For Controlling Surface Leakage Or Electric Field Concentration (epo) Patents (Class 257/E29.007)
  • Patent number: 11810958
    Abstract: A transistor includes: gate electrodes and field electrodes, wherein in each case one gate electrode and one field electrode are arranged one above another in a vertical direction in a common trench of a semiconductor body; a gate pad to which the gate electrodes are connected; and a source metallization arranged above the semiconductor body. The field electrodes of a first group include at least one contact section. The at least one contact section is arranged between two sections of a gate electrode arranged in the same trench and is connected to the source metallization. The two sections of the gate electrode are separated from one another in a region of the contact section. At least one of the two sections of the gate electrode arranged in the same trench is electrically connected to a gate electrode arranged in a further trench by way of a gate connecting electrode.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: November 7, 2023
    Assignee: Infineon Technologies AG
    Inventors: Felix Buth, Margarete Deckers, Christian Feuerbaum, Uwe Schmalzbauer, Markus Zundel
  • Patent number: 11662371
    Abstract: Semiconductor devices, and in particular semiconductor devices for improved resistance measurements and related methods are disclosed. Contact structures for semiconductor devices are disclosed that provide access to resistance measurements with reduced influence of testing-related resistances, thereby improving testing accuracy, particularly for semiconductor devices with low on-resistance ratings. A semiconductor device may include an active region and an inactive region that is arranged along a perimeter of the active region. The semiconductor device may be arranged with a topside contact to provide access for resistance measurements, for example Kelvin-sensing resistance measurements. Related methods include performing resistance measurements from a topside of the semiconductor device, even when the active region of the semiconductor device forms a vertical contact structure.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: May 30, 2023
    Assignee: Wolfspeed, Inc.
    Inventors: James Richmond, Edward Robert Van Brunt
  • Patent number: 11631616
    Abstract: Provided are a semiconductor device, a method of manufacturing the same, and a method of forming a uniform doping concentration of each semiconductor device when manufacturing a plurality of semiconductor devices. When a concentration balance is disrupted due to an increase in doping region size, doping concentration is still controllable by using ion blocking patterns to provide a semiconductor device with uniform doping concentration and a higher breakdown voltage obtainable as a result of such doping.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 18, 2023
    Assignee: KEY FOUNDRY CO., LTD.
    Inventors: Young Bae Kim, Kwang Il Kim
  • Patent number: 8907432
    Abstract: An isolated device is formed in a substrate in which is formed a high voltage device. The isolated device includes: an isolated well formed in the substrate by a lithography process and an ion implantation process used in forming the high voltage device; a gate formed on the substrate; a source and a drain, which are located in the isolated well at both sides of the gate respectively; a drift-drain region formed beneath the substrate surface, wherein the gate and the drain are separated by the drift-drain region, and the drain is in the drift-drain region; and a mitigation region, which is formed in the substrate and has a shallowest portion located at least below 90% of a depth of the drift-drain region as measured from the substrate surface, wherein the mitigation region and the drift-drain region are defined by a same lithography process.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: December 9, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Patent number: 8871556
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 28, 2014
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 8785971
    Abstract: A transient voltage suppressor without leakage current is disclosed, which comprises a P-substrate. There is an N-type epitaxial layer formed on the P-substrate, and a first N-heavily doped area, a first P-heavily doped area, an electrostatic discharge (ESD) device and at least one deep isolation trench are formed in the N-epitaxial layer. A first N-buried area is formed in the bottom of the N-epitaxial layer to neighbor the P-substrate and located below the first N-heavily doped area and the first P-heavily doped area. The ESD device is coupled to the first N-heavily doped area. The deep isolation trench is not only adjacent to the first N-heavily doped area, but has a depth greater than a depth of the first N-buried area, thereby separating the first N-buried area and the ESD device.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Amazing Microelectronic Corp.
