Color Imager (epo) Patents (Class 257/E27.142)
-
Patent number: 11417568Abstract: Methods and apparatus for selectively depositing a tungsten layer atop a dielectric surface.Type: GrantFiled: April 10, 2020Date of Patent: August 16, 2022Assignee: APPLIED MATERIALS, INC.Inventors: Wei Lei, Yi Xu, Yu Lei, Tae Hong Ha, Raymond Hung, Shirish A. Pethe
-
Patent number: 9006566Abstract: A photoelectric conversion device comprising: an inorganic photoelectric conversion film; and an organic photoelectric conversion film, wherein an insulating film between the inorganic photoelectric conversion film and the organic photoelectric conversion film has a thickness of from 1 to 6 ?m, wherein the organic photoelectric conversion film has a multilayer structure comprising four or more layers, or wherein a protective film having a multilayer structure comprising three or more layers is provided on the organic photoelectric conversion film.Type: GrantFiled: June 29, 2006Date of Patent: April 14, 2015Assignee: FUJIFILM CorporationInventor: Mikio Ihama
-
Patent number: 8952475Abstract: A pixel and pixel array for use in an image sensor are provided. The image sensor includes floating sensing nodes symmetrically arranged with respect to a photodiode in each pixel.Type: GrantFiled: March 8, 2013Date of Patent: February 10, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Min-seok Oh, Eun-sub Shim, Jung-chak Ahn, Moo-sup Lim, Sung-ho Choi
-
Patent number: 8766291Abstract: The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer—i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.Type: GrantFiled: October 28, 2009Date of Patent: July 1, 2014Assignee: The Regents of the University of MichiganInventors: Stephen Forrest, Xiangfei Qi, Michael Slootsky
-
Patent number: 8405063Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.Type: GrantFiled: January 20, 2010Date of Patent: March 26, 2013Assignee: QD Vision, Inc.Inventors: Peter T. Kazlas, Seth Coe-Sullivan
-
Patent number: 8294177Abstract: A light emitting device (1) includes a LED chip (10) as well as a mounting substrate (20) on which the LED chip (10) is mounted. Further, the light emitting device (1) includes a cover member (60) and a color conversion layer (70). The cover member (60) is formed to have a dome shape and is made of a translucency inorganic material. The color conversion layer (70) is formed to have a dome shape and is made of a translucency material (such as, a silicone resin) including a fluorescent material excited by light emitted from the LED chip (10) and emitting light longer in wavelength than the light emitted from the LED chip (10). The cover member (60) is attached to the mounting substrate (20) such that there is an air layer (80) between the cover member (60) and the mounting substrate (20). The color conversion layer (70) is superposed on a light-incoming surface or a light-outgoing surface of the cover member (60).Type: GrantFiled: December 5, 2008Date of Patent: October 23, 2012Assignee: Panasonic CorporationInventors: Keiichi Yamazaki, Naoko Takei, Tomoyuki Nakajima
-
Patent number: 8089070Abstract: An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.Type: GrantFiled: February 13, 2007Date of Patent: January 3, 2012Assignee: California Institute of TechnologyInventor: Bedabrata Pain
-
Patent number: 7977677Abstract: In a thin-film transistor (TFT) substrate, a gate insulating layer is disposed on a gate electrode electrically connected to a gate line. A semiconductor layer is disposed on the gate insulating layer. A source electrode is electrically connected to a data line that intersects the gate line. A drain electrode faces the source electrode and defines a channel area of a semiconductor layer. An organic layer is disposed on the data line and has a first opening exposing the channel area. An inorganic insulating layer is disposed on the organic layer. A pixel electrode is disposed on the inorganic insulating layer and electrically connected to the drain electrode. The inorganic insulating layer covers the first opening, and thickness of the inorganic insulating layer is substantially uniform.Type: GrantFiled: August 16, 2007Date of Patent: July 12, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Hye-Young Ryu, Jang-Soo Kim, Su-Hyoung Kang
-
Patent number: 7888759Abstract: A photoelectric conversion device comprising: a semiconductor substrate; an inorganic photoelectric conversion layer provided within the semiconductor substrate; and an organic photoelectric conversion layer provided above the inorganic photoelectric conversion layer, wherein the organic photoelectric conversion layer is prepared by a shadow mask method.Type: GrantFiled: August 23, 2006Date of Patent: February 15, 2011Assignee: Fujifilm CorporationInventor: Mikio Ihama
-
Patent number: 7859072Abstract: An image sensor and a fabricating method thereof are provided. The image sensor includes a plurality of pixels disposed in an active region and dummy pixels disposed in a peripheral region. An interlayer dielectric layer has a first thickness in the active region and a second thickness thinner than the first thickness in the peripheral region. Color filters are disposed in the active region, and a light blocking member is disposed in the peripheral region. There is substantially no step difference between the color filters and the light blocking member.Type: GrantFiled: August 15, 2007Date of Patent: December 28, 2010Assignee: Dongbu Hitek Co., Ltd.Inventor: Chang Hun Han
