For Preventing Surface Leakage Due To Surface Inversion Layer (e.g., Channel Stop) (epo) Patents (Class 257/E29.016)
  • Patent number: 8575694
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: November 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 8476685
    Abstract: An image sensor includes a trench formed by a shallow trench isolation (STI) process, a channel stop layer formed over a substrate in the trench, an isolation structure filled in the trench, and a photodiode formed in the substrate adjacent to a sidewall of the trench. In more detail of the image sensor, a trench is formed in a substrate through a STI process, and a channel stop layer is formed over the substrate in the trench. An isolation structure is formed in the trench, and a photodiode is fanned in the substrate adjacent to a sidewall of the trench.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 2, 2013
    Assignee: Intellectual Ventures II LLC
    Inventor: Kwang-Ho Lee
  • Patent number: 8138581
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first surface, an active area and a peripheral area. The semiconductor device further includes least one channel stop trench formed in the semiconductor substrate, wherein the channel stop trench extends from the first surface at least partially into the semiconductor substrate and is arranged between the active area and the peripheral area. At least one electrode is arranged in the channel stop trench. The semiconductor substrate includes at least a peripheral contact region, which is arranged in the peripheral area at the first surface of the semiconductor substrate. A conductive layer is provided and in electrical contact with the electrode arranged in the channel stop trench and in electrical contact with the peripheral contact region. The conductive layer is electrically connected to the semiconductor substrate merely in the peripheral area and electrically insulated from the semiconductor substrate in the active area.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 20, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 8125036
    Abstract: The Examiner objected to the abstract of the disclosure because it contains the phrase “comprising.” The Abstract does not include the phrase “comprising,” however, please amend the abstract as follows: An integrated circuit having a semiconductor component arrangement and production method is disclosed. The integrated circuit as described includes an oxide layer region is provided as a protection against oxidation in the edge region on the surface region of an underlying semiconductor material region.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: February 28, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerhard Schmidt
  • Patent number: 7893469
    Abstract: An image sensor includes a trench formed by a shallow trench isolation (STI) process, a channel stop layer formed over a substrate in the trench, an isolation structure filled in the trench, and a photodiode formed in the substrate adjacent to a sidewall of the trench. In more detail of the image sensor, a trench is formed in a substrate through a STI process, and a channel stop layer is formed over the substrate in the trench. An isolation structure is formed in the trench, and a photodiode is formed in the substrate adjacent to a sidewall of the trench.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: February 22, 2011
    Assignee: Crosstek Capital, LLC
    Inventor: Kwang-Ho Lee
  • Publication number: 20110024803
    Abstract: A channel stop is provided for a semiconductor device that includes at least one active region. The channel stop is configured to surround the semiconductor device, to abut the at least one active region at a periphery of the semiconductor device, and to share an electrical connection with the at least one active region.
    Type: Application
    Filed: July 30, 2009
    Publication date: February 3, 2011
    Applicant: POLAR SEMICONDUCTOR, INC.
    Inventors: William Larson, Gregory Michaelson
  • Publication number: 20110006407
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first surface, an active area and a peripheral area. The semiconductor device further includes least one channel stop trench formed in the semiconductor substrate, wherein the channel stop trench extends from the first surface at least partially into the semiconductor substrate and is arranged between the active area and the peripheral area. At least one electrode is arranged in the channel stop trench. The semiconductor substrate includes at least a peripheral contact region, which is arranged in the peripheral area at the first surface of the semiconductor substrate. A conductive layer is provided and in electrical contact with the electrode arranged in the channel stop trench and in electrical contact with the peripheral contact region. The conductive layer is electrically connected to the semiconductor substrate merely in the peripheral area and electrically insulated from the semiconductor substrate in the active area.