    Inventors: Che-Hao Chuang, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Patent number: 8692324
    Abstract: A laterally diffused metal-oxide-semiconductor transistor device includes a substrate having a first conductivity type with a semiconductor layer formed over the substrate. A source region and a drain extension region of the first conductivity type are formed in the semiconductor layer. A body region of a second conductivity type is formed in the semiconductor layer. A conductive gate is formed over a gate dielectric layer that is formed over a channel region. A drain contact electrically connects the drain extension region to the substrate and is laterally spaced from the channel region. The drain contact includes a highly-doped drain contact region formed between the substrate and the drain extension region in the semiconductor layer, wherein a topmost portion of the highly-doped drain contact region is spaced from the upper surface of the semiconductor layer. A source contact electrically connects the source region to the body region.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: April 8, 2014
    Assignee: Ciclon Semiconductor Device Corp.
    Inventors: Jacek Korec, Shuming Xu, Christopher Boguslaw Kocon
  • Patent number: 8691707
    Abstract: A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC. A method includes depositing a voltage-switchable dielectric layer on a first die between a first terminal and a second terminal.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 8, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Ratibor Radojcic, Yiming Li
  • Publication number: 20140027773
    Abstract: A semiconductor device includes a transistor cell array in the semiconductor body of a first conductivity type. The semiconductor device further includes a first trench in the transistor cell array between transistor cells. The first trench extends into the semiconductor body from a first side and includes a pn junction diode electrically coupled to the semiconductor body at a sidewall.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thorsten Meyer, Andreas Meiser
  • Patent number: 8633562
    Abstract: A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Ratibor Radojcic, Yiming Li
  • Patent number: 8592901
    Abstract: A metal oxide semiconductor field transistor including a gate electrode, a gate dielectric layer, a source region, a drain region, and a top doped region are provided. The drain region of a first conductivity type is located in a substrate. The source region of the first conductivity type is located in the substrate and surrounded the drain region. The gate electrode is located above the substrate between the source region and the drain region. The gate dielectric layer is located between the gate electrode and the substrate. The top doped region of a second conductivity type is located in the substrate between the gate electrode and the drain region. The top doped region includes at least three regions. Each of the three regions has a dopant concentration gradient and a concentration gradually decreased from a region adjacent the gate electrode to a region adjacent the drain region.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: November 26, 2013
    Assignee: Nuvoton Technology Corporation
    Inventors: Gene Sheu, MD Imran Siddiqui, Abijith Prakash, Shao-Ming Yang, Jung-Ruey Tsai
  • Publication number: 20130307127
    Abstract: A semiconductor device includes a semiconductor body including a first surface. The semiconductor device further includes a continuous silicate glass structure over the first surface. A first part of the continuous glass structure over an active area of the semiconductor body includes a first composition of dopants that differs from a second composition of dopants in a second part of the continuous glass structure over an area of the semiconductor body outside of the active area.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Hans-Joachim Schulze, Alexander Susiti, Markus Zundel, Reinhard Ploss
  • Patent number: 8492753
    Abstract: Implementations and techniques for producing substrates suitable for growing graphene monolayers are generally disclosed.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 23, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Thomas A. Yager
  • Patent number: 8487355
    Abstract: A compact semiconductor structure including at least one FET located upon and within a surface of a semiconductor substrate in which the at least one FET includes a long channel length and/or a wide channel width and a method of fabricating the same are provided. In some embodiments, the ordered, nanosized pattern is oriented in a direction that is perpendicular to the current flow. In such an embodiment, the FET has a long channel length. In other embodiments, the ordered, nanosized pattern is oriented in a direction that is parallel to that of the current flow. In such an embodiment, the FET has a wide channel width. In yet another embodiment, one ordered, nanosized pattern is oriented in a direction perpendicular to the current flow, while another ordered, nanosized pattern is oriented in a direction parallel to the current flow. In such an embodiment, a FET having a long channel length and wide channel width is provided.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Carl J. Radens, Anthony K. Stamper
