Linear Ccd Imager (epo) Patents (Class 257/E27.153)
  • Patent number: 9029926
    Abstract: A solid-state imaging device includes a substrate, a photoelectric conversion section, a first impurity layer having a carrier polarity of a second conductivity type, a charge-to-voltage converting section, an amplifying section, and a second impurity layer having a carrier polarity of the second conductivity type. The second impurity layer is disposed in a region between the photoelectric conversion section and the amplifying section. The second impurity concentration of the second P-type impurity layer is made higher than the first impurity concentration of the first impurity layer.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: May 12, 2015
    Assignee: Sony Corporation
    Inventors: Kazuki Nomoto, Kaneyoshi Takeshita, Hiroyuki Ohri
  • Patent number: 8878264
    Abstract: A global shutter pixel cell includes a serially connected anti-blooming (AB) transistor, storage gate (SG) transistor and transfer (TX) transistor. The serially connected transistors are coupled between a voltage supply and a floating diffusion (FD) region. A terminal of a photodiode (PD) is connected between respective terminals of the AB and the SG transistors; and a terminal of a storage node (SN) diode is connected between respective terminals of the SG and the TX transistors. A portion of the PD region is extended under the SN region, so that the PD region shields the SN region from stray photons. Furthermore, a metallic layer, disposed above the SN region, is extended downwardly toward the SN region, so that the metallic layer shields the SN region from stray photons. Moreover, a top surface of the metallic layer is coated with an anti-reflective layer.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 4, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Sergey Velichko, Jingyi Bai
  • Patent number: 8633524
    Abstract: A solid-state imaging device includes a substrate, a photoelectric conversion section, a first impurity layer having a carrier polarity of a second conductivity type, a charge-to-voltage converting section, an amplifying section, and a second impurity layer having a carrier polarity of the second conductivity type. The second impurity layer is disposed in a region between the photoelectric conversion section and the amplifying section. The second impurity concentration of the second P-type impurity layer is made higher than the first impurity concentration of the first impurity layer.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 21, 2014
    Assignee: Sony Corporation
    Inventors: Kazuki Nomoto, Kaneyoshi Takeshita, Hiroyuki Ohri
  • Patent number: 8574941
    Abstract: A method for manufacturing a solid-state imaging device in which a charge generator that detects an electromagnetic wave and generates signal charges is formed on a semiconductor substrate and a negative-charge accumulated layer having negative fixed charges is formed above a detection plane of the charge generator. The method includes the steps of: forming an oxygen-feed film capable of feeding oxygen on the detection plane of the charge generator; forming a metal film that covers the oxygen-feed film on the detection plane of the charge generator; and performing heat treatment for the metal film in an inactive atmosphere to thereby form an oxide of the metal film between the metal film and the oxygen-feed film on the detection plane of the charge generator, the oxide being to serve as the negative-charge accumulated layer.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 5, 2013
    Assignee: Sony Corporation
    Inventors: Susumu Hiyama, Tomoyuki Hirano
  • Patent number: 8247847
    Abstract: A solid-state imaging device including a first transfer electrode portion and a second transfer electrode portion having a pattern area ratio higher than that of the first transfer electrode portion. The first transfer electrode portion includes a plurality of first transfer electrodes having a single-layer structure of metal material. The second transfer electrode portion includes a plurality of second transfer electrodes having a single-layer structure of polycrystalline silicon or amorphous silicon.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: August 21, 2012
    Assignee: Sony Corporation
    Inventors: Kaori Takimoto, Masayuki Okada, Takeshi Takeda
  • Patent number: 8129762
    Abstract: A method is provided for processing a substrate. The substrate has at least one filter region, a plurality of bond pads, and a plurality of scribe lines arranged around the filter region and bond pads. A first planarization layer is formed above the substrate. The planarization layer has a substantially flat top surface overlying the filter region, the bond pads and the scribe lines. At least one color resist layer is formed over the first planarization layer and within the filter region while the first planarization layer covers the bond pads and the scribe lines.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: March 6, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fu-Tien Weng, Yu-Kung Hsiao, Hung-Jen Hsu, Yi-Ming Dai, Chin Chen Kuo, Te-Fu Tseng, Chih-Kung Chang, Jack Deng, Chung-Sheng Hsiung, Bii-Junq Chang
  • Patent number: 7964451
    Abstract: A first oxide film (102) is formed on a semiconductor substrate (101). A first nitride film (103) is formed on first gate electrode formation regions of the first oxide film (102). A plurality of first gate electrodes (104) are provided on the first nitride film (103) so as to be spaced apart from one another with a predetermined distance therebetween. A second oxide film (105) covers upper part and side walls of each of the first gate electrodes (104). A sidewall spacer (106) of a third oxide film is buried in an overhang portion generated on each side wall of each of the first gate electrodes (104) covered by the second oxide film (105). A second nitride film (107) covers the second oxide film (105), the sidewall spacer (106) and part of the first oxide film (102) located between the first gate electrodes (104). A plurality of second gate electrodes (108) are formed on at least part of the second nitride film (107) located between adjacent two of the first gate electrodes (104).
