For Thin-film Silicon (epo) Patents (Class 257/E29.147)
  • Patent number: 11961894
    Abstract: A semiconductor device includes a semiconductor layer over a substrate; a gate insulating film covering the semiconductor layer; a gate wiring including a gate electrode, which is provided over the gate insulating film and is formed by stacking a first conductive layer and a second conductive layer; an insulating film covering the semiconductor layer and the gate wiring including the gate electrode; and a source wiring including a source electrode, which is provided over the insulating film, is electrically connected to the semiconductor layer, and is formed by stacking a third conductive layer and a fourth conductive layer. The gate electrode is formed using the first conductive layer. The gate wiring is formed using the first conductive layer and the second conductive layer. The source electrode is formed using the third conductive layer. The source wiring is formed using the third conductive layer and the fourth conductive layer.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 16, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 11923455
    Abstract: A semiconductor device and method of forming the same are disclosed. The semiconductor device includes a fin structure, a gate electrode, a source-drain region, a plug and a hard mask structure. The gate electrode crosses over the fin structure. The source-drain region in the fin structure is aside the gate electrode. The plug is disposed over and electrically connected to the gate electrode. The hard mask structure surrounds the plug and is disposed over the gate electrode, wherein the hard mask structure includes a first hard mask layer and a second hard mask layer, the second hard mask layer covers a sidewall and a top surface of the first hard mask layer, and a material of the first hard mask layer is different from a material of the second hard mask layer.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Sheng Liang, Kuo-Hua Pan, Hsin-Che Chiang, Ming-Heng Tsai
  • Patent number: 11916086
    Abstract: A manufacturing method of display panel, a display panel and a display device are disclosed. The manufacturing method includes following steps: providing a substrate, forming a first barrier layer on the substrate, forming a conductive layer on the first barrier layer, forming a second barrier layer on the conductive layer, forming a photoresist pattern on the second barrier layer, and then performing a plasma treatment on the photoresist pattern to form a first gap between the photoresist pattern and the second barrier layer.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: February 27, 2024
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Xiaobo Hu
  • Patent number: 11855103
    Abstract: According to one embodiment, a semiconductor device includes an insulating substrate, a first semiconductor layer located above the insulating substrate, a second semiconductor layer located above the insulating substrate, an insulating layer which covers the first semiconductor layer and the second semiconductor layer, and includes a first contact hole reaching the first semiconductor layer and a second contact hole reaching the second semiconductor layer, a barrier layer which covers one of the first semiconductor layer inside the first contact hole and the second semiconductor layer inside the second contact hole, and a first conductive layer which is in contact with the barrier layer.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: December 26, 2023
    Assignee: Japan Display Inc.
    Inventors: Akihiro Hanada, Masayoshi Fuchi
  • Patent number: 11791351
    Abstract: The present disclosure provides an array substrate and a manufacturing method of the array substrate. In the manufacturing method of the array substrate, during performing a first wet etching and a second wet etching on a second metal layer, the wet etching is stopped when a copper conductive layer is merely etched completely. Because a wet etching speed of a liner layer is slow, an etching time of the wet etching and a CD loss of the copper conductive layer can be greatly reduced, and the CD loss is relatively small. Meanwhile, an entire CD loss of the second metal layer can be reduced, and an aperture ratio can be improved.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 17, 2023
    Inventor: Zhiwei Tan
  • Patent number: 11776865
    Abstract: A semiconductor device and a method for manufacturing a semiconductor device that enable characteristics to be improved are provided. A semiconductor device includes a substrate that has a first surface and a second surface that is located opposite the first surface, a first element that is disposed on the first surface, and a first resin layer that is disposed on the first surface and that is disposed around the first element in a plan view. The substrate includes a wiring layer. The first element includes a semiconductor layer, an electrode portion that is located on a surface of the semiconductor layer facing the substrate, and an insulating layer that is located opposite the electrode portion with the semiconductor layer interposed therebetween. The electrode portion is connected to the wiring layer. A height of the first resin layer from the first surface is more than a height of the first element from the first surface.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: October 3, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Teiji Yamamoto, Masayuki Aoike, Hiroyuki Nagai