  • Patent number: 8471329
    Abstract: A tunnel field-effect transistor (TFET) includes a gate electrode, a source region, and a drain region. The source and drain regions are of opposite conductivity types. A channel region is disposed between the source region and the drain region. A source diffusion barrier is disposed between the channel region and the source region. The source diffusion barrier and the source region are under and overlapping the gate electrode. The source diffusion barrier has a first bandgap greater than second bandgaps of the source region, the drain region, and the channel region.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 25, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Krishna Kumar Bhuwalka, Gerben Doornbos, Matthias Passlack
  • Publication number: 20130127007
    Abstract: A transient voltage suppressor without leakage current is disclosed, which comprises a P-substrate. There is an N-type epitaxial layer formed on the P-substrate, and a first N-heavily doped area, a first P-heavily doped area, an electrostatic discharge (ESD) device and at least one deep isolation trench are formed in the N-epitaxial layer. A first N-buried area is formed in the bottom of the N-epitaxial layer to neighbor the P-substrate and located below the first N-heavily doped area and the first P-heavily doped area. The ESD device is coupled to the first N-heavily doped area. The deep isolation trench is not only adjacent to the first N-heavily doped area, but has a depth greater than a depth of the first N-buried area, thereby separating the first N-buried area and the ESD device.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Inventors: Che-Hao Chuang, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Patent number: 8432015
    Abstract: A semiconductor device (2) includes: a FLR (65) that is disposed on a semiconductor substrate so as to divide the semiconductor substrate into an inner region and an outer region; a first bonding pad (24a to 24d) that is disposed in the inner region and is connected to an external circuit by a wire (14a to 14d) whose one end is connected to the external circuit; and a second bonding pad (26a to 26d) that is disposed in the outer region and on which the other end of the wire is bonded.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 30, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroaki Tanaka
  • Publication number: 20130100728
    Abstract: A method for forming a semiconductor device is disclosed. An anti-fuse is formed at a buried bit line such that the area occupied by the anti-fuse is smaller than that of a conventional planar-gate-type anti-fuse, and a breakdown efficiency of an insulation film is increased. This results in an increase in reliability and stability of the semiconductor device. A semiconductor device includes a line pattern formed over a semiconductor substrate, a device isolation film formed at a center part of the line pattern, a contact part formed at both sides of the line pattern, configured to include an oxide film formed over the line pattern, and a bit line formed at a bottom part between the line patterns, and connected to the contact part.
    Type: Application
    Filed: January 10, 2012
    Publication date: April 25, 2013
    Applicant: Hynix Semiconductor Inc.
    Inventor: Jung Sam KIM
  • Publication number: 20130075856
    Abstract: An embodiment is an integrated circuit (IC) structure. The structure comprises a deep n well in a substrate, a first pickup device in the deep n well, a first signal device in the deep n well, a dissipation device in the substrate, a second signal device in the substrate, a first electrical path between the first pickup device and the dissipation device, and a second electrical path between the first signal device and the second signal device. The dissipation device is outside of the deep n well, and the second signal device is outside of the deep n well. A highest point of the first electrical path is lower than a highest point of the second electrical path.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yao-Jen Tsai, Chih-Fu Chang, Chih-Kang Chuang, Yee-Ren Wuang, David Yen, Yuan-Jen Liao, Shih-Che Fang, Hung-Che Hsueh, Chih Mou Huang
  • Patent number: 8405146
    Abstract: A component arrangement including a MOS transistor having a field electrode is disclosed. One embodiment includes a gate electrode, a drift zone and a field electrode, arranged adjacent to the drift zone and dielectrically insulated from the drift zone by a dielectric layer a charging circuit, having a rectifier element connected between the gate electrode and the field electrode.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: March 26, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler
  • Publication number: 20130062707
