Of The Hybrid Type (e.g., Chip-on-chip, Bonded Substrates) (epo) Patents (Class 257/E27.144)
  • Patent number: 9029234
    Abstract: One of the wafers in a semiconductor wafer to wafer stack can be rotated a predefined number of positions, relative to a previous wafer in the stack, and bonded in the position in which the maximum number of good die are aligned. An adjustment circuit on each die reroutes signals received from a pad that has been relocated due to rotation. A communication channel formed from a pair of pads that are interconnected by a Through Substrate Vias can be placed in each die and can convey selected information from one die to the next. A code representative of the position orientation of each die can be recorded in a Programmable Read Only Memory located on each die, or may be down loaded from a remote source. Any additional wafer may be stacked serially, and each one may be rotated relative to the wafer that precedes it in the stack.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 12, 2015
    Assignee: International Business Machines Corporation
    Inventors: John Matthew Safran, Daniel Jacob Fainstein, Gary W. Maier, Yunsheng Song, Norman Whitelaw Robson
  • Patent number: 9000575
    Abstract: A first substrate with a penetration electrode formed thereon is stacked on a second substrate with a protruding electrode formed thereon. The penetration electrode has a recessed portion. The substrates are stacked with the protruding electrode entered in the recessed portion. A distal width of the protruding electrode is smaller than an opening width of the recessed portion.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: April 7, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Hideo Imai
  • Patent number: 8921901
    Abstract: A stacked wafer structure includes a CIS wafer, an ISP wafer, a lamination layer, a through silicon via and a pixel device. The CIS wafer bonds to the ISP wafer through the lamination layer. The pixel device is disposed on the CIS wafer. The through silicon via penetrates either the CIS wafer or the ISP wafer to connect devices in CIS wafer to the devices in ISP wafer electrically.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corp.
    Inventor: Ching-Hung Kao
  • Patent number: 8796811
    Abstract: In a hybrid integrated module, a semiconductor die is mechanically coupled face-to-face to an integrated device in which the substrate has been removed. For example, the integrated circuit may include an optical device fabricated on a silicon-on-insulator (SOI) wafer in which the backside silicon handler has been completely removed, thereby facilitating improved device performance and highly efficient thermal tuning of the operating wavelength of the optical device. Moreover, the semiconductor die may be a VLSI chip that provides power, and serves as a mechanical handler and/or an electrical driver. The thermal tuning efficiency of the substrateless optical device may be enhanced by over 100× relative to an optical device with an intact substrate, and by 5× relative to an optical device in which the substrate has only been removed in proximity to the optical device.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: August 5, 2014
    Assignee: Oracle International Corporation
    Inventors: Ivan Shubin, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 8736075
    Abstract: A semiconductor module comprising a plurality of semiconductor chips where at least one semiconductor chip is laterally offset with respect to a second semiconductor chip, and substantially aligned with a third semiconductor chip such that an electrical connection can be made between an electrical contact in the first semiconductor chip and an electrical contact in the third semiconductor chip.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 27, 2014
    Assignee: SK Hynix Inc.