  • Patent number: 11769666
    Abstract: Methods for selective silicon film deposition on a substrate comprising a first surface and a second surface are described. More specifically, the process of depositing a film, treating the film to change some film property and selectively etching the film from various surfaces of the substrate are described. The deposition, treatment and etching can be repeated to selectively deposit a film on one of the two substrate surfaces.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: September 26, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Fei Wang, Abhijit Basu Mallick, Robert Jan Visser
  • Patent number: 11764261
    Abstract: A semiconductor device includes a substrate having a logic region and a high-voltage (HV) region, a first gate structure on the HV region, a first epitaxial layer and a second epitaxial layer adjacent to one side of the first gate structure, a first contact plug between the first epitaxial layer and the second epitaxial layer, a third epitaxial layer and a fourth epitaxial layer adjacent to another side of the first gate structure, and a second contact plug between the third epitaxial layer and the fourth epitaxial layer. Preferably, a bottom surface of the first epitaxial layer is lower than a bottom surface of the first contact plug and a bottom surface of the third epitaxial layer is lower than a bottom surface of the second contact plug.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: September 19, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Cheng-Pu Chiu, Tzung-Ying Lee, Dien-Yang Lu, Chun-Kai Chao, Chun-Mao Chiou
  • Patent number: 11758723
    Abstract: A method for forming a three-dimensional (3D) memory device includes forming a cut structure in a stack structure. The stack structure includes interleaved a plurality of initial sacrificial layers and a plurality of initial insulating layers. The method also includes removing portions of the stack structure adjacent to the cut structure to form a slit structure and an initial support structure. The initial support structure divides the slit structure into a plurality of slit openings. The method further includes forming a plurality of conductor portions in the initial support structure through the plurality of slit openings. The method also includes forming a source contact in each of the plurality of slit openings. The method also includes removing portions of the initial support structure to form a support structure. The support structure includes an adhesion portion extending through the support structure.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: September 12, 2023
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Qingqing Wang, Wei Xu, Pan Huang, Ping Yan, Zongliang Huo, Wenbin Zhou
  • Patent number: 11728235
    Abstract: A semiconductor device and a method for manufacturing a semiconductor device that enable characteristics to be improved are provided. A semiconductor device includes a substrate that has a first surface and a second surface that is located opposite the first surface, a first element that is disposed on the first surface, and a first resin layer that is disposed on the first surface and that is disposed around the first element in a plan view. The substrate includes a wiring layer. The first element includes a semiconductor layer, an electrode portion that is located on a surface of the semiconductor layer facing the substrate, and an insulating layer that is located opposite the electrode portion with the semiconductor layer interposed therebetween. The electrode portion is connected to the wiring layer. A height of the first resin layer from the first surface is more than a height of the first element from the first surface.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: August 15, 2023
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Teiji Yamamoto, Masayuki Aoike, Hiroyuki Nagai
  • Patent number: 11721630
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: August 8, 2023
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Oleg Golonzka
  • Patent number: 11652111
    Abstract: A display device includes a data conductive layer disposed on a substrate, a passivation layer disposed on the data conductive layer, a via layer disposed on the passivation layer, and a pixel electrode disposed on the via layer. The data conductive layer includes a data base layer, a data main metal layer disposed on the data base layer, a first data capping layer disposed on the data main metal layer, a second data capping layer disposed on the first data capping layer, and a third data capping layer disposed on the second data capping layer. The passivation layer and the via layer include a pad opening which exposes a portion of the data conductive layer in the pad area. The third data capping layer has a higher etch rate than the first and second data capping layers for a same etchant.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: May 16, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jong Hyun Choung, Jae Uoon Kim, Hyun Ah Sung
  • Patent number: 11634702
    Abstract: A method for activating a cell-signaling pathway of interest in a cell, including applying a time-modulated localized alternating current electrical field to the cell, wherein the amplitude and frequency of the localized alternating current electrical field is selected to activate the cell signaling pathway of interest, thereby activating the cell signaling pathway.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: April 25, 2023