    Abstract: A dummy cell pattern includes a dummy diffusion pattern disposed within a predetermined region A; a trench isolation pattern encompassing the dummy diffusion pattern in the predetermined region A; a first dummy gate pattern disposed on the dummy diffusion pattern with two ends of the first dummy gate pattern extending above the trench isolation pattern, thereby forming overlapping areas C1 and C2; and a second dummy gate pattern directly on the trench isolation pattern forming an overlapping area C therebetween, wherein the combination of C1, C2 and C is about 5%-20% of the predetermined region A.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Inventors: Wai-Yi Lien, Yu-Ho Chiang, Tsung-Yen Pan
  • Publication number: 20130037851
    Abstract: A semiconductor device including a base semiconductor layer of a first conductivity type, a cell portion including a diffusion region of a second conductivity type formed on a surface of the base semiconductor layer, a plurality of guard ring semiconductor layers of the second conductivity type formed on the surface of the base semiconductor layer, each guard ring semiconductor layer being formed to surround the cell portion, a plurality of first RESURF semiconductor layers of the first conductivity type provided on the surface of the base semiconductor layer inside the plurality of guard ring semiconductor layers and having a higher concentration than the base semiconductor layer and a second RESURF semiconductor layer of the first conductivity type provided on the surface of the base semiconductor layer between the outermost guard ring semiconductor layer and the EQPR semiconductor layer.
    Type: Application
    Filed: March 14, 2012
    Publication date: February 14, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Ryohei GEJO
  • Publication number: 20130032922
    Abstract: An integrated circuit containing a voltage divider having an upper resistor of unsilicided gate material over field oxide around a central opening and a drift layer under the upper resistor, an input terminal coupled to an input node of the upper resistor adjacent to the central opening in the field oxide and coupled to the drift layer through the central opening, a sense terminal coupled to a sense node on the upper resistor opposite from the input node, a lower resistor with a sense node coupled to the sense terminal and a reference node, and a reference terminal coupled to the reference node. A process of forming the integrated circuit containing the voltage divider.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 7, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hideaki Kawahara, Marie Denison, Sameer Pendharkar, Philip L. Hower, John Lin, Robert A. Neidorff
  • Publication number: 20130026600
    Abstract: Methods of forming air gaps in memory arrays and memory arrays with air gaps thus formed are disclosed. One such method may include forming an isolation region, having a first dielectric, through a charge-storage structure that is over a semiconductor, the isolation region extending into the semiconductor; forming a second dielectric over the isolation region and charge-storage structure; and forming an air gap in the isolation region so that the air gap passes through the charge-storage structure and so that a thickness of the first dielectric is between the air gap and the second dielectric.
    Type: Application
    Filed: July 28, 2011
    Publication date: January 31, 2013
    Inventors: James Matthew, Gordon Haller, Ronald A. Weimer, John Hopkins, Vinayak K. Shamanna, Sanjeev Sapra
  • Patent number: 8349711
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: January 8, 2013
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 8330254
    Abstract: A semiconductor device includes a semiconductor wafer in which semiconductor chip forming regions and a scribe region located between the semiconductor chip forming regions are formed, a plurality of semiconductor chip circuit portions provided over the semiconductor wafer, a plurality of first conductive layers, provided in each of the semiconductor chip forming regions, which is electrically connected to each of the circuit portions, and a first connecting portion that electrically connects the first conductive layers to each other across a portion of the scribe region. An external power supply or grounding pad is connected to any one of the first conductive layer and the first connecting portion. The semiconductor device includes a communication portion, connected to the circuit portion, which performs communication with the outside by capacitive coupling or inductive coupling.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 11, 2012
    Assignees: Renesas Electronics Corporation, NEC Corporation
    Inventors: Masayuki Furumiya, Hiroaki Ohkubo, Fuyuki Okamoto, Masayuki Mizuno, Koichi Nose, Yoshihiro Nakagawa, Yoshio Kameda
  • Publication number: 20120256273
    Abstract: A method of unifying device performance within an integrated circuit die includes providing a layout of an integrated circuit die with multiple functional circuit blocks; filling a field between the multiple functional circuit blocks with dummy diffusion patterns; and filling the field between the multiple functional circuit blocks with dummy gate patterns such that the dummy gate patterns and the dummy diffusion patterns are completely overlapped.