    Inventors: Hyung Ju Choi, Mun Aun Hyun, Jong Hyun Kim, Hyeon Ji Baek
  • Patent number: 8698297
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; applying a molded under-fill on the base substrate; forming a substrate contact extender through the molded under-fill and in direct contact with the base substrate; mounting a stack device over the molded under-fill; attaching a coupling connector from the substrate contact extender to the stack device; and forming a base encapsulation on the stack device, the substrate contact extender, and encapsulating the coupling connector.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 15, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: JoHyun Bae, In Sang Yoon, DaeSik Choi
  • Patent number: 8664083
    Abstract: InP epitaxial material is directly bonded onto a Silicon-On-Insulator (SOI) wafer having Vertical Outgassing Channels (VOCs) between the bonding surface and the insulator (buried oxide, or BOX) layer. H2O and other molecules near the bonding surface migrate to the closest VOC and are quenched in the buried oxide (BOX) layer quickly by combining with bridging oxygen ions and forming pairs of stable nonbridging hydroxyl groups (Si—OH). Various sizes and spacings of channels are envisioned for various devices.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 4, 2014
    Assignee: The Regents of the University of California
    Inventor: Di Liang
  • Patent number: 8592964
    Abstract: Devices and methods are described including a multi-chip assembly. Embodiments of multi-chip assemblies are provided that uses both lateral connection structures and through chip connection structures. One advantage of this design includes an increased number of possible connections. Another advantage of this design includes shorter distances for interconnection pathways, which improves device performance and speed.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: November 26, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 8525348
    Abstract: A fabrication method of a chip scale package includes providing electronic components, each having an active surface with electrode pads and an opposite inactive surface, and a hard board with a soft layer disposed thereon; adhering the electronic components to the soft layer via the inactive surfaces thereof; pressing the electronic components such that the soft layer encapsulates the electronic components while exposing the active surfaces thereof; forming a dielectric layer on the active surfaces of the electronic components and the soft layer; and forming a first wiring layer on the dielectric layer and electrically connected to the electrode pads, thereby solving the conventional problems caused by directly attaching a chip on an adhesive film, such as film-softening, encapsulant overflow, warpage, chip deviation and contamination that lead to poor electrical connection between the electrode pads and the wiring layer formed in a subsequent RDL process and even waste product.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 3, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chiang-Cheng Chang, Chun-Chi Ke, Chien-Ping Huang
  • Patent number: 8441134
    Abstract: A chip stacking structure includes a first chip and a second chip. The first chip includes a surface having a first group of pads formed thereon, and the second chip includes a surface having a second group of pads formed thereon. The second group of pads is bonded onto the first group of pads to define a plurality of capillary passages extending in a same direction. The chip stacking structure further includes an underfill filling up interspaces between the first chip and the second chip. The chip stacking structure is capable of avoiding chip deformation and cracking during a bonding process.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 14, 2013
    Assignee: United Microelectronics Corporation
    Inventors: Chien-Li Kuo, Yung-Chang Lin, Ming-Tse Lin
  • Patent number: 8404518
    Abstract: A method of manufacture of an integrated circuit packaging system including: fabricating a base package substrate having component pads and stacking pads; coupling a base integrated circuit die to the component pads; forming a penetrable encapsulation material for enclosing the base integrated circuit die and the component pads on the base package substrate; and coupling stacked interconnects on the stacking pads adjacent to and not contacting the penetrable encapsulation material.
    Type: Grant
    Filed: December 13, 2009
    Date of Patent: March 26, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Rui Huang, Reza Argenty Pagaila
  • Patent number: 8399993
    Abstract: An embedded package includes a first semiconductor chip having a first conductive line which has a first sunken area, a second semiconductor chip having a second conductive line which has a second sunken area, wherein the first semiconductor chip and the second semiconductor chip are arranged facing each other, and wherein the first sunken area and the second sunken area are arranged facing each other, a core layer surrounding the first semiconductor chip and the second semiconductor chip, wherein the core layer has a first circuit pattern coupled to an external terminal; and a bump formed in the first and second sunken areas, wherein the bump is coupled to the first circuit pattern.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 19, 2013
    Assignee: SK Hynix Inc.
    Inventor: Yeo Song Yun
  • Patent number: 8378482
    Abstract: A wiring board between which and a chip to be mounted a resin is filled includes: a substrate body on which a conductor portion to be connected to an electrode terminal of the chip is formed; and an insulating protection film formed on the substrate body and having an opening portion formed therein to expose the conductor portion. The opening portion is formed in such a manner that the edge thereof is positioned along and outside the outer shape of the chip except for a specific corner portion, and that the edge in the specific corner portion is positioned on a side of or inside the outer shape of the chip.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: February 19, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Takashi Ozawa
  • Patent number: 8338932