    Type: Application
    Filed: September 21, 2010
    Publication date: January 13, 2011
    Applicant: Infineon Technologies Austria AG
    Inventor: Franz HIRLER
  • Patent number: 7834406
    Abstract: The present invention pertains to a high-voltage MOS device. The high-voltage MOS device includes a substrate, a first well, a first field oxide layer enclosing a drain region, a second field oxide enclosing a source region, and a third field oxide layer encompassing the first and second field layers with a device isolation region in between. A channel region is situated between the first and second field oxide layers. A gate oxide layer is provided on the channel region. A gate is stacked on the gate oxide layer. A device isolation diffusion layer is provided in the device isolation region.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: November 16, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Chin-Lung Chen
  • Patent number: 7829420
    Abstract: A semiconductor device has a channel termination region for using a trench 30 filled with field oxide 32 and a channel stopper ring 18 which extends from the first major surface 8 through p-well 6 along the outer edge 36 of the trench 30, under the trench and extends passed the inner edge 34 of the trench. This asymmetric channel stopper ring provides an effective termination to the channel 10 which can extend as far as the trench 30.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: November 9, 2010
    Assignee: NXP B.V.
    Inventor: Royce Lowis
  • Patent number: 7816229
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first surface, an active area and a peripheral area. The semiconductor device further includes least one channel stop trench formed in the semiconductor substrate, wherein the channel stop trench extends from the first surface at least partially into the semiconductor substrate and is arranged between the active area and the peripheral area. At least one electrode is arranged in the channel stop trench. The semiconductor substrate includes at least a peripheral contact region, which is arranged in the peripheral area at the first surface of the semiconductor substrate. A conductive layer is provided and in electrical contact with the electrode arranged in the channel stop trench and in electrical contact with the peripheral contact region. The conductive layer is electrically connected to the semiconductor substrate merely in the peripheral area and electrically insulated from the semiconductor substrate in the active area.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 19, 2010
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 7781838
    Abstract: An integrated circuit including a floating body transistor and method. One embodiment provides a transistor including a body region formed in a first portion and a first and a second source/drain region formed in a second and a third portion. The body region is formed in a semiconductor substrate. The integrated circuit further includes a buried structure disposed at least below the body region and a first and a second insulating structure including an insulating material and being disposed at least between the body region and regions of the second and the third portion below the first and the second source drain region, wherein the first and the second insulating structure contact the buried structure.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 24, 2010
    Assignee: Qimonda AG
    Inventor: Dongping Wu
  • Patent number: 7745908
    Abstract: A Semiconductor component that contains AlxGayIn1-x-yAszSb1-z, whereby the parameters x, y, and z are selected such that a bandgap of less than 350 meV is achieved, whereby it features a mesa-structuring and a passivation layer containing AlnGa1-nAsmSb1-m is applied at least partially on at least one lateral surface of the structuring, and the parameter n is selected in the range of 0.4 to 1 and the parameter m in the range of 0 to 1.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 29, 2010
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Frank Fuchs, Robert Rehm, Martin Walther
  • Patent number: 7709906
    Abstract: A semiconductor device includes a gate insulation film provided on a semiconductor substrate, a gate electrode provided on the gate insulation film, a pair of first diffusion layers, a pair of second diffusion layers which are provided in the semiconductor substrate in such a manner that the gate electrode is interposed between the second diffusion layers, the second diffusion layers have a lower impurity concentration than the first diffusion layers, contact wiring lines provided on the first diffusion layers, respectively, and a first insulation layer which is an insulation layer formed in at least one of the second diffusion layers between the gate electrode and the contact wiring lines, the first insulation layer having a greater depth in the semiconductor substrate than the first diffusion layer and a less depth than the second diffusion layer.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 4, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Teppei Higashitsuji, Toshifumi Minami
  • Publication number: 20100078774
