Of The Hybrid Type (e.g., Chip-on-chip, Bonded Substrates) (epo) Patents (Class 257/E27.137)
  • Patent number: 7902676
    Abstract: Provided is a stacked semiconductor device including a first flexible layer and a second flexible layer combined together, serving as a flexible substrate body being bent somewhere such that a surface of the first flexible layer itself is face-to-face clipped, two semiconductor chips each embedded in the flexible substrate body, and an adhesive layer sandwiched in a gap between the face-to-face surface of the first flexible layer. The active surface of each of the semiconductor chips has plurality of electrode pads thereon electrically connected to a first circuit layer on the second flexible layer. The semiconductor chips are stacked up and embedded in the flexible substrate body, thereby reducing package height to achieve miniaturization of electronic products. A method for fabricating the stacked semiconductor device is also provided.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: March 8, 2011
    Assignee: Unimicron Technology Corp.
    Inventor: Kan-Jung Chia
  • Patent number: 7863097
    Abstract: In one embodiment, a method of preparing detectors for oxide bonding to an integrated chip, e.g., a readout integrated chip, includes providing a wafer having a plurality of detector elements with bumps thereon. A floating oxide layer is formed surrounding each of the bumps at a top portion thereof. An oxide-to-oxide bond is formed between the floating oxide layer and an oxide layer of the integrated chip which is provided in between corresponding bumps of the integrated chip. The oxide-to-oxide bond enables the bumps on the detector elements and the bumps on the integrated chip to be intimately contacted with each other, and removes essentially all mechanical stresses on and between the bumps. In another embodiment, a device has an interconnect interface that includes the oxide-to-oxide bond and an electrical connection between the bumps on the detector elements and the bumps on the integrated chip.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 4, 2011
    Assignee: Raytheon Company
    Inventors: Jeffrey M. Peterson, Kenton T. Veeder, Christopher L. Fletcher
  • Patent number: 7833836
    Abstract: A semiconductor chip having an adhesive layer previously formed on an element forming surface thereof and having a bump exposed from the surface of the adhesive layer is wire-bonded to a printed circuit board. Another semiconductor chip is stacked on the above semiconductor chip with the adhesive layer disposed therebetween and is wire-bonded to the printed circuit board by wire bonding. Likewise, at least one semiconductor chip is sequentially stacked on the thus attained semiconductor structure to form a stack MCP.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Takyu, Kazuhiro Iizuka, Mika Kiritani
  • Patent number: 7834440
    Abstract: In a semiconductor device in which a plurality of memory LSIs and a plurality of processor LSIs are stacked, as the number of stacked layers increase, the communication distance of data between a memory LSI and a processor LSI will increase. Therefore, the parasitic capacitance and parasitic resistance of the wiring used for the communication increase and, as a result of which, the power and speed performance of the entire system will be degraded. At least two or more of the combinations of a processor LSI 100 and a memory LSI 200 are stacked and the processor LSI 100 and the memory LSI 200 in the same combination are stacked adjacent to each other in the vertical direction.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: November 16, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoto Ito, Makoto Saen, Yuki Kuroda
  • Patent number: 7807503
    Abstract: A die-wafer package includes a singulated semiconductor die having a first plurality of bond pads on a first surface and a second plurality of bond pads on a second, opposing surface thereof. Each of the first and second pluralities of bond pads includes an under-bump metallization (UBM) layer. The singulated semiconductor die is disposed on a semiconductor die site of a semiconductor wafer and a first plurality of conductive bumps electrically couples the first plurality of bond pads of the singulated semiconductor die with a first set of bond pads formed on the semiconductor die site. A second plurality of conductive bumps is disposed on a second set of bond pads of the semiconductor die site. A third plurality of conductive bumps is disposed on the singulated semiconductor die's second plurality of bond pads. The second and third pluralities of conductive bumps are configured for electrical interconnection with an external device.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Patent number: 7781887
    Abstract: A semiconductor device includes a first die, a substrate, and a first interconnect. The first die includes a first isolation region and a first contact at least partially overlapping the first isolation region. The substrate includes a second contact. The first interconnect couples the first contact to the second contact. The first interconnect is defined by a via through the first isolation region.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 24, 2010
    Assignee: Infineon Technologies AG
    Inventor: Alois Nitsch
  • Patent number: 7781879
    Abstract: Apparatus for integrating capacitors in stacked integrated circuits are described. One aspect of the invention relates to a semiconductor assembly having a carrier substrate, a plurality of integrated circuit dice, and at least one metal-insulator-metal (MIM) capacitor. The integrated circuit dice are vertically stacked on the carrier substrate. Each MIM capacitor is disposed between a first integrated circuit die and a second integrated circuit die of the plurality of integrated circuit dice. The at least one MIM capacitor is fabricated on at least one of a face of the first integrated circuit die and a backside of the second integrated circuit die.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 24, 2010
    Assignee: Xilinx, Inc.
    Inventors: Arifur Rahman, Stephen M. Trimberger
  • Patent number: 7777350
    Abstract: A semiconductor stack package includes a first printed wiring board; a plurality of semiconductor chips stacked on the first printed wiring board, wherein among the semiconductor chips, the uppermost semiconductor chip has an electrode pad for providing power supply, a ground pad for providing grounding, and a signal pad for signal transmission in a center area on the upper surface of the chip; connection lands formed on the first printed wiring board on the outside of the stacked semiconductor chips; a wiring extension part which is formed on the uppermost semiconductor chip, and has wiring circuits extending from the center to the periphery thereof, wherein at least one of the electrode pad and the ground pad is electrically connected to one end of one of the wiring circuits; and a wire for connecting the other end of the relevant wiring circuit of the wiring extension part and one of the connection lands on the first printed wiring board.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: August 17, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Dai Sasaki, Mitsuaki Katagiri, Satoshi Isa
  • Patent number: 7767479
    Abstract: Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: August 3, 2010
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Robert G. W. Brown, Dale A. McNeill, Huibert DenBoer, Andrew J. Lanzone
  • Patent number: 7750482
    Abstract: An integrated circuit packaging system comprised by providing a substrate with a first surface including conductive regions for receiving a flip chip die and a second surface including electrical contacts for external electrical connections. Providing the flip chip die over the substrate. Depositing a controlled volume of resin between the first surface of the substrate and the flip chip die and adhering the flip chip die to the first surface of the substrate to form the controlled volume of resin into a zero fillet resin.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: July 6, 2010
    Assignee: Stats Chippac Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 7723852
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a semiconductor package including two or more semiconductor dies which are electrically connected to an underlying substrate through the use of conductive wires, some of which may be fully or partially encapsulated by an adhesive or insulating layer of the package. In a basic embodiment of the present invention, the semiconductor package comprises a substrate having a conductive pattern disposed thereon. Electrically connected to the conductive pattern of the substrate are first and second semiconductor dies. The first semiconductor die and a portion of the substrate are covered by an adhesive layer. The second semiconductor die, the adhesive layer and a portion of the substrate are in turn covered by a package body of the semiconductor package.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: May 25, 2010
    Assignee: Amkor Technology, Inc.
    Inventors: Yoon Joo Kim, In Tae Kim, Ji Young Chung, Bong Chan Kim, Do Hyung Kim, Sung Chul Ha, Sung Min Lee, Jae Kyu Song
  • Patent number: 7663245
    Abstract: An interposer may include a base substrate supporting an array of conductive lands. The conductive land may have an identical shape and size. The conductive lands may be provided at regular intervals on the base substrate. The conductive land pitch may be determined such that adjacent conductive lands may be electrically connected by one end of an electric connection member. Alternatively, each conductive land may provide respective bonding locations to which ends of two different electric connection members may be bonded. A stacked chip package may include an interposer that may be fabricated by cutting an interposer to size. In the stacked chip package, electrical connections may be made through the interposer between an upper semiconductor chip and a package substrate, between the upper semiconductor chip and a lower semiconductor chip, and/or between the lower semiconductor chip and the package substrate.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: February 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Gwang-Man Lim
  • Patent number: 7663244
    Abstract: The semiconductor device 1 has a semiconductor chip 10 (first semiconductor chip) and a semiconductor chip 20 (second semiconductor chip). The semiconductor chip 20 is formed on the semiconductor chip 10. The semiconductor chip 20 is constituted by comprising a semiconductor substrate 22. The semiconductor substrate 22, which is an SOI substrate, is constituted by comprising an insulating layer 34, and a silicon layer 36, which is provided on the insulating layer 34, including a circuit forming region A1. The insulating layer 34 functions as a protective film (a first protective film) covering a lower face (a face opposite to the semiconductor chip 10) of the circuit forming region A1. A protective film 38 (a second protective film) is provided on the semiconductor substrate 22. The protective film 38 covers a side face of the circuit forming region A1.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: February 16, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yoichiro Kurita
  • Patent number: 7638365
    Abstract: Provided is a stacked chip package and a method for forming the same. A spacer is formed on a side of an upper chip. A conductive line is formed on the spacer to electrically connect upper and lower chips. The reliability of the stacked chip package is improved because wire bonding is not used to electrically connect the upper and lower chips. Further, the overall size of the stacked chip package can be reduced as the height of bonding wire loops does not contribute to the overall stacked chip package height.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Young Jeong, Nam-Seog Kim, Cha-Jea Jo, Jong-Ho Lee, Myeong-Soon Park
  • Patent number: 7615871
    Abstract: A microelectronic package and method for forming such packages. In one embodiment, the package can be formed by providing a support member having a first surface, a second surface facing opposite the first surface, and a projection extending away from the first surface. A quantity of adhesive material can be applied to the projection to form an attachment structure, and the adhesive material can be connected to a microelectronic substrate with the attachment structure providing no electrically conductive link between the microelectronic substrate and the support member. The microelectronic substrate and the support member can then be electrically coupled, for example, with a wire bond. In one embodiment, the projection can be formed by disposing a first material on a support member while the first material is at least partially flowable, reducing the flowability of the first material, and disposing a second material (such as the adhesive) on the first material.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 10, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Tongbi Jiang
  • Patent number: 7608920
    Abstract: The present invention provides a system and method for employing leaded packaged memory devices in memory cards. Leaded packaged ICs are disposed on one or both sides of a flex circuitry structure to create an IC-populated structure. In a preferred embodiment, leads of constituent leaded IC packages are configured to allow the lower surface of the leaded IC packages to contact respective surfaces of the flex circuitry structure. Contacts for typical embodiments are supported by a rigid portion of the flex circuitry structure and the IC-populated structure is disposed in a casing to provide card structure for the module.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 27, 2009
    Assignee: Entorian Technologies, LP
    Inventor: James Douglas Wehrly, Jr.
  • Patent number: 7608903
    Abstract: An imager pixel utilizing a silicon-on-insulator substrate, a photodiode in said substrate below the buried oxide, and a dual contact to said photodiode and methods of forming said imager pixel. The photodiode has an increased fill factor due to its increased size relative to the pixel.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: October 27, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Chandra Mouli
  • Patent number: 7605454
    Abstract: The present invention provides a system and method for employing leaded packaged memory devices in memory cards. Leaded packaged ICs are disposed on one or both sides of a flex circuitry structure to create an IC-populated structure. In a preferred embodiment, leads of constituent leaded IC packages are configured to allowed the lower surface of the leaded IC packages to contact respective surfaces of the flex circuitry structure. Contacts for typical embodiments are supported by a rigid portion of the flex circuitry structure and the IC-populated structure is disposed in a casing to provide card structure for the module.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: October 20, 2009
    Assignee: Entorian Technologies, LP
    Inventor: James Douglas Wehrly, Jr.
  • Patent number: 7598619
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device (10) having a semiconductor chip (12) with electrodes (16), a stress-relieving layer (14) prepared on the semiconductor chip (12), a wire (18) formed across the electrodes (16) and the stress-relieving layer (14), and solder balls (19) formed on the wire (18) over the stress-relieving layer (14); and a bare chip (20) as a second semiconductor device to be electrically connected to the first semiconductor device (10).
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 6, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7592650
    Abstract: A hybrid semiconductor power device that includes a plurality of closed power transistor cells each surrounded by a first and second trenched gates constituting substantially a closed cell and a plurality of stripe cells comprising two substantially parallel trenched gates constituting substantially an elongated stripe cell wherein the closed cells and stripe cells constituting neighboring cells sharing trenched gates disposed thereinbetween as common boundary trenched gates. The closed MOSFET cell further includes a source contact disposed substantially at a center portion of the closed cell wherein the trenched gates are maintained a critical distance (CD) away from the source contact.
    Type: Grant
    Filed: September 11, 2005
    Date of Patent: September 22, 2009
    Assignee: M-MOS Semiconductor Sdn. Bhd.
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7578891
    Abstract: An adhesive bonding sheet having an optically transmitting supporting substrate and an adhesive bonding layer, and being used in both a dicing step and a semiconductor element adhesion step, wherein the adhesive bonding layer comprises: a polymer component (A) having a weight average molecular weight of 100,000 or more including functional groups; an epoxy resin (B); a phenolic epoxy resin curing agent (C); a photoreactive monomer (D), wherein the Tg of the cured material obtained by ultraviolet light irradiation is 250° C. or more; and a photoinitiator (E) which generates a base and a radical by irradiation with ultraviolet light of wavelength 200-450 nm.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: August 25, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Keisuke Ookubo, Teiichi Inada
  • Patent number: 7579694
    Abstract: Bumping a substrate having a metal layer thereon may include forming a barrier layer on the substrate including the metal layer and forming a conductive bump on the barrier layer. Moreover, the barrier layer may be between the conductive bump and the substrate, and the conductive bump may be laterally offset from the metal layer. After forming the conductive bump, the barrier layer may be removed from the metal layer thereby exposing the metal layer while maintaining a portion of the barrier layer between the conductive bump and the substrate. Related structures are also discussed.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: August 25, 2009
    Assignee: Unitive International Limited
    Inventors: Jong-Rong Jan, Tsai-Hua Lu, Sao-Ling Chiu, Ling-Chen Kung
  • Patent number: 7535100
    Abstract: A method of bonding a wafer to a substrate comprising the steps of: providing a wafer having a front surface and a back surface; attaching the front surface of the wafer to a support; thinning the wafer from the back surface; bonding the back surface of the wafer to a substrate using a thin bonding technique; and removing the support from the front surface of the wafer. A circuit comprising: a substrate; and a wafer; wherein the wafer is at most about 50 microns thick; wherein the wafer has a front surface comprising features; and wherein the wafer has a back surface bonded to the substrate using a thin bonding technique.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: May 19, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Karl D. Hobart
  • Patent number: 7521809
    Abstract: A semiconductor device having a semiconductor chip stack on a rewiring plate is disclosed. In one embodiment, the device includes an external contact area having a plurality of external contact area regions which are physically separate from one another is arranged on the underside. The individual external contact area regions are assigned to the individual semiconductor chips in the semiconductor chip stack. The external contact regions of an individual external contact area have a common external contact which electrically connects the external contact area regions.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: April 21, 2009
    Assignee: Infineon Technologies AG
    Inventors: Christian Birzer, Jens Pohl
  • Patent number: 7514290
    Abstract: This embodiment addresses a novel Chip-to-wafer chip lamination technique that provides low cost and high throughput. In the Chip-to-Chip process, using the temperature rise and utilizing deformation caused by thermal expansion of a metal shim inserted between the inner wall of a cavity, in which multiple chips are laminated and accommodated, multiple chips in the cavity are pressed against a reference surface on a side wall of the cavity to automatically perform positioning.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: April 7, 2009
    Assignee: International Business Machines Corporation
    Inventors: Katsuyuki Sakuma, Paul Stephen Andry, Kuniaki Sueoka, John Ulrich Knickerbocker
  • Patent number: 7508058
    Abstract: The present invention provides an improvement on the use of flexible circuit connectors for electrically coupling IC devices to one another in a stacked configuration by use of the flexible circuit to provide the connection of the stacked IC module to other circuits. Use of the flexible circuit as the connection of the IC module allows the flexible circuit to provide strain relief and allows stacked IC modules to be assembled with a lower profile than with previous methods. The IC module can be connected to external circuits through the flexible circuit connectors by a variety of means, including solder pads, edge connector pads, and socket connectors. This allows for IC devices to occupy less space then with previous methods, which is beneficial in modules such as memory modules with multiple, stacked memory devices.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 24, 2009
    Assignee: Entorian Technologies, LP
    Inventor: James Douglas Wehrly, Jr.
  • Patent number: 7491580
    Abstract: There is provided a method of manufacturing an electro-optical device from a large substrate that is cut into a plurality of first substrates having a chip shape. In the electro-optical device, second substrates of a chip shape are bonded to the first substrates. The method includes adhering a large glass substrate to approximately an entire surface of the large substrate opposite to a surface to which the second substrates are bonded; and cutting both the large substrate and the large glass substrate into first substrate units.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 17, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Seiichi Matsushima, Kenji Murakami, Hiroki Maruyama
  • Patent number: 7485969
    Abstract: Stacked microelectronic devices and methods for manufacturing such devices. An embodiment of a microelectronic device can include a support member and a first known good microelectronic die attached to the support member. The first die includes an active side, a back side, a first terminal, and integrated circuitry electrically coupled to the first terminal. The first die also includes a first redistribution structure at the active side. The microelectronic device can also include a second known good microelectronic die attached to the first die in a stacked configuration with a back side of the second die facing the support member and an active side of the second die facing away from the support member. The second die includes a second redistribution structure at the active side. The device can further include a casing covering the first die, the second die, and at least a portion of the support member.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: February 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 7482695
    Abstract: A semiconductor chip having an adhesive layer previously formed on an element forming surface thereof and having a bump exposed from the surface of the adhesive layer is wire-bonded to a printed circuit board. Another semiconductor chip is stacked on the above semiconductor chip with the adhesive layer disposed therebetween and is wire-bonded to the printed circuit board by wire bonding. Likewise, at least one semiconductor chip is sequentially stacked on the thus attained semiconductor structure to form a stack MCP.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 27, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Takyu, Kazuhiro Iizuka, Mika Kiritani
  • Patent number: 7462943
    Abstract: A semiconductor device with a chip (505), its position defining a plane, and an insulating substrate (503) with first and second surfaces; the substrate is substantially coplanar with the chip, without warpage. One of the chip sides is attached to the first substrate surface using adhesive material (504), which has a thickness. The thickness of the adhesive material is distributed so that the thickness (504b) under the central chip area is equal to or smaller than the material thickness (504a) under the peripheral chip areas. Encapsulation compound (701) is embedding all remaining chip sides and the portions of the first substrate surface, which are not involved in the chip attachment. When reflow elements (720) are attached to the substrate contact pads, they are substantially coplanar with the chip.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 9, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Patricio A Ancheta, Jr., Ramil A Viluan, James R. M. Baello, Elaine B Reyes
  • Patent number: 7443037
    Abstract: A stacked integrated circuit package system is provided connecting an interconnect between a first integrated circuit device and a substrate, the first integrated circuit device on the substrate, applying a protective dot on the first integrated circuit device, mounting a second integrated circuit device, having an adhesive, on the protective dot, with the adhesive on the first integrated circuit device, connecting the second integrated circuit device and the substrate, and encapsulating the first integrated circuit device, the second integrated circuit device, and the interconnect.
    Type: Grant
    Filed: April 1, 2006
    Date of Patent: October 28, 2008
    Assignee: Stats Chippac Ltd.
    Inventors: Hyun Joung Kim, Jong Wook Ju, Taeg Ki Lim
  • Patent number: 7436071
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device (10) having a semiconductor chip (12) with electrodes (16), a stress-relieving layer (14) prepared on the semiconductor chip (12), a wire (18) formed across the electrodes (16) and the stress-relieving layer (14), and solder balls (19) formed on the wire (18) over the stress-relieving layer (14); and a bare chip (20) as a second semiconductor device to be electrically connected to the first semiconductor device (10).
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: October 14, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7432599
    Abstract: A multi-chip memory module may be formed including two or more stacked integrated circuits mounted to a substrate or lead frame structure. The memory module may include means to couple one or more of the stacked integrated circuits to edge conductors in a memory card package configuration. Such means may include the capability to utilize bonding pads on all four sides of an integrated circuit. A lead frame structure may be divided into first and second portions. The first portion may be adapted to receive the stacked integrated circuits and the second portion may include a plurality of conductors. The first portion may also be adapted to couple at least one of the integrated circuits to power and ground conductors on the second portion. In one embodiment, the first portion may include the lead frame paddle and a conductive ring. In another embodiment, the first portion may include first and second coplanar elements.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: October 7, 2008
    Assignee: SanDisk 3D LLC
    Inventors: Vani Verma, Khushrav S. Chhor
  • Patent number: 7413928
    Abstract: A die-wafer package includes a singulated semiconductor die having a first plurality of bond pads on a first surface and a second plurality of bond pads on a second opposing surface thereof. Each of the first and second pluralities of bond pads includes an under-bump metallization (UBM) layer. The singulated semiconductor die is disposed on a semiconductor die site of a semiconductor wafer and a first plurality of conductive bumps electrically couples the first plurality of bond pads of the singulated semiconductor die with a first set of bond pads formed on the semiconductor die site. A second plurality of conductive bumps is disposed on a second set of bond pads of the semiconductor die site. A third plurality of conductive bumps is disposed on the singulated semiconductor die's second plurality of bond pads. The second and third pluralities of conductive bumps are configured for electrical interconnection with an external device.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: August 19, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Patent number: 7399686
    Abstract: A semiconductor processing method includes providing a substrate, forming a plurality of semiconductor layers in the substrate, each of the semiconductor layers being distinct and selected from different groups of semiconductor element types, the semiconductor layers comprising first, second, and third semiconductor layers. The method further includes forming a nitride cap layer on the second semiconductor layer prior to forming the third semiconductor layer. Semiconductor structure formed by the above method is also described.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: July 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Howard Hao Chen, Louis Lu-Chen Hsu, Jack Allan Mandelman
  • Patent number: 7378331
    Abstract: A method and article to provide a three-dimensional (3-D) IC wafer process flow. In some embodiments, the method and article include bonding a device layer of a multilayer wafer to a device layer of another multilayer wafer to form a bonded pair of device layers, each of the multilayer wafers including a layer of silicon on a layer of porous silicon (SiOPSi) on a silicon substrate where the device layer is formed in the silicon layer, separating the bonded pair of device layers from one of the silicon substrates by splitting one of the porous silicon layers, and separating the bonded pair of device layers from the remaining silicon substrate by splitting the other one of the porous silicon layers to provide a vertically stacked wafer.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: May 27, 2008
    Assignee: Intel Corporation
    Inventors: Mohamad Shaheen, Peter G. Tolchinsky, Irwin Yablok, Scott R. List
  • Patent number: 7358117
    Abstract: Semiconductor devices and stacked die assemblies, and methods of fabricating the devices and assemblies for increasing semiconductor device density are provided.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Hock Chuan Tan, Thiam Chye Lim, Victor Cher Khng Tan, Chee Peng Neo, Michael Kian Shing Tan, Beng Chye Chew, Cheng Poh Pour
  • Patent number: 7335533
    Abstract: A method for assembling semiconductor devices includes providing a first semiconductor device, applying a predetermined volume of adhesive material to at least a surface of the first semiconductor device, and positioning a second semiconductor device adjacent to the first semiconductor device in superimposed relation thereto. The adhesive material may be applied to a surface of the first semiconductor device prior to positioning the second semiconductor device thereover, or introduced between the first and second semiconductor devices. Upon curing or hardening, the predetermined volume of adhesive material spaces the first and second semiconductor devices a predetermined distance apart from one another. Additional semiconductor devices may also be added to the assembly. The first semiconductor device may be associated with a substrate. Semiconductor device assemblies and packages that are at least partially fabricated in accordance with the method are also disclosed.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: February 26, 2008
    Assignee: Micron Technology, Inc.
    Inventor: James M. Derderian
  • Patent number: 7332372
    Abstract: A method for assembling semiconductor devices includes providing a first semiconductor device, applying a volume of adhesive material to at least a surface of the first semiconductor device, and positioning a second semiconductor device over the first semiconductor device and a portion of at least one discrete conductive element protruding thereabove. The adhesive material may be applied to a surface of the first semiconductor device prior to positioning the second semiconductor device thereover, or introduced between the first and second semiconductor devices. Upon curing, the predetermined volume of adhesive material spaces the first and second semiconductor devices a predetermined distance apart from one another. Additional semiconductor devices may also be added to the assembly. The first semiconductor device may be associated with a substrate. Semiconductor device assemblies and packages that are at least partially fabricated in accordance with the method are also disclosed.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: February 19, 2008
    Assignee: Micron Technology, Inc.
    Inventor: James M. Derderian
  • Patent number: 7327038
    Abstract: Provided is a semiconductor device package in which instability of a bonding wire that may occur when a plurality of semiconductor chips are stacked is prevented and which obtains a light, thin and small structure. The semiconductor device package includes a substrate having a plurality of substrate pads on a top surface of the semiconductor device package and includes a plurality of semiconductor chips stacked on the substrate. Each of the semiconductor chips have a chip pad electrically connected to a common pin, e.g., to which a common signal may be concurrently applied to each of the semiconductor chips. An interposer chip, also stacked on the substrate, has a connecting wire electrically connected to the chip pad, the common pin of each of the semiconductor chips being thereby electrically coupled at the connecting wire via the chip pad, and the connecting wire being thereby electrically connected to the substrate pad.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: February 5, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Kyu Kwon, Tae-Je Cho, Kyung-Lae Jang
  • Patent number: 7321163
    Abstract: A semiconductor device includes a first circuit element chip including a first surface on which a plurality of first electrodes are arranged, and a second circuit element chip including a first surface on which a plurality of second electrodes are arranged. The second circuit element chip is mounted on the first circuit element chip. The semiconductor device further includes an insulating film disposed on a side surface of the second circuit element chip and disposed between the first surfaces of the first and second circuit element chips. The semiconductor device still further includes a resin layer covering the second circuit element chip and the insulating film. Also, there is provided a manufacturing method of the semiconductor device which includes forming the insulating film after the second circuit element chip is mounted on the first circuit element chip.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: January 22, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Makoto Terui
  • Patent number: 7317256
    Abstract: An apparatus, method, and system for electronic device packaging having stacked dice are disclosed herein. A first die has a through silicon via formed therethrough. A second die is landed on the through silicon via of the first die. A mount having a lead is coupled to the through silicon via of the first die.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: January 8, 2008
    Assignee: Intel Corporation
    Inventors: Christina K. Williams, Rainer E. Thomas
  • Patent number: 7291927
    Abstract: A dual chips stacked packaging structure. A first chip comprises an active surface and an opposing non-active surface, the active surface consisting of a central area and a peripheral area having a plurality of first bonding pads. A lead frame comprises a plurality of leads and a chip paddle having a first adhering surface and a second adhering surface, with the first adhering surface adhering to the active surface of the first chip in such a way as to avoid contact with the first bonding pads. A second chip comprises an active surface and an opposing non-active surface connecting with the second adhering surface of the chip paddle, and the active surface consisting of a central area and a peripheral area having a plurality of second bonding pads. Parts of the wires electrically connect with the first bonding pad and the leads, and parts of the wires electrically connect with the second bonding pad and the leads.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: November 6, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Chen-Jung Tsai, Chih-Wen Lin
  • Patent number: 7288835
    Abstract: An integrated circuit package-in-package system is provided forming a first integrated circuit package having a first interface, stacking a second integrated circuit package having a second interface above the first integrated circuit package, fitting the first interface and the second interface, and attaching a third integrated circuit package on the second integrated circuit package.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: October 30, 2007
    Assignee: Stats Chippac Ltd.
    Inventors: Choong Bin Yim, Hyeog Chan Kwon, Jong-Woo Ha
  • Patent number: 7285864
    Abstract: A semiconductor chip having an adhesive layer previously formed on an element forming surface thereof and having a bump exposed from the surface of the adhesive layer is wire-bonded to a printed circuit board. Another semiconductor chip is stacked on the above semiconductor chip with the adhesive layer disposed therebetween and is wire-bonded to the printed circuit board by wire bonding. Likewise, at least one semiconductor chip is sequentially stacked on the thus attained semiconductor structure to form a stack MCP.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: October 23, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Takyu, Kazuhiro Iizuka, Mika Kiritani
  • Patent number: 7276424
    Abstract: Methodologies associated with fabricating aligned nanowire lattices are described. One exemplary method embodiment includes providing a twist wafer bonded thin single crystal semiconductor film and a bulk single crystal substrate of the same material. Periodic non-uniform elastic strains present on the surface of the film control the positions where nanocrystals will form on the film. The strains may be removed via annealing and alloying after the formation of nanocrystal arrays.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: October 2, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Qingqiao Wei
  • Patent number: 7226814
    Abstract: Disclosed are a semiconductor package device and a method for fabricating the semiconductor package device. The semiconductor package has a semiconductor chip including a plurality of bonding pads having a microscopic size and aligned at a minute interval, a planar layer formed on the semiconductor chip so as to expose the bonding pads, metal patterns formed on the planar layer and having a size larger than a size of the bonding pads in such a manner that at least some parts of the metal patterns are connected to the bonding pads and a seed metal layer interposed between the planar layer and the metal patterns. When the bonding pads have microscopic size and aligned at a minute interval, a wire-bonding process is carried out by using the metal patterns having the size larger than the size of the bonding pads and covering the bonding pad region, as a connection part to the bonding pads. Thus, the bonding pad region is reduced by 50 to 80% so that the number of chips in the semiconductor chip is increased.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: June 5, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ho Uk Song
  • Patent number: 7220618
    Abstract: The present invention relates to a method for forming a redistribution layer in a wafer structure. The method comprises: (a) providing a wafer having a plurality of conductive structures and a first passivation layer thereon, wherein the first passivation layer covers the wafer except the conductive surfaces of the conductive structures; (b) forming a second passivation layer over the first passivation layer; (c) selectively removing part of the second passivation layer to form a plurality of grooves corresponding to a predetermined circuit; (d) forming a redistribution layer in the grooves; and (e) forming a third passivation layer over the second passivation layer and the redistribution layer. As a result, the redistribution layer is “embedded” in the second passivation layer so as to avoid the delamination of the redistribution layer.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: May 22, 2007
    Assignee: Advanced Semiconductor Engineering Inc.
    Inventor: Min-Lung Huang
  • Patent number: 7214582
    Abstract: A semiconductor substrate and a semiconductor circuit formed therein and associated fabrication methods are provided. A multiplicity of depressions with a respective dielectric layer and a capacitor electrode are formed for realizing buried capacitors in a carrier substrate and an actual semiconductor component layer being insulated from the carrier substrate by an insulation layer.
    Type: Grant
    Filed: September 13, 2003
    Date of Patent: May 8, 2007
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Volker Lehmann, Lothar Risoh, Wolfgang Rösner, Michael Specht
  • Patent number: 7196425
    Abstract: A stacked die integrated circuit assembly comprising: 1) a substrate; 2) a first integrated circuit die mounted on the substrate; 3) a copper interposer mounted on the first integrated circuit die; and 4) a second integrated circuit die mounted on the copper interposer. The copper interposer significantly reduces the warping of the stacked die IC assembly caused by the warping of the substrate due to thermal changes in the substrate. The copper interposer has a significantly higher coefficient of thermal expansion than a conventional silicon (Si) interposer. The higher CTE enables the copper interposer to counteract the substrate warping.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 27, 2007
    Assignee: STMicroelectronics, Inc.
    Inventors: Anthony M. Chiu, Tong Yan Tee