Base Regions Of Thyristors (epo) Patents (Class 257/E29.046)
  • Patent number: 11424349
    Abstract: A lateral bipolar junction transistor (BJT) device includes: an emitter region, a collector region, and a base region, the base region positioned between and laterally separating the emitter region and the collector region, the base region including an intrinsic base region; and a cavity formed in a semiconductor substrate and filled with an insulating material, the cavity physically separating a lower surface of the intrinsic base region from the semiconductor substrate.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: August 23, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Arkadiusz Malinowski, Alexander M. Derrickson, Judson R. Holt
  • Patent number: 8878236
    Abstract: In a first embodiment, an ultra-fast breakover diode has a turn on time TON that is less than 0.3 microseconds, where the forward breakover voltage is greater than +400 volts and varies less than one percent per ten degrees Celsius change. In a second embodiment, a breakover diode has a reverse breakdown voltage that is greater, in absolute magnitude, than the forward breakover voltage, where the forward breakover voltage is greater than +400 volts. In a third embodiment, a string of series-connected breakover diode dice is provided, along with a resistor string, in a packaged circuit. The packaged circuit acts like a single breakover diode having a large forward breakover voltage and a comparably large reverse breakdown voltage, even though the packaged circuit includes no discrete high voltage reverse breakdown diode. The packaged circuit is usable to supply a triggering current to a thyristor in a voltage protection circuit.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 4, 2014
    Assignee: IXYS Corporation
    Inventor: Subhas Chandra Bose Jayappa Veeramma
  • Patent number: 8866125
    Abstract: Various embodiments provide materials and methods for integrating exemplary heterostructure field-effect transistor (HFET) driver circuit or thyristor driver circuit with LED structures to reduce or eliminate resistance and/or inductance associated with their conventional connections.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: October 21, 2014
    Assignee: STC.UNM
    Inventor: Stephen D. Hersee
  • Patent number: 8569117
    Abstract: An integrated trench-MOS-controlled-thyristor plus trench gated diode combination, in which the trenches are preferably formed at the same time. A backside polarity reversal process permits a backside p+ region in the thyristor areas, and only a backside n+ region in the diode areas (for an n-type device). This is particularly advantageous in motor control circuits and the like, where the antiparallel diode permits the thyristor to be dropped into existing power MOSFET circuit designs. In power conversion circuits, the antiparallel diode can conveniently serve as a freewheeling diode.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: October 29, 2013
    Assignee: Pakal Technologies LLC
    Inventors: Hidenori Akiyama, Richard A. Blanchard, Woytek Tworzydlo
  • Patent number: 8390124
    Abstract: Provided is a semiconductor device including a substrate, and a first wiring layer, a second wiring layer, and a switch via formed on the substrate. The first wiring layer has first wiring formed therein and the second wiring layer has second wiring formed therein. The switch via connects the first wiring and the second wiring. The switch via includes at least at its bottom a switch element including a resistance change layer. A resistance value of the resistance change layer changes according to a history of an electric field applied thereto.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Naoya Inoue, Yoshihiro Hayashi, Kishou Kaneko
  • Patent number: 8324656
    Abstract: Embodiments of integrated circuits for mitigating against electrostatic coupling are described. In an embodiment, first gate dielectrics are respectively located over first active regions. First isolation regions are respectively located between the first active regions. Second gate dielectrics are respectively located over second active regions. Second isolation regions are respectively located between the second active regions. In an embodiment, the first active regions are approximately 20 to 80 percent shorter in height/thickness than the second active regions. In another embodiment, the first isolation regions extend above an uppermost surface of the first gate dielectrics while providing gaps between the first isolation regions and sidewalls of the first active regions for receipt of material used in formation of conductive lines. In yet another embodiment, active area stripes are narrower in width at p-base regions and n-base regions than at cathode regions and anode regions respectively thereof.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: December 4, 2012
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Rajesh N. Gupta, Marc Laurent Tarabbia, Kevin J. Yang
  • Patent number: 7705368
    Abstract: An insulated gate type thyristor includes: a first current terminal semiconductor region of a first conductivity type having a high impurity concentration; a first base semiconductor region of a second conductivity type opposite to the first conductivity type having a low impurity concentration and formed on the first current terminal semiconductor region; a second base semiconductor region of the first conductivity type having a low impurity concentration and formed on the first base semiconductor region; a second current terminal semiconductor region of the second conductivity type having a high impurity concentration and formed on the second base semiconductor region; a trench passing through the second current terminal semiconductor region and entering the second base semiconductor region leaving some depth thereof, along a direction from a surface of the second current terminal semiconductor region toward the first base semiconductor region; and an insulated gate electrode structure formed in the trench.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: April 27, 2010
    Assignee: Fujifilm Corporation
    Inventors: Vladimir Rodov, Hidenori Akiyama
  • Patent number: 7205583
    Abstract: A thyristor and a method for manufacturing the thyristor that includes providing a semiconductor substrate that has first and second major surfaces. A first doped region is formed in the semiconductor substrate, wherein the first doped extends from the first major surface into the semiconductor substrate. The first doped region has a vertical boundary that has a notched portion. A second doped region is formed in first doped region, wherein the second doped region extends from the first major surface into the first doped region. A third doped region is formed in the semiconductor substrate, wherein the third doped region extends from the second major surface into the semiconductor substrate.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: April 17, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Emmanuel Saucedo-Flores