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first surface, an active area and a peripheral area. The semiconductor device further includes least one channel stop trench formed in the semiconductor substrate, wherein the channel stop trench extends from the first surface at least partially into the semiconductor substrate and is arranged between the active area and the peripheral area. At least one electrode is arranged in the channel stop trench. The semiconductor substrate includes at least a peripheral contact region, which is arranged in the peripheral area at the first surface of the semiconductor substrate. A conductive layer is provided and in electrical contact with the electrode arranged in the channel stop trench and in electrical contact with the peripheral contact region. The conductive layer is electrically connected to the semiconductor substrate merely in the peripheral area and electrically insulated from the semiconductor substrate in the active area.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 7642597
    Abstract: A power semiconductor device includes a semiconductor substrate having a plurality of trenches formed in an upper surface thereof; a buried insulating film; a buried field plate electrode; a control electrode; a first main electrode provided on a lower side of the semiconductor substrate; and a second main electrode provided on an upper side of the semiconductor substrate. The semiconductor substrate includes: a first semiconductor; a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type; a fourth semiconductor layer; and a fifth semiconductor layer. The buried insulating film is thicker than a gate insulating film. At least one of the second semiconductor layer and the third semiconductor layer has a portion with its sheet dopant concentration varying along a depth direction of the semiconductor substrate.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: January 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Wataru Saito
  • Patent number: 7638368
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: December 29, 2009
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Michio Nemoto, Manabu Takei, Tatsuya Naito
  • Publication number: 20090127672
    Abstract: A susceptor for epitaxial layer forming apparatus provided in a layer forming chamber of an epitaxial layer forming apparatus includes: a recessed portion which is provided to accommodate a semiconductor wafer therein and has an approximately circular shape in plan view; and a protruding portion which is provided in the recessed portion in order to support the semiconductor wafer and has an approximately circular shape in plan view. The diameter of the protruding portion is smaller than that of the recessed portion, and the diameter of the protruding portion is set to be a size allowing reaction gas supplied for vapor-phase growth reaction to circulate through an entire boundary between the protruding portion and the semiconductor wafer when the semiconductor wafer is placed in the recessed portion.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 21, 2009
    Applicant: SUMCO CORPORATION
    Inventor: Hideaki Kinbara
  • Patent number: 7525178
    Abstract: A termination region of a semiconductor die is provided, which includes one or more field rings arranged in the termination region, one or more metal field plates, and an insulation layer disposed to prevent direct electrical contact between the field rings and the field plate such that the at least one field ring is capacitively coupled with the at least one field plate. Such a termination region may also include a polysilicon plate capacitively coupled with a diffusion region laterally spaced from the field rings, the polysilicon plate being located at an outer surface or directly under a passivation layer at an outer surface of the die. The termination region may also include floating field rings. The insulation layer may be a field oxide layer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 28, 2009
    Assignee: International Rectifier Corporation
    Inventor: Lawrence Kulinsky
  • Patent number: 7482220
    Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: January 27, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Gary H. Loechelt, John M. Parsey, Jr., Peter J. Zdebel, Gordon M. Grivna
  • Patent number: 7425752
    Abstract: A semiconductor device has a channel termination region for using a trench (30) filled with field oxide (32) and a channel stopper ring (18) which extends from the first major surface (8) through p-well (6) along the outer edge (36) of the trench (30), under the trench and extends passed the inner edge (34) of the trench. This asymmetric channel stopper ring provides an effective termination to the channel (10) which can extend as far as the trench (30).
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 16, 2008
    Inventor: Royce Lowis
  • Patent number: 7307330
    Abstract: A reverse blocking semiconductor device that shows no adverse effect of an isolation region on reverse recovery peak current, that has a breakdown withstanding structure exhibiting satisfactory soft recovery, that suppresses aggravation of reverse leakage current, which essentially accompanies a conventional reverse blocking IGBT, and that retains satisfactorily low on-state voltage is disclosed. The device includes a MOS gate structure formed on a n? drift layer, the MOS gate structure including a p+ base layer formed in a front surface region of the drift layer, an n+ emitter region formed in a surface region of the base layer, a gate insulation film covering a surface area of the base layer between the emitter region and the drift layer, and a gate electrode formed on the gate insulation film. An emitter electrode is in contact with both the emitter region and the base layer of the MOS gate structure.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: December 11, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Michio Nemoto, Manabu Takei, Tatsuya Naito