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: June 21, 2011
    Assignee: Panasonic Corporation
    Inventors: Naoto Niisoe, Kazuhisa Hirata, Tohru Yamada
  • Patent number: 7863076
    Abstract: Disclosed herein is a solid-state image pickup device which includes: a light-receiving unit for photoelectric conversion of incident light; and a charge transfer unit of an n-channel insulating gate type configured to transfer a signal charge photoelectrically converted in the light-receiving unit; wherein the charge transfer unit has an insulating film formed on a transfer electrode and having a negative fixed charge.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: January 4, 2011
    Assignee: Sony Corporation
    Inventor: Susumu Hiyama
  • Patent number: 7759157
    Abstract: In a solid-state image pick-up device in which a photoelectric converting section formed on a semiconductor substrate and a gate oxide film of a transfer path of a charge coupled device (CCD) which is close to the photoelectric converting section are constituted by a laminated film comprising a silicon oxide film (SiO) and a silicon nitride film (SiN), the gas oxide film has a single layer structure in which at least an end on the photoelectric converting section side of the gate oxide film does not contain the silicon nitride film.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: July 20, 2010
    Assignee: FujiFilm Corporation
    Inventors: Eiichi Okamoto, Shunsuke Tanaka, Shinji Uya
  • Patent number: 7605411
    Abstract: An HCCD includes a channel 21 that transfers electric charges in an X direction, a channel 25 that transfers the electric charges in a Z1 direction, a channel 23 that transfers the electric charges in a Z2 direction, and a channel 22 that connects the channels 23, 25 to the channel 21. The following relation is satisfied in impurity concentration of the channels: channel 21 channel 22 channel 23, 25. A fixed DC voltage is applied to branch electrodes 12a, 12b above the channel 22. The channel 22 has protrusion portions 19 that protrude inward from an outer circumference, which connects T1 and T2, and an outer circumference, which connects T3 and T4. The protrusion portions 19 causes charges below the transfer electrode 11b to move near the center of the channel 22 in a Y direction. Thereby, the travel distance of the charges in the channel 22 is reduced.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: October 20, 2009
    Assignee: Fujifilm Corporation
    Inventors: Hirokazu Shiraki, Makoto Kobayashi, Katsumi Ikeda
  • Publication number: 20080239116
    Abstract: A method and apparatus for correcting linear shift parallax error in multi-array image systems. Average pixel cell signal values for pixel cells within a summing window of each column or row of at least two sub-arrays are computed during read-out. The images of the sub-arrays are correlated based on the averages, then shifted based on a result of the correlation function to correct the exhibited parallax error. The summation, correlation, and shifting can be performed by a pixel pipeline processing circuit.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 2, 2008
    Inventor: Scott Smith
  • Patent number: 7239003
    Abstract: Isolation methods and devices for isolating regions of a semiconductor device. The isolation method and structure include forming an isolating trench in an active area and filling the trench with a doped conductive material containing silicon. Suitable conductive materials containing silicon include polysilicon and silicon-germanium. There is also provided a method and structure for isolating the regions by providing a trench in an active area of a substrate, growing an epitaxial layer in the trench to fill the trench or to partially fill the trench and depositing an insulating material over the epitaxial layer and within the trench to completely fill the trench.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: July 3, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Chandra Mouli, Howard Rhodes
  • Publication number: 20070085110
    Abstract: A primary object of the present invention is to provide a photoelectric conversion apparatus with less leak current in a floating diffusion region. In order to obtain the above object, a photoelectric conversion apparatus according to the present invention includes a photodiode for converting light into a signal charge, a first semiconductor region having a first conductivity type, a floating diffusion region formed from a second semiconductor region having a second conductivity type for converting the signal charge generated by the photodiode into a signal voltage, the second semiconductor region being formed in the first semiconductor region, and an electrode formed above the first semiconductor region through an insulating film and having an effect of increasing a concentration of majority carriers in the first semiconductor region, in which the electrode is not formed above a depletion region formed from the second semiconductor region.
    Type: Application
    Filed: December 7, 2006
    Publication date: April 19, 2007
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: AKIRA OKITA, Katsuhito Sakurai, Hiroki Hiyama, Hideaki Takada
  • Publication number: 20060163620
    Abstract: When capacity coupling between an output gate electrode (OG) and a last-stage transfer electrode is large at an output end of a CCD shift register, an electric potential of the OG is varied according to transfer clocks with the result that noise is liable to generate in an output signal. As measures for this, convex portions projecting horizontally are formed in those positions of the last-stage transfer electrode and the OG, which correspond to a channel region, and overlap between the both electrodes is caused only on the portions. A clearance is formed between the OG and the transfer electrode except those locations, in which the convex portions are provided. In particular, in that location, in which the OG and the transfer electrode, respectively, are extended relatively lengthily toward wirings, the both electrodes do not overlap each other. In this manner, capacity coupling between the both electrodes is reduced.
    Type: Application
    Filed: January 19, 2006
    Publication date: July 27, 2006
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Takahiko Ogo