshikazu Kondo, Shunpei Yamazaki
  • Patent number: 8912552
    Abstract: A display substrate includes a base substrate; a first metal pattern disposed on the base substrate and comprising a first signal line and a first electrode electrically connected to the first signal line; and a buffer pattern disposed at a corner between a sidewall surface of the first metal pattern and the base substrate.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 16, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Chong-Sup Chang, Yoon-Ho Khang, Se-Hwan Yu, Yong-Su Lee, Min Kang, Myoung-Geun Cha, Ji-Seon Lee
  • Patent number: 8890151
    Abstract: An organic light-emitting display apparatus having improved durability and image quality may include a substrate; a first electrode formed on the substrate; a first pixel definition layer formed to cover at least one lateral surface of the first electrode; a second pixel definition layer formed so as to be spaced apart from at least an upper surface of the first pixel definition layer; an intermediate layer formed on the first electrode and including an organic light-emitting layer; and a second electrode formed on the intermediate layer.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: November 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sang-Min Hong
  • Patent number: 8866125
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: October 21, 2014
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8841684
    Abstract: A light-emitting device includes a circuit substrate including at least a pair of electrodes, an LED element electrically mounted on the circuit substrate, a phosphor plate disposed on an upper surface of the LED element, a diffuser plate disposed on an upper surface of the phosphor plate, and a white resin disposed on an upper surface of the circuit substrate and covering a peripheral side surface of the LED element, a peripheral side surface of the phosphor plate, and a peripheral side surface of the diffuser plate. The present invention makes it possible to obtain a planar light-emitting surface even with a plurality of LEDs, and also, a problem of color-ring occurrence caused by a phosphor may be less represented.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 23, 2014
    Assignees: Citizen Electronics Co., Ltd., Citizen Holdings Co., Ltd.
    Inventors: Kazuya Ishihara, Jo Kinoshita
  • Patent number: 8836900
    Abstract: Disclosed are an array substrate and a liquid crystal display device. The array substrate comprises a base substrate, and data lines and gate lines, which are orthogonal to each other to define a plurality of pixel units, formed in a pixel region of the base substrate, with each of the pixel units comprising a switching element, a pixel electrode and a common electrode that is overlapped with the pixel electrode. The common electrode in each of the pixel units comprises slits, and the slits have a shape of curved line and are parallel to each other so as to form a slit region in the common electrode; and the pattern profile of the pixel electrode is parallel to the profile of the slit region of the common electrode.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: September 16, 2014
    Assignees: Boe Technology Group Co., Ltd., Chengdu Boe Optoelectronics Technology Co., Ltd.
    Inventors: Ruizhi Yang, Jun Hwan Lim, Weiyun Huang
  • Patent number: 8820960
    Abstract: A light emitting device includes a white light emitting unit including a first light source emitting a white light; a red light emitting unit including a second light source emitting a white light and a red coating member having a red fluorescent material which converts the white light from the second light source into a red light; and a green light emitting unit including a third light source emitting a white light and a green coating member having a green fluorescent material which converts the white light from the third light source into a green light. The light emitting device further includes a driver for individually driving the white, the red and the green light emitting unit.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 2, 2014
    Assignee: Panasonic Corporation
    Inventor: Yuya Yamamoto
  • Patent number: 8809876
    Abstract: Materials can be prepared in a layer-by-layer fashion on a patterned first substrate and subsequently transferred to a second substrate. The transfer step can preserve the pattern of the first substrate, such that the second substrate will bear a pattern of the transferred material. The material can be an electrostatic multilayer including a light absorbing dye, such as a J-aggregating cyanine dye.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: August 19, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael Scott Bradley, Jonathan R. Tischler, Vladimir Bulovic
  • Patent number: 8772795
    Abstract: To provide a light-emitting device including the plurality of light-emitting elements having a structure in which a light-emitting area is large and defects in patterning of light-emitting elements are suppressed. To provide a lighting device including the light-emitting device. The light-emitting device includes a first wiring provided over a substrate having an insulating surface, an insulating film provided over the first wiring, a second wiring provided over the insulating film, and a light-emitting element unit including a plurality of light-emitting elements provided over the first wiring with the insulating film provided therebetween. The plurality of light-emitting elements each include a first electrode layer having a light-blocking property, a layer containing an organic compound in contact with the first electrode layer, and a second electrode layer having a light-transmitting property in contact with the layer containing an organic compound.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koji Ono, Yoshifumi Tanada
  • Patent number: 8759847
    Abstract: A white LED assembly includes a string of series-connected blue LED dice mounted on a substrate. The substrate has a plurality of substrate terminals. A first of the substrate terminals is coupled to be a part of first end node of the string. A second of the substrate terminals is coupled to be a part of an intermediate node of the string. A third of the substrate terminals is coupled to be a part of a second end node of the string. Other substrate terminals may be provided and coupled to be parts of corresponding other intermediate nodes of the string. A single contiguous amount of phosphor covers all the LED dice, but does not cover any of the substrate terminals. In one example, the amount of phosphor contacts the substrate and has a circular periphery. All the LEDs are mounted to the substrate within the circular periphery.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Bridgelux, Inc.