    Assignees: Arizona Board of Regents on behalf of Arizona State University, The Regents of the University of California
    Inventors: Quan Qing, John Albeck, Liang Guo, Min Zhao, Houpu Li
  • Patent number: 11631771
    Abstract: An oxide semiconductor field effect transistor (OSFET) includes a first insulating layer, a source, a drain, a U-shaped channel layer and a metal gate. The first insulating layer is disposed on a substrate. The source and the drain are disposed in the first insulating layer. The U-shaped channel layer is sandwiched by the source and the drain. The metal gate is disposed on the U-shaped channel layer, wherein the U-shaped channel layer includes at least an oxide semiconductor layer. The present invention also provides a method for forming said oxide semiconductor field effect transistor.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Ming Lai, Yen-Chen Chen, Jen-Po Huang, Sheng-Yao Huang, Hui-Ling Chen, Qinggang Xing, Ding-Lung Chen, Li Li Ding, Yao-Hung Liu
  • Patent number: 11569328
    Abstract: A display device includes a substrate, a corrosion prevention layer on the substrate and including an inorganic material, a first conductive layer on the corrosion prevention layer and including aluminum or an aluminum alloy, a first insulating film on the first conductive layer, a semiconductor layer on the first insulating film and including a channel region of a transistor, a second insulating film on the semiconductor layer, and a second conductive layer on the second insulating film and including a barrier layer, which includes titanium, and a main conductive layer, which includes aluminum or an aluminum alloy, wherein the semiconductor layer includes an oxide semiconductor, and the barrier layer is between the semiconductor layer and the main conductive layer and overlaps the channel region of the transistor.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: January 31, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yeon Hong Kim, Eun Hye Ko, Eun Hyun Kim, Kyoung Won Lee, Sun Hee Lee, Jun Hyung Lim
  • Patent number: 11569482
    Abstract: Disclosed are a display panel, a manufacturing method thereof, and a display device. The display panel includes a base substrate and sub-pixels thereon. At least one sub-pixel includes: a light emitting element including a first electrode, a luminous functional layer and a second electrode sequentially stacked, the first electrode being closer to the base substrate than the second electrode; a metal reflective layer, between the base substrate and the first electrode; a silicon nitride layer, between the first electrode and the metal reflective layer, and including a first via hole through which the first electrode is connected with the metal reflective layer; a driving circuit including a driving transistor and a storage capacitor between the base substrate and the metal reflective layer, the driving transistor including a gate electrode connected with the storage capacitor, and source and drain electrodes, one of which is connected with the metal reflective layer.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 31, 2023
    Assignee: Beijing BOE Technology Development Co., Ltd.
    Inventors: Hui Tong, Yongfa Dong, Qing Wang, Kuanta Huang
  • Patent number: 11561439
    Abstract: A liquid crystal display device includes, in order from an observation surface side to a hack surface side, a thin film transistor substrate including a color filter layer, a pair of electrodes, and a metal wiring line, a liquid crystal layer containing liquid crystal molecules that are horizontally aligned to the thin film transistor substrate and in which alignment of the liquid crystal molecules is changed due to an electric field generated by applying a voltage to the pair of electrodes, a counter substrate, and a backlight, in which the counter substrate includes a reflective layer disposed outside the pixel area and reflecting incident light from the backlight to the back surface side, the pair of electrodes are a first electrode having a planar shape and a second electrode provided with a and the color filter layer is disposed on the observation surface side of the second electrode.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 24, 2023
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yuichi Kawahira, Akira Hirai, Akira Sakai, Kazutoshi Kida, Yasuhiro Sugita
  • Patent number: 11532802
    Abstract: Disclosed are a display panel, a manufacturing method thereof, and a display device. The display panel includes a base substrate and sub-pixels thereon. At least one sub-pixel includes: a light emitting element including a first electrode, a luminous functional layer and a second electrode sequentially stacked, the first electrode being closer to the base substrate than the second electrode; a metal reflective layer, between the base substrate and the first electrode; a silicon nitride layer, between the first electrode and the metal reflective layer, and including a first via hole through which the first electrode is connected with the metal reflective layer; a driving circuit including a driving transistor and a storage capacitor between the base substrate and the metal reflective layer, the driving transistor including a gate electrode connected with the storage capacitor, and source and drain electrodes, one of which is connected with the metal reflective layer.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: December 20, 2022
    Assignee: Beijing BOE Technology Development Co., Ltd.