    Type: Application
    Filed: September 9, 2011
    Publication date: October 11, 2012
    Inventors: Yu-Ho Chiang, Ming-Tsung Chen, Wai-Yi Lien, Chih-Kai Hsu, Chun-Liang Hou
  • Publication number: 20120241900
    Abstract: An electrostatic discharge (ESD) protected device may include a substrate, an N-type well region disposed corresponding to a first portion of the substrate and having two N+ segments disposed at a surface thereof, an a P-type well region disposed proximate to a second portion of the substrate and having a P+ segment and an N+ segment. The two N+ segments may be spaced apart from each other and each may each be associated with an anode of the device. The N+ segment may be associated with a cathode of the device. A contact may be positioned in a space between the two N+ segments and connected to the P+ segment. The contact may form a parasitic capacitance that, in connection with a parasitic resistance formed in association with the N+ segment, provides self detection for high voltage ESD protection.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Inventors: Hsin-Liang Chen, Shou-Lun Tu, Wing-Chor Chan, Shyi-Yuan Wu
  • Publication number: 20120223420
    Abstract: One aspect includes a semiconductor arrangement with a semiconductor body having a first surface. A buried material layer is in the semiconductor body, the buried material layer being arranged distant to the first surface. A monocrystalline semiconductor material is arranged between the material layer and the first surface, and a monocrystalline semiconductor material adjoins the material layer in a lateral direction of the semiconductor body.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 6, 2012
    Applicant: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Anton Mauder, Helmut Strack
  • Publication number: 20120161274
    Abstract: A superjunction semiconductor device includes an edge p pillar, an active region, and a termination region. The edge p pillar has a rectangular ring shape with rounded corners. The edge p pillar has an outer region surrounding the active region and an inner region on in the sides of the active region. The active region has active p pillars and active n pillars having vertical stripe shapes. The active p pillars and the active n pillars are alternately arranged horizontally in the active region. The termination region includes termination n pillars and termination p pillars alternately arranged around the edge p pillar.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 28, 2012
    Applicant: Fairchild Korea Semiconductor Ltd.
    Inventors: Jae-gil Lee, Jin-young Jung, Ho-cheol Jang, Chong-man Yun
  • Publication number: 20120146104
    Abstract: Method of making a semiconductor device that includes forming a source and a drain in a substrate, forming a gate on the substrate between the source and drain, forming a substrate contact in electrical contact with the source, and forming an electrical contact to the source, drain and gate, and the substrate.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Basanth Jagannathan, John J. Pekarik, Christopher M. Schnabel
  • Publication number: 20120112306
    Abstract: A superjunction semiconductor device is disclosed which has, in the active section, a first alternating-conductivity-type layer which makes a current flow in the ON-state of the device and sustains a bias voltage in the OFF-state of the device. There is a second alternating-conductivity-type layer in a edge-termination section surrounding the active section. The width of a region of a second conductivity type in the second alternating-conductivity-type layer becomes narrower at a predetermined rate from the edge on the active section side toward the edge of the edge termination section. The superjunction semiconductor device facilitates manufacturing the edge-termination section which exhibits a high breakdown voltage and a high reliability for breakdown voltage through a process that exhibits a high mass-productivity.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 10, 2012
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Yasuhiko ONISHI
  • Publication number: 20120104567
    Abstract: An insulative layer on a semiconductor substrate and a method of fabricating the structure includes the steps of depositing a single crystal layer of rare earth oxide on a semiconductor substrate to provide electrical insulation and thermal management. The rare earth oxide is crystal lattice matched to the substrate. A layer of single crystal IIIOxNy is formed in overlying relationship on the rare earth oxide by transitioning from the layer of rare earth oxide to a single crystal layer of IIIOxNy within a one wafer single epitaxial process. In the preferred embodiment the substrate is silicon, the rare earth oxide is Gd2O3, and the IIIOxNy includes AlOxNy.