    Abstract: A power semiconductor module includes a package having a first package portion and a second package portion. The side of the first package portion facing the second package portion has an anchoring element with a first recess. The second package portion includes a second recess with an indentation which receives the anchoring element. To produce a mechanically firm connection between the first package portion and the second package portion, a plug-in element is inserted in the first recess and the second recess. The plug-in element displaces the anchoring element transversely with respect to the plug-in direction, causing the anchoring element to engage the indentation so that a form-fit connection is produced between the first package portion and the second package portion. The plug-in element prevents the anchoring element from disengaging the indentation.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 25, 2012
    Assignee: Infineon Technologies AG
    Inventors: Georg Borghoff, Thilo Stolze
  • Patent number: 8319329
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: November 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Patent number: 8134237
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device having a semiconductor chip with electrodes, a stress-relieving layer prepared on the semiconductor chip, a wire formed across the electrodes and the stress-relieving layer, and solder balls formed on the wire over the stress-relieving layer; and a bare chip as a second semiconductor device to be electrically connected to the first semiconductor device.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: March 13, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 8129833
    Abstract: Microelectronic packages are fabricated by stacking integrated circuits upon one another. Each integrated circuit includes a semiconductor layer having microelectronic devices and a wiring layer on the semiconductor layer having wiring that selectively interconnects the microelectronic devices. After stacking, a via is formed that extends through at least two of the integrated circuits that are stacked upon one another. Then, the via is filled with conductive material that selectively electrically contacts the wiring. Related microelectronic packages are also described.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Jung-Ho Kim, Jong-Wook Lee, Seung-woo Choi, Dae-Lok Bae
  • Patent number: 8129257
    Abstract: InP epitaxial material is directly bonded onto a Silicon-On-Insulator (SOI) wafer having Vertical Outgassing Channels (VOCs) between the bonding surface and the insulator (buried oxide, or BOX) layer. H2O and other molecules near the bonding surface migrate to the closest VOC and are quenched in the buried oxide (BOX) layer quickly by combining with bridging oxygen ions and forming pairs of stable nonbridging hydroxyl groups (Si—OH). Various sizes and spacings of channels are envisioned for various devices.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: March 6, 2012
    Assignee: The Regents of the University of California
    Inventor: Di Liang
  • Patent number: 8062956
    Abstract: Methods and apparatus for producing a semiconductor on glass (SOG) structure include: bringing a first surface of a glass substrate into direct or indirect contact with a semiconductor wafer; heating at least one of the glass substrate and the semiconductor wafer such that a second surface of the glass substrate, opposite to the first surface thereof, is at a lower temperature than the first surface; applying a voltage potential across the glass substrate and the semiconductor wafer; and maintaining the contact, heating and voltage to induce an anodic bond between the semiconductor wafer and the glass substrate via electrolysis.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventor: James Gregory Couillard
  • Patent number: 8017450
    Abstract: A method of forming an asymmetrical encapsulant bead on a series of wire bonds electrically connecting a micro-electronic device to a series of conductors, the micro-electronic device having a planar active surface. The method has the steps of positioning the die and the wire bonds beneath an encapsulant jetter that jets drops of encapsulant on to the wire bonds, the drops of encapsulant following a vertical trajectory, tilting the die such that the active surface is inclined to the horizontal and, jetting the drops of encapsulant to form a bead of encapsulant material covering the series of wire bonds, the bead having a cross sectional profile that is asymmetrical about an axis parallel to a normal to the active surface.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: September 13, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Nadine Lee-Yen Chew, Elmer Dimaculangan Perez, Kiangkai Tankongchumruskul
  • Patent number: 7998833
    Abstract: The invention relates to a method for bonding wafers along their corresponding surfaces.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: August 16, 2011
    Inventor: Erich Thallner
  • Patent number: 7986043
    Abstract: An integrated circuit package on package system including forming an interconnect integrated circuit package and attaching an extended-lead integrated circuit package on the interconnect integrated circuit package wherein a mold cap of the extended-lead integrated circuit package faces a mold cap of the interconnect integrated circuit package.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: July 26, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Dioscoro A. Merilo, Seng Guan Chow, Antonio B. Dimaano, Jr., Heap Hoe Kuan, Tsz Yin Ho
  • Patent number: 7977781
    Abstract: In a semiconductor device in which a plurality of memory LSIs and a plurality of processor LSIs are stacked, as the number of stacked layers increase, the communication distance of data between a memory LSI and a processor LSI will increase. Therefore, the parasitic capacitance and parasitic resistance of the wiring used for the communication increase and, as a result of which, the power and speed performance of the entire system will be degraded. At least two or more of the combinations of a processor LSI 100 and a memory LSI 200 are stacked and the processor LSI 100 and the memory LSI 200 in the same combination are stacked adjacent to each other in the vertical direction.