-
Publication number: 20100258892Abstract: A radiation receiver has a semiconductor body including a first active region and a second active region, which are provided in each case for detecting radiation. The first active region and the second active region are spaced vertically from one another. A tunnel region is arranged between the first active region and the second active region. The tunnel region is connected electrically conductively with a land, which is provided between the first active region and the second active region for external electrical contacting of the semiconductor body. A method of producing a radiation receiver is additionally indicated.Type: ApplicationFiled: December 17, 2008Publication date: October 14, 2010Inventors: Rainer Butendeich, Reiner Windisch
-
Publication number: 20100006963Abstract: A backside illuminated image sensor comprises a sensor layer having a plurality of photosensitive elements of a pixel array, an oxide layer adjacent a backside surface of the sensor layer, and at least one dielectric layer adjacent a frontside surface of the sensor layer. A color filter array is formed on a backside surface of the oxide layer, and a transparent cover is attached to the backside surface of the oxide layer overlying the color filter array. Redistribution metal conductors are in electrical contact with respective bond pad conductors through respective openings in the dielectric layer. A redistribution passivation layer is formed over the redistribution metal conductors, and contact metallizations are in electrical contact with respective ones of the respective redistribution metal conductors through respective openings in the redistribution passivation layer. The image sensor may be implemented in a digital camera or other type of digital imaging device.Type: ApplicationFiled: July 9, 2008Publication date: January 14, 2010Inventor: Frederick T. Brady
-
Patent number: 7632692Abstract: A thin film transistor array panel is provided, which includes: a gate line formed on an insulating substrate; a gate insulating layer on the gate line; a semiconductor layer on the gate insulating layer; a data line formed on the gate insulating layer; a drain electrode formed at least in part on the semiconductor layer; a first passivation layer formed on the data line and the drain electrode; a color filter formed on the data line and the drain electrode; a second passivation layer formed on the color filter; and a pixel electrode formed on the color filter, connected to the drain electrode, overlapping the second passivation layer, and enclosed by the second passivation layer.Type: GrantFiled: March 8, 2007Date of Patent: December 15, 2009Assignee: Samsung Electronics Co., Ltd.Inventor: Dong-Gyu Kim
-
Patent number: 7488615Abstract: A method of manufacturing a solid-state imaging device, wherein the solid-state imaging device comprising: a semiconductor substrate; a plurality of photodiodes that are formed on a surface of the semiconductor substrate so as to be arranged in an array form; and a light shielding film, provided on or above the surface of the semiconductor substrate, that has a plurality of openings in correspondence with respective ones of the photodiodes, the method comprising: laminating, on the surface of the semiconductor substrate, lamination layers including the light shielding film; opening through holes in the lamination layers, respectively, at positions corresponding to the photodiodes to form the openings in the light shielding film; forming a low refractive index material layer with a predetermined thickness isotropically on a side wall surface of each of the through holes; and filling a remaining hole portion of each of the through holes with a high refractive index material to form an optical waveguide for guidType: GrantFiled: January 23, 2007Date of Patent: February 10, 2009Assignee: Fujifilm CorporationInventor: Shinji Uya
-
Patent number: 7485906Abstract: Disclosed is an ordered microelectronic fabrication sequence in which color filters are formed by conformal deposition directly onto a photodetector array of a CCD, CID, or CMOS imaging device to create a concave-up pixel surface, and, overlayed with a high transmittance planarizing film of specified index of refraction and physical properties which optimize light collection to the photodiode without additional conventional microlenses. The optically flat top surface serves to encapsulate and protect the imager from chemical and thermal cleaning treatment damage, minimizes topographical underlayer variations which would aberrate or cause reflection losses of images formed on non-planar surfaces, and, obviates residual particle inclusions induced during dicing and packaging. A CCD imager is formed by photolithographically patterning a planar-array of photodiodes on a semiconductor substrate. The photodiode array is provided with metal photoshields, passivated, and, color filters are formed thereon.Type: GrantFiled: December 20, 2006Date of Patent: February 3, 2009Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Yang-Tung Fan, Chiou-Shian Peng, Cheng-Yu Chu, Shih-Jane Lin, Yen-Ming Chen, Fu-Jier Fan, Kuo-Wei Lin