    Type: Application
    Filed: August 12, 2011
    Publication date: May 3, 2012
    Inventors: Andrew Clark, Erdem Arkun, Michael Lebby
  • Publication number: 20120091516
    Abstract: Voltage termination structures include one or more capacitively coupled trenches, which can be similar to the trenches in the drift regions of the active transistor. The capacitively coupled trenches in the termination regions are arranged with an orientation that is either parallel or perpendicular to the trenches in the active device drift region. The Voltage termination structures can also include capacitively segmented trench structures having dielectric lined regions filled with conducting material and completely surrounded by a silicon mesa region. The Voltage termination structures can further include continuous regions composed entirely of an electrically insulating layer extending a finite distance vertically from the device surface.
    Type: Application
    Filed: April 11, 2011
    Publication date: April 19, 2012
    Inventors: Robert Kuo-Chang Yang, Sunglyong Kim, Joseph A. Yedinak
  • Publication number: 20120038024
    Abstract: A low harmonic radio-frequency (RF) switch in a silicon-on-insulator (SOI) substrate and methods of manufacture. A method includes forming at least one trench through an insulator layer. The at least one trench is adjacent a device formed in an active region on the insulator layer. The method also includes forming at least one cavity in a substrate under the insulator layer and extending laterally from the at least one trench to underneath the device.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Dinh DANG, James S. DUNN, Alvin J. JOSEPH, Peter J. LINDGREN
  • Patent number: 8114785
    Abstract: Electrical structures and devices may be formed and include an organic passivating layer that is chemically bonded to a silicon-containing semiconductor material to improve the electrical properties of electrical devices. In different embodiments, the organic passivating layer may remain within finished devices to reduce dangling bonds, improve carrier lifetimes, decrease surface recombination velocities, increase electronic efficiencies, or the like. In other embodiments, the organic passivating layer may be used as a protective sacrificial layer and reduce contact resistance or reduce resistance of doped regions. The organic passivation layer may be formed without the need for high-temperature processing.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: February 14, 2012
    Assignee: California Institute of Technology
    Inventors: Nathan S. Lewis, William J. Royea
  • Publication number: 20120032276
    Abstract: Embodiments of N-well or P-well strap structures are disclosed with lower space requirements achieved by forming the strap on both sides of one or more floating polysilicon gate fingers.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 9, 2012
    Applicant: Altera Corporation
    Inventors: Dustin Do, Andy Lee, Giles V. Powell, Bradley Jensen, Swee Aun Lau, Wuu-Cherng Lin, Thomas H. White
  • Publication number: 20120025345
    Abstract: A method, integrated circuit and design structure includes a silicon substrate layer having trench structures and an ion impurity implant. An insulator layer is positioned on and contacts the silicon substrate layer. The insulator layer fills the trench structures. A circuitry layer is positioned on and contacts the buried insulator layer. The circuitry layer comprises groups of active circuits separated by passive structures. The trench structures are positioned between the groups of active circuits when the integrated circuit structure is viewed from the top view. Thus, the trench structures are below the passive structures and are not below the groups of circuits when the integrated circuit structure is viewed from the top view.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: International Business Machines Corporation
    Inventors: ALAN B. BOTULA, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Patent number: 8093676