    Type: Grant
    Filed: October 30, 2010
    Date of Patent: July 12, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoto Ito, Makoto Saen, Yuki Kuroda
  • Patent number: 7960843
    Abstract: A chip arrangement includes a logic chip with electric contacts arranged on one side, at least one memory chip arrangement with electrical contacts arranged on at least one side, and a substrate with electrical contacts on both sides of the substrate. The logic chip is attached to the substrate and is electrically conductively coupled to the substrate. The memory chip arrangement is arranged on the logic chip on the side facing the substrate and is electrically conductive coupled to the logic chip. The substrate includes a plurality of electrical connections between the contacts of the one and the other side.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: June 14, 2011
    Assignee: Qimonda AG
    Inventors: Harry Hedler, Roland Irsigler
  • Patent number: 7932612
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device having a semiconductor chip with electrodes, a stress-relieving layer prepared on the semiconductor chip, a wire formed across the electrodes and the stress-relieving layer, and solder balls formed on the wire over the stress-relieving layer; and a bare chip as a second semiconductor device to be electrically connected to the first semiconductor device.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: April 26, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7833836
    Abstract: A semiconductor chip having an adhesive layer previously formed on an element forming surface thereof and having a bump exposed from the surface of the adhesive layer is wire-bonded to a printed circuit board. Another semiconductor chip is stacked on the above semiconductor chip with the adhesive layer disposed therebetween and is wire-bonded to the printed circuit board by wire bonding. Likewise, at least one semiconductor chip is sequentially stacked on the thus attained semiconductor structure to form a stack MCP.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Takyu, Kazuhiro Iizuka, Mika Kiritani
  • Patent number: 7834440
    Abstract: In a semiconductor device in which a plurality of memory LSIs and a plurality of processor LSIs are stacked, as the number of stacked layers increase, the communication distance of data between a memory LSI and a processor LSI will increase. Therefore, the parasitic capacitance and parasitic resistance of the wiring used for the communication increase and, as a result of which, the power and speed performance of the entire system will be degraded. At least two or more of the combinations of a processor LSI 100 and a memory LSI 200 are stacked and the processor LSI 100 and the memory LSI 200 in the same combination are stacked adjacent to each other in the vertical direction.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: November 16, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoto Ito, Makoto Saen, Yuki Kuroda
  • Patent number: 7825519
    Abstract: A multilayered integrated optical and circuit device. The device has a first substrate comprising at least one integrated circuit chip thereon, which has a cell region and a peripheral region. Preferably, the peripheral region has a bonding pad region, which has one or more bonding pads and an antistiction region surrounding each of the one or more bonding pads. The device has a second substrate with at least one or more deflection devices thereon coupled to the first substrate. At least one or more bonding pads are exposed on the first substrate. The device has a transparent member overlying the second substrate while forming a cavity region to allow the one or more deflection devices to move within a portion of the cavity region to form a sandwich structure including at least a portion of the first substrate, a portion of the second substrate, and a portion of the transparent member.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: November 2, 2010
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen, Philip Chen
  • Patent number: 7807503
    Abstract: A die-wafer package includes a singulated semiconductor die having a first plurality of bond pads on a first surface and a second plurality of bond pads on a second, opposing surface thereof. Each of the first and second pluralities of bond pads includes an under-bump metallization (UBM) layer. The singulated semiconductor die is disposed on a semiconductor die site of a semiconductor wafer and a first plurality of conductive bumps electrically couples the first plurality of bond pads of the singulated semiconductor die with a first set of bond pads formed on the semiconductor die site. A second plurality of conductive bumps is disposed on a second set of bond pads of the semiconductor die site. A third plurality of conductive bumps is disposed on the singulated semiconductor die's second plurality of bond pads. The second and third pluralities of conductive bumps are configured for electrical interconnection with an external device.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Trung T. Doan
  • Patent number: 7781887
    Abstract: A semiconductor device includes a first die, a substrate, and a first interconnect. The first die includes a first isolation region and a first contact at least partially overlapping the first isolation region. The substrate includes a second contact. The first interconnect couples the first contact to the second contact. The first interconnect is defined by a via through the first isolation region.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: August 24, 2010
    Assignee: Infineon Technologies AG
    Inventor: Alois Nitsch
  • Patent number: 7781879
    Abstract: Apparatus for integrating capacitors in stacked integrated circuits are described. One aspect of the invention relates to a semiconductor assembly having a carrier substrate, a plurality of integrated circuit dice, and at least one metal-insulator-metal (MIM) capacitor. The integrated circuit dice are vertically stacked on the carrier substrate. Each MIM capacitor is disposed between a first integrated circuit die and a second integrated circuit die of the plurality of integrated circuit dice. The at least one MIM capacitor is fabricated on at least one of a face of the first integrated circuit die and a backside of the second integrated circuit die.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 24, 2010
    Assignee: Xilinx, Inc.