    Inventors: Hui Tong, Yongfa Dong, Qing Wang, Kuanta Huang
  • Patent number: 11522070
    Abstract: A manufacturing method of a low temperature poly-silicon (LTPS) array substrate is described. The LTPS array substrate includes a metal light-shielding layer, a buffer layer, a polycrystalline silicon layer, a gate insulating and interlayer insulating layer, a gate line layer, and a source and drain electrode layer. The method adopts a one-time chemical vapor deposition process to form a gate insulator and interlayer insulating layer. A gate line trench is formed in the gate insulating layer and the interlayer insulating layer, thereby reducing the thickness of the LTPS array substrate film layer and the process steps.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: December 6, 2022
    Inventor: Chen Chen
  • Patent number: 11502216
    Abstract: A method of manufacturing a photo sensor includes forming a first conductive layer on a substrate, the first conductive layer including a metal layer and a transparent conductive oxide layer formed on the metal layer, forming a photoconductive layer on the first conductive layer, forming a second conductive layer on the photoconductive layer, forming a first photoresist pattern on the second conductive layer, etching the second conductive layer using the first photoresist pattern as an etch mask to form a second electrode, deforming the first photoresist pattern to form a second photoresist pattern, and etching the photoconductive layer and the first conductive layer using the second photoresist pattern to form a photoconductive pattern and a first electrode, respectively.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: November 15, 2022
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Woo-Seok Jeon, Kwang Hyun Kim, Heon Sik Ha
  • Patent number: 11476309
    Abstract: A display panel includes a base, at least one separation pillar, at least one protection pattern, and a light-emitting functional layer. The at least one separation pillar is disposed in the isolation region on the base, each separation pillar is disposed around the opening region, and a longitudinal section of the separation pillar perpendicular to an extending direction of the separation pillar is I-shaped. The at least one protection pattern is disposed on a surface of at least one separation pillar facing away from the base. The light-emitting functional layer is disposed at least in both the pixel region and the isolation region on a surface of the at least one protection pattern facing away from the base, wherein the light-emitting functional layer is disconnected at an inner side face and an outer side face of the separation pillar.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 18, 2022
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BEIJING BOE TECHNOLOGY DEVELOPMENT CO., LTD.
    Inventors: Wang Ding, Chenxing Wan, Fuwei Zou
  • Patent number: 11409172
    Abstract: A display device includes a base layer, a display element disposed on the base layer, and a signal line disposed on the base layer and electrically connected to the display element. The signal line includes a conductive layer and a capping layer. The capping layer is disposed on the conductive layer and includes vanadium nitride (VN) and zinc oxide (ZnO). The display device may reduce the reflection of an external light source, thereby having improved visibility.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: August 9, 2022
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Gyungmin Baek, Sangwon Shin, Hyuneok Shin, Juhyun Lee, Hongsick Park
  • Patent number: 10401696
    Abstract: According to one embodiment, an electronic apparatus includes a first substrate, a second substrate, and a connecting material. The second substrate includes a second basement and a second conductive layer. The second basement has a third surface opposed to the first conductive layer and a fourth surface and is spaced apart from the first conductive layer. The second substrate has a first hole penetrating the second basement. The first substrate has a second hole. A third opening of the second hole is smaller than a first opening of the first hole. A connecting material connects the first conductive layer and the second conductive layer via the first hole.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: September 3, 2019
    Assignee: Japan Display Inc.
    Inventors: Yoshihiro Watanabe, Yoshikatsu Imazeki, Yoichi Kamijo, Shuichi Osawa
  • Patent number: 10381428
    Abstract: An array substrate, a manufacture method thereof, and a display device are provided. The array substrate includes a first electrode (12), a second electrode (15); a light-emitting functional layer (13) located between the first electrode (12) and the second electrode (15); and an organic planar layer (14). The first electrode (12) is formed on the organic planar layer (14). The first electrode (12) includes metal electrode or metal alloy electrode. An oxide conductive layer (16) is further formed between the organic planar layer (14) and the first electrode (12).
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: August 13, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Dongfang Wang, Hongda Sun, Li Zhang
  • Patent number: 10254604
    Abstract: A liquid crystal display device includes: a lower substrate including a display unit and a non-display unit; an upper substrate opposing the lower substrate; a gate line and a data line disposed in the display unit of the lower substrate; a light shielding layer defining a pixel region of the lower substrate; a pixel electrode disposed in the pixel region of the lower substrate; a pixel transistor disposed in the display unit of the lower substrate and connected to the gate line, the data line, and the pixel electrode; a driving transistor disposed in the non-display unit of the lower substrate; a first protection layer disposed on the pixel transistor and the driving transistor; a shielding layer disposed on the first protection layer