    Abstract: A semiconductor component includes a semiconductor body having a first side, a second side, an edge delimiting the semiconductor body in a lateral direction, an inner region and an edge region. A first semiconductor zone of a first conduction type is arranged in the inner region and in the edge region. A second semiconductor zone of a second conduction type is arranged in the inner region and adjacent to the first semiconductor zone. A trench is arranged in the edge region and has first and second sidewalls and a bottom, and extends into the semiconductor body. A doped first sidewall zone of the second conduction type is adjacent to the first sidewall of the trench. A doped second sidewall zone of the second conduction type is adjacent to the second sidewall of the trench. A doped bottom zone of the second conduction type is adjacent to the bottom of the trench. Doping concentrations of the sidewall zones are lower than a doping concentration of the bottom zone.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Gerhard Schmidt
  • Patent number: 8089138
    Abstract: A surface-hydrophobicized film is provided which is in contact with an insulating film, and has a higher hydrophobicity than the insulating film at the time of the contact, and which is in contact, on an opposite side of the surface-hydrophobicized film, with wiring, and contains at least one atom selected from the group consisting of sulfur atoms, phosphorus atoms and nitrogen atoms. Semiconductor devices with wiring layers having a low leakage current, a high EM resistance and a high TDDB resistance can be manufactured by using the film.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: January 3, 2012
    Assignee: Fujitsu Limited
    Inventors: Tadahiro Imada, Yoshihiro Nakata
  • Publication number: 20110309464
    Abstract: A semiconductor device includes a semiconductor substrate and an electric field terminal part. The semiconductor substrate includes a substrate, a drift layer disposed on a surface of the substrate, and a base layer disposed on a surface of the drift layer. The semiconductor substrate is divided into a cell region in which a semiconductor element is disposed and a peripheral region that surrounds the cell region. The base region has a bottom face located on a same plane throughout the cell region and the peripheral region and provides an electric field relaxing layer located in the peripheral region. The electric field terminal part surrounds the cell region and a portion of the electric field relaxing layer and penetrates the electric field relaxing layer from a surface of the electric field relaxing layer to the drift layer.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 22, 2011
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Kensaku YAMAMOTO, Naohiro Suzuki, Hidefumi Takaya, Masahiro Sugimoto, Jun Morimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
  • Publication number: 20110233717
    Abstract: Integrated circuits with guard rings are provided. Integrated circuits may include internal circuitry that is sensitive to external noise sources. A guard ring may surround the functional circuitry to isolate the circuitry from the noise sources. The guard ring may include first, second, and third regions. The first and third regions may include p-wells. The second region may include an n-well. Stripes of diffusion regions may be formed at the surface of a substrate in the three regions. Areas in the guard ring that are not occupied by the diffusion regions are occupied by shallow trench isolation (STI) structures. Stripes of dummy structures may be formed over respective STI structures and may not overlap the diffusion regions. The diffusion regions in the first and third regions may be biased to a ground voltage. The diffusion regions in the second section may be biased to a positive power supply voltage.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 29, 2011
    Inventors: Bradley Jensen, Charles Y. Chu
  • Publication number: 20110227133
    Abstract: According to the embodiments, standard cells are arranged in an array in a semiconductor device. In the standard cell, a first diffusion area with a plurality of transistors formed in a main surface region of a semiconductor substrate is formed in a region sandwiched between two power supply lines arranged on the semiconductor substrate. Further, the standard cell includes a potential supplying unit. The potential supplying unit is formed in the main surface region of the semiconductor substrate by a diffusion layer of the same conductive type as that of the first diffusion area and is electrically connected directly to the diffusion area through a contact from the lower portion of the power supply line, to supply a potential from the power supply line to the first diffusion area.