    Inventors: Arifur Rahman, Stephen M. Trimberger
  • Patent number: 7777350
    Abstract: A semiconductor stack package includes a first printed wiring board; a plurality of semiconductor chips stacked on the first printed wiring board, wherein among the semiconductor chips, the uppermost semiconductor chip has an electrode pad for providing power supply, a ground pad for providing grounding, and a signal pad for signal transmission in a center area on the upper surface of the chip; connection lands formed on the first printed wiring board on the outside of the stacked semiconductor chips; a wiring extension part which is formed on the uppermost semiconductor chip, and has wiring circuits extending from the center to the periphery thereof, wherein at least one of the electrode pad and the ground pad is electrically connected to one end of one of the wiring circuits; and a wire for connecting the other end of the relevant wiring circuit of the wiring extension part and one of the connection lands on the first printed wiring board.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: August 17, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Dai Sasaki, Mitsuaki Katagiri, Satoshi Isa
  • Patent number: 7737477
    Abstract: A CMOS image sensor and a method for manufacturing the same improve light-receiving efficiency and maintain a margin in the design of a metal line. The CMOS image sensor includes a transparent substrate including an active area having a photodiode region and a transistor region and a field area for isolation of the active area, a p-type semiconductor layer on the transparent substrate, a photodiode in the p-type semiconductor layer corresponding to the photodiode region, and a plurality of transistors in the p-type semiconductor layer corresponding to the transistor region.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: June 15, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Hyeon Woo Ha
  • Patent number: 7723852
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a semiconductor package including two or more semiconductor dies which are electrically connected to an underlying substrate through the use of conductive wires, some of which may be fully or partially encapsulated by an adhesive or insulating layer of the package. In a basic embodiment of the present invention, the semiconductor package comprises a substrate having a conductive pattern disposed thereon. Electrically connected to the conductive pattern of the substrate are first and second semiconductor dies. The first semiconductor die and a portion of the substrate are covered by an adhesive layer. The second semiconductor die, the adhesive layer and a portion of the substrate are in turn covered by a package body of the semiconductor package.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: May 25, 2010
    Assignee: Amkor Technology, Inc.
    Inventors: Yoon Joo Kim, In Tae Kim, Ji Young Chung, Bong Chan Kim, Do Hyung Kim, Sung Chul Ha, Sung Min Lee, Jae Kyu Song
  • Patent number: 7663244
    Abstract: The semiconductor device 1 has a semiconductor chip 10 (first semiconductor chip) and a semiconductor chip 20 (second semiconductor chip). The semiconductor chip 20 is formed on the semiconductor chip 10. The semiconductor chip 20 is constituted by comprising a semiconductor substrate 22. The semiconductor substrate 22, which is an SOI substrate, is constituted by comprising an insulating layer 34, and a silicon layer 36, which is provided on the insulating layer 34, including a circuit forming region A1. The insulating layer 34 functions as a protective film (a first protective film) covering a lower face (a face opposite to the semiconductor chip 10) of the circuit forming region A1. A protective film 38 (a second protective film) is provided on the semiconductor substrate 22. The protective film 38 covers a side face of the circuit forming region A1.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: February 16, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yoichiro Kurita
  • Patent number: 7638365
    Abstract: Provided is a stacked chip package and a method for forming the same. A spacer is formed on a side of an upper chip. A conductive line is formed on the spacer to electrically connect upper and lower chips. The reliability of the stacked chip package is improved because wire bonding is not used to electrically connect the upper and lower chips. Further, the overall size of the stacked chip package can be reduced as the height of bonding wire loops does not contribute to the overall stacked chip package height.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Young Jeong, Nam-Seog Kim, Cha-Jea Jo, Jong-Ho Lee, Myeong-Soon Park
  • Patent number: 7615871
    Abstract: A microelectronic package and method for forming such packages. In one embodiment, the package can be formed by providing a support member having a first surface, a second surface facing opposite the first surface, and a projection extending away from the first surface. A quantity of adhesive material can be applied to the projection to form an attachment structure, and the adhesive material can be connected to a microelectronic substrate with the attachment structure providing no electrically conductive link between the microelectronic substrate and the support member. The microelectronic substrate and the support member can then be electrically coupled, for example, with a wire bond. In one embodiment, the projection can be formed by disposing a first material on a support member while the first material is at least partially flowable, reducing the flowability of the first material, and disposing a second material (such as the adhesive) on the first material.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 10, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Tongbi Jiang
  • Patent number: 7608920
    Abstract: The present invention provides a system and method for employing leaded packaged memory devices in memory cards. Leaded packaged ICs are disposed on one or both sides of a flex circuitry structure to create an IC-populated structure. In a preferred embodiment, leads of constituent leaded IC packages are configured to allow the lower surface of the leaded IC packages to contact respective surfaces of the flex circuitry structure. Contacts for typical embodiments are supported by a rigid portion of the flex circuitry structure and the IC-populated structure is disposed in a casing to provide card structure for the module.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 27, 2009
    Assignee: Entorian Technologies, LP
    Inventor: James Douglas Wehrly, Jr.