    Inventors: Tao Xu, Michael Solomensky
  • Patent number: 8754426
    Abstract: A light source includes a substrate arranged into at least two facing surfaces which form a seam therebetween; and a lighting device with light emitting diode (LED) chips embedded therein in a linear arrangement. The LED chips generate light photons. The lighting device has a first edge and a second edge opposite to the first edge, the light photons within the lighting device that are emitted by the LED chips from a top surface of the LED chips being output from the lighting device at the second edge of the device. The lighting device is sandwiched in the seam between the two facing surfaces, the second edge of the lighting device being exposed when the seam is in an opened position.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 17, 2014
    Assignee: Grote Industries, LLC
    Inventors: Martin J. Marx, Richard C. Bozich, Stanley D. Robbins, James E. Roberts, Jennifer M. Ehlers
  • Patent number: 8729571
    Abstract: A light emitting device includes a number of light emitting diode dies (LEDs) mounted on a shared submount and covered with a single lens element that includes a corresponding number of lens elements. The LEDs are separated from each other by a distance that is sufficient for lens element to include separate lens elements for each LED. The separation of the LEDs and lens elements may be configured to produce a desired amount of light on a target at a predefined distance. In one embodiment, the lens elements are approximately flat type lens elements, such as Fresnel, TIR, diffractive lens, photonic crystal type lenses, prism, or reflective lens.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 20, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Walter Daschner, Xina Quan, Nanze P. Wang
  • Patent number: 8729572
    Abstract: A light emitting diode package includes an electrically insulated base, first and second electrodes, an LED chip, a voltage stabilizing module, and an encapsulative layer. The base has a first surface and an opposite second surface. The first and second electrodes are formed on the first surface of the base. The LED chip is electrically connected to the first and second electrodes. The voltage stabilizing module is formed on the first surface of the base, positioned between and electrically connected to the first and second electrodes. The voltage stabilizing module connects to the LED chip in reverse parallel and has a polarity arranged opposite to that of the LED chip. The voltage stabilizing module has an annular shape and encircles the first electrode. The encapsulative layer is formed on the base and covers the LED chip.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 20, 2014
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Hou-Te Lin, Chao-Hsiung Chang
  • Patent number: 8723160
    Abstract: A light emitting diode (LED) die includes a first-type semiconductor layer, a multiple quantum well (MQW) layer and a second-type semiconductor layer. The light emitting diode (LED) die also includes a peripheral electrode on the first-type semiconductor layer located proximate to an outer periphery of the first-type semiconductor layer configured to spread current across the first-type semiconductor layer. A method for fabricating the light emitting diode (LED) die includes the step of forming an electrode on the outer periphery of the first-type semiconductor layer at least partially enclosing and spaced from the multiple quantum well (MQW) layer configured to spread current across the first-type semiconductor layer.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 13, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Feng-Hsu Fan, Hao-Chun Cheng, Trung Tri Doan
  • Patent number: 8684749
    Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 1, 2014
    Assignee: Toshiba Techno Center Inc.
    Inventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
  • Publication number: 20140077234
    Abstract: An apparatus comprises a substrate, a first buried layer formed over the substrate, the first buried layer comprising one or more raised mesa structures, a second buried layer formed over the first buried layer, an active layer formed over the second buried layer, and a capping layer formed over the active layer. The apparatus may further comprise a third buried layer formed over the active layer, the third buried layer comprising one or more raised mesa structures, and a fourth buried layer formed over the third buried layer. The one or more raised mesa structures of the first buried layer may be offset from the one or more raised mesa structures of the third buried layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: LSI Corporation
    Inventor: Joseph M. Freund
  • Publication number: 20140077235
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: BRIDGELUX, INC.
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Publication number: 20140077233
    Abstract: A multi-functional optoelectronic apparatus which comprises an integrated circuit (IC) wafer, respective optoelectronic components which has one or more Input port(s) to receive external command signals to drive the optoelectronic apparatus. Examples of some of the optoelectronic apparatus include an IOLED (Input/Output Light Emitting Diode including visible light and invisible light), IOPD (Input/Output Photo Diode), IOPT (Input/Output Photo Transistor), IOLS (Input/Output Light Sensor), IORS (Input/Output Reflective Sensor), IOPI (Input/Output Photo Interrupter) and IORM (Input/Output Receiver Module). The multi-functional optoelectronic apparatus may drive external peripheral(s) such as speakers, motors or other devices.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 20, 2014
    Inventor: Khok Hing-Wai
  • Patent number: 8674376
    Abstract: An LED package structure with standby bonding pads for increasing wire-bonding yield includes a substrate unit, a light-emitting unit, a conductive wire unit and a package unit. The substrate unit has a substrate body and a plurality of positive pads and negative pads. The light-emitting unit has a plurality of LED bare chips. The positive electrode of each LED bare chip corresponds to at least two of the positive pads, and the negative electrode of each LED bare chip corresponds to at least two of the negative pads. Each wire is electrically connected between the positive electrode of the LED bare chip and one of the at least two positive pads or between the negative electrode of the LED bare chip and one of the at least two negative pads. The package unit has a light-permitting package resin body on the substrate body to cover the LED bare chips.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 18, 2014
    Assignee: Paragon Semiconductor Lighting Technology Co., Ltd.
    Inventors: Chao-Chin Wu, Shen-Ta Yang
  • Patent number: 8674391
    Abstract: An optoelectronic semiconductor component for a lighting device including a carrier, at least one optoelectronic semiconductor chip mounted on the carrier and which includes a radiation passage face remote from the carrier, by which a plane is defined, and a lens comprising 1) a radiation exit face, which, relative to a height above the plane, exhibits a minimum, in particular in a central region, and at least two local maxima, and at least two local maxima, and 2) at least two connecting embankments which each extend from one of the maxima to another of the maxima, and each connecting embankment comprises a saddle point higher than the minimum and lower than the maxima adjoining the connecting embankment.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: March 18, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Peter Brick
  • Patent number: 8669567
    Abstract: A light-emitting device is disclosed. More particularly, the light-emitting device comprises a first substrate; a light-emitting element over the first substrate; a second substrate over the light-emitting element, wherein the second substrate contains a concave portion; a sealant between the first substrate and the second substrate; and a material having a water absorbing property is formed in the concave portion, wherein the material having the water absorbing property is provided so as not to overlap the light-emitting element, and so as to be spaced from the sealant.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 11, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takahiro Kawakami, Kaoru Tsuchiya, Takeshi Nishi, Yoshiharu Hirakata, Keiko Kida, Ayumi Sato, Shunpei Yamazaki
  • Publication number: 20140061689
    Abstract: An LED device comprises an LED chip or LED chip array for emitting light of a color spectrum, the LED chip or array being mounted on a component having a component surface. At least one color is applied to the component surface where the color is selected to reflect light to color tune the light emitted from the LED device to obtain a desired CRI.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: CREE, INC.