    Type: Application
    Filed: September 16, 2010
    Publication date: September 22, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Toshiki Morimoto
  • Publication number: 20110163412
    Abstract: The present invention relates to an isolator and a method of manufacturing the same. An isolator according to the present invention includes a silicon wafer, protective devices formed in predetermined regions of the silicon wafer, and a transformer formed in a predetermined region on the silicon wafer, the transformer having at least two coil patterns spaced apart from each other. According to the present invention, an isolator can be protected from impulses generated by ESD and surge, so that its reliability can be improved, and its size can be considerably decreased. Further, the number of wire bonding times is decreased, so that performance of a chip can be enhanced, and packaging efficiency can be improved, thereby increasing productivity.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 7, 2011
    Applicant: PETARI INCORPORATION
    Inventor: Young Jin PARK
  • Publication number: 20110140227
    Abstract: A non-volatile microelectronic memory device that includes a depletion mode circuit protection device that prevents high voltages, which are applied to bitlines during an erase operation, from being applied to and damaging low voltage circuits which are electrically coupled to the bitlines.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Inventors: Michael A. Smith, Vladimir Mikhalev, Kenneth Marr, Haitao Liu
  • Patent number: 7944021
    Abstract: A semiconductor device includes an element isolation film formed on a semiconductor substrate surface of one conductivity type, a gate electrode having one pair of end portions located on a boundary between an element isolation film and an element forming region, a source region and a drain region of a reverse conductivity type arranged to sandwich a region immediately below a gate electrode, and an impurity diffusion region of the one conductivity type formed in the element forming region. The source region is separated from a region on a boundary side between the element isolation film and the element forming region in the region immediately below the gate electrode in the element forming region. In the impurity diffusion region, a portion adjacent to the region on the boundary side is arranged between the source region and the element isolation film, and is in contact with the source region and the region on the boundary side.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: May 17, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kouji Tanaka
  • Publication number: 20110095365
    Abstract: A method includes forming a transistor device on a first side of a semiconductor-on-insulator structure. The semiconductor-on-insulator structure includes a substrate, a dielectric layer, and a buried layer between the substrate and the dielectric layer. The method also includes forming a conductive plug through the semiconductor-on-insulator structure. The conductive plug is in electrical connection with the transistor device. The method further includes forming a field plate on a second side of the semiconductor-on-insulator structure, where the field plate is in electrical connection with the conductive plug. The transistor device could have a breakdown voltage of at least 600V, and the field plate could extend along at least 40% of a length of the transistor device.
    Type: Application
    Filed: October 23, 2009
    Publication date: April 28, 2011
    Applicant: National Semiconductor Corporation
    Inventors: William French, Peter Smeys, Peter J. Hopper, Peter Johnson
  • Publication number: 20110089521
    Abstract: An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.
    Type: Application
    Filed: December 21, 2010
    Publication date: April 21, 2011
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Akira SATO, Toru Watanabe, Shogo Inaba, Takeshi Mori
  • Patent number: 7915705
    Abstract: A SiC semiconductor device includes: a SiC substrate; a SiC drift layer on the substrate having an impurity concentration lower than the substrate; a semiconductor element in a cell region of the drift layer; an outer periphery structure including a RESURF layer in a surface portion of the drift layer and surrounding the cell region; and an electric field relaxation layer in another surface portion of the drift layer so that the electric field relaxation layer is separated from the RESURF layer. The electric field relaxation layer is disposed on an inside of the RESURF layer so that the electric field relaxation layer is disposed in the cell region. The electric field relaxation layer has a ring shape.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: March 29, 2011
    Assignee: Denso Corporation
    Inventors: Takeo Yamamoto, Eiichi Okuno
  • Publication number: 20110057288
    Abstract: A microelectromechanical system (MEMS) device and a method for fabricating the same are described. The MEMS device includes a first electrode and a second electrode. The first electrode is disposed on a substrate, and includes at least two metal layers, a first protection ring and a dielectric layer. The first protection ring connects two adjacent metal layers, so as to define an enclosed space between two adjacent metal layers. The dielectric layer is disposed in the enclosed space and connects two adjacent metal layers. The second electrode is disposed on the first electrode, wherein a cavity is formed between the first electrode and the second electrode.
    Type: Application
    Filed: November 10, 2010
    Publication date: March 10, 2011
    Applicant: United Microelectronics Corp.
    Inventors: Tzung-Han TAN, Bang-Chiang LAN, Ming-I WANG, Chien-Hsin HUANG, Meng-Jia LIN