  • Patent number: 7605454
    Abstract: The present invention provides a system and method for employing leaded packaged memory devices in memory cards. Leaded packaged ICs are disposed on one or both sides of a flex circuitry structure to create an IC-populated structure. In a preferred embodiment, leads of constituent leaded IC packages are configured to allowed the lower surface of the leaded IC packages to contact respective surfaces of the flex circuitry structure. Contacts for typical embodiments are supported by a rigid portion of the flex circuitry structure and the IC-populated structure is disposed in a casing to provide card structure for the module.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: October 20, 2009
    Assignee: Entorian Technologies, LP
    Inventor: James Douglas Wehrly, Jr.
  • Patent number: 7598619
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device (10) having a semiconductor chip (12) with electrodes (16), a stress-relieving layer (14) prepared on the semiconductor chip (12), a wire (18) formed across the electrodes (16) and the stress-relieving layer (14), and solder balls (19) formed on the wire (18) over the stress-relieving layer (14); and a bare chip (20) as a second semiconductor device to be electrically connected to the first semiconductor device (10).
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 6, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7592650
    Abstract: A hybrid semiconductor power device that includes a plurality of closed power transistor cells each surrounded by a first and second trenched gates constituting substantially a closed cell and a plurality of stripe cells comprising two substantially parallel trenched gates constituting substantially an elongated stripe cell wherein the closed cells and stripe cells constituting neighboring cells sharing trenched gates disposed thereinbetween as common boundary trenched gates. The closed MOSFET cell further includes a source contact disposed substantially at a center portion of the closed cell wherein the trenched gates are maintained a critical distance (CD) away from the source contact.
    Type: Grant
    Filed: September 11, 2005
    Date of Patent: September 22, 2009
    Assignee: M-MOS Semiconductor Sdn. Bhd.
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7578891
    Abstract: An adhesive bonding sheet having an optically transmitting supporting substrate and an adhesive bonding layer, and being used in both a dicing step and a semiconductor element adhesion step, wherein the adhesive bonding layer comprises: a polymer component (A) having a weight average molecular weight of 100,000 or more including functional groups; an epoxy resin (B); a phenolic epoxy resin curing agent (C); a photoreactive monomer (D), wherein the Tg of the cured material obtained by ultraviolet light irradiation is 250° C. or more; and a photoinitiator (E) which generates a base and a radical by irradiation with ultraviolet light of wavelength 200-450 nm.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: August 25, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Keisuke Ookubo, Teiichi Inada
  • Patent number: 7535100
    Abstract: A method of bonding a wafer to a substrate comprising the steps of: providing a wafer having a front surface and a back surface; attaching the front surface of the wafer to a support; thinning the wafer from the back surface; bonding the back surface of the wafer to a substrate using a thin bonding technique; and removing the support from the front surface of the wafer. A circuit comprising: a substrate; and a wafer; wherein the wafer is at most about 50 microns thick; wherein the wafer has a front surface comprising features; and wherein the wafer has a back surface bonded to the substrate using a thin bonding technique.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: May 19, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francis J. Kub, Karl D. Hobart
  • Patent number: 7531905
    Abstract: A stacked semiconductor device includes an interposer substrate having external power supply terminals, and semiconductor chips stacked on the interposer substrate. A power supply wiring arranged in the semiconductor chip located in the bottom layer is connected to the external power supply terminal via a bump electrode, the power supply wiring arranged in the semiconductor chip located in the top layer is connected to the external power supply terminal via a bonding wire, and the power supply wirings each arranged in adjacent semiconductor chips are mutually connected via the through electrode. Such a loop structure can solve a problem such that the higher the semiconductor chip, the larger its voltage drop.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: May 12, 2009
    Assignee: Elpida Memory, Inc.