    Inventor: Harry Seibel
  • Patent number: 8637885
    Abstract: A light emitting device according to the embodiment includes a conductive support member; a light emitting structure on the conductive support member including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second semiconductor layers; and a protective device on the light emitting structure.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: January 28, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Kwang Ki Choi, Hwan Hee Jeong, Sang Youl Lee, June O Song
  • Patent number: 8624246
    Abstract: A display device and a method of manufacturing the same. In one embodiment, a display device includes a substrate having a pixel region, a transistor region and a capacitor region, a transistor arranged within the transistor region of the substrate and a capacitor arranged within the capacitor region of the substrate, wherein the capacitor includes a lower electrode arranged on the substrate, a gate insulating layer arranged on the lower electrode and an upper electrode arranged on the gate insulating layer and overlapping the lower electrode, the upper electrode includes a first conductive layer and a second conductive layer arranged on the first conductive layer, wherein the first conductive layer is opaque.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: January 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Chun-Gi You
  • Patent number: 8604479
    Abstract: A display substrate includes a substrate, a gate line formed on the substrate, a data line formed on the substrate and crossing the gate line, a first pixel electrode formed on the substrate on which the gate and the data line are formed, an insulation layer formed on the substrate and the first pixel electrode, and a second pixel electrode formed on the insulation layer. The second pixel electrode includes a first sub-electrode that overlaps the first pixel electrode and the data line, and a second sub-electrode that is electrically connected to the data line through a switching element.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 10, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jeong-Hyun Lee, Jeong-Uk Heo, Yeon-Sik Ham, Ock-Soo Son, Yeon-Mun Jeon
  • Patent number: 8598598
    Abstract: Disclosed is a light emitting device having vertically stacked light emitting diodes. It comprises a lower semiconductor layer of a first conductive type positioned on a substrate, a semiconductor layer of a second conductive type on the lower semiconductor layer of a first conductive type, and an upper semiconductor layer of a first conductive type on the semiconductor layer of a second conductive type. Furthermore, a lower active layer is interposed between the lower semiconductor layer of a first conductive type and the semiconductor layer of a second conductive type, and an upper active layer is interposed between the semiconductor layer of a second conductive type and the upper semiconductor layer of a first conductive type. Accordingly, there is provided a light emitting device having a structure in which a lower light emitting diode comprising the lower active layer and an upper light emitting diode comprising the upper active layer are vertically stacked.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: December 3, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Sung Han Kim, Kyoung Hoon Kim
  • Publication number: 20130306994
    Abstract: A display panel includes a fiber reinforced plastic substrate having a first lattice pattern with a first lattice period P, and a pixel layer disposed on the substrate having a second lattice pattern having a second lattice period H, in which if H>P, P and H satisfy P = 2 ? H 2 ? n + 1 , where n is a natural number, and if H>P, P and H satisfy P = ( 2 ? n + 1 ) ? H 2 .
    Type: Application
    Filed: September 6, 2012
    Publication date: November 21, 2013
    Inventors: SEON UK LEE, Sang Il Kim, Jin Bo Shim, Nak Cho Choi, Jin Woo Choi
  • Publication number: 20130292718
    Abstract: A light-emitting diode (LED) structure and a method for manufacturing the same. The LED structure comprises an insulating substrate, a plurality of LED chips and a plurality of interconnection layers. Each LED chip comprises a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer stacked in sequence on a surface of the insulating substrate. Each LED chip includes a mesa structure, an exposed portion of the first conductivity type semiconductor layer adjacent to the mesa structure, and a first isolation trench. The first isolation trench is disposed in the mesa structure. The interconnection layers respectively connect neighboring two of the LED chips.
    Type: Application
    Filed: August 13, 2012
    Publication date: November 7, 2013
    Applicant: CHI MEI LIGHTING TECHNOLOGY CORP.
    Inventors: Chang Hsin Chu, Hsueh Lin Lee, Chih Kuei Hsu, Yuan Tze Chen
  • Publication number: 20130285077
    Abstract: According to one embodiment, a light emitting module includes a mounting substrate, a plurality of light emitting chips, a transparent layer, and a phosphor layer. The transparent layer is provided between the plurality of light emitting chips on the mounting face and on the light emitting chip. The transparent layer has a first transparent body and a scattering agent dispersed at least in the first transparent body between the plurality of light emitting chips. The scattering agent has a different refraction index from a refraction index of the first transparent body. The phosphor layer is provided on the transparent layer. The light emitting chip includes a semiconductor layer, a p-side electrode, an n-side electrode, a p-side external terminal, and an n-side external terminal.
    Type: Application
    Filed: August 28, 2012
    Publication date: October 31, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akihiro KOJIMA, Hideto FURUYAMA, Miyoko SHIMADA, Yosuke AKIMOTO, Hideyuki TOMIZAWA