    Inventors: Masakzau Ishino, Hiroaki Ikeda, Junji Yamada
  • Patent number: 7508058
    Abstract: The present invention provides an improvement on the use of flexible circuit connectors for electrically coupling IC devices to one another in a stacked configuration by use of the flexible circuit to provide the connection of the stacked IC module to other circuits. Use of the flexible circuit as the connection of the IC module allows the flexible circuit to provide strain relief and allows stacked IC modules to be assembled with a lower profile than with previous methods. The IC module can be connected to external circuits through the flexible circuit connectors by a variety of means, including solder pads, edge connector pads, and socket connectors. This allows for IC devices to occupy less space then with previous methods, which is beneficial in modules such as memory modules with multiple, stacked memory devices.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: March 24, 2009
    Assignee: Entorian Technologies, LP
    Inventor: James Douglas Wehrly, Jr.
  • Patent number: 7491580
    Abstract: There is provided a method of manufacturing an electro-optical device from a large substrate that is cut into a plurality of first substrates having a chip shape. In the electro-optical device, second substrates of a chip shape are bonded to the first substrates. The method includes adhering a large glass substrate to approximately an entire surface of the large substrate opposite to a surface to which the second substrates are bonded; and cutting both the large substrate and the large glass substrate into first substrate units.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 17, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Seiichi Matsushima, Kenji Murakami, Hiroki Maruyama
  • Patent number: 7485969
    Abstract: Stacked microelectronic devices and methods for manufacturing such devices. An embodiment of a microelectronic device can include a support member and a first known good microelectronic die attached to the support member. The first die includes an active side, a back side, a first terminal, and integrated circuitry electrically coupled to the first terminal. The first die also includes a first redistribution structure at the active side. The microelectronic device can also include a second known good microelectronic die attached to the first die in a stacked configuration with a back side of the second die facing the support member and an active side of the second die facing away from the support member. The second die includes a second redistribution structure at the active side. The device can further include a casing covering the first die, the second die, and at least a portion of the support member.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: February 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Chin Hui Chong, Choon Kuan Lee
  • Patent number: 7482695
    Abstract: A semiconductor chip having an adhesive layer previously formed on an element forming surface thereof and having a bump exposed from the surface of the adhesive layer is wire-bonded to a printed circuit board. Another semiconductor chip is stacked on the above semiconductor chip with the adhesive layer disposed therebetween and is wire-bonded to the printed circuit board by wire bonding. Likewise, at least one semiconductor chip is sequentially stacked on the thus attained semiconductor structure to form a stack MCP.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: January 27, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinya Takyu, Kazuhiro Iizuka, Mika Kiritani
  • Patent number: 7436071
    Abstract: An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device (10) having a semiconductor chip (12) with electrodes (16), a stress-relieving layer (14) prepared on the semiconductor chip (12), a wire (18) formed across the electrodes (16) and the stress-relieving layer (14), and solder balls (19) formed on the wire (18) over the stress-relieving layer (14); and a bare chip (20) as a second semiconductor device to be electrically connected to the first semiconductor device (10).
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: October 14, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7432599
    Abstract: A multi-chip memory module may be formed including two or more stacked integrated circuits mounted to a substrate or lead frame structure. The memory module may include means to couple one or more of the stacked integrated circuits to edge conductors in a memory card package configuration. Such means may include the capability to utilize bonding pads on all four sides of an integrated circuit. A lead frame structure may be divided into first and second portions. The first portion may be adapted to receive the stacked integrated circuits and the second portion may include a plurality of conductors. The first portion may also be adapted to couple at least one of the integrated circuits to power and ground conductors on the second portion. In one embodiment, the first portion may include the lead frame paddle and a conductive ring. In another embodiment, the first portion may include first and second coplanar elements.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: October 7, 2008
    Assignee: SanDisk 3D LLC
    Inventors: Vani Verma, Khushrav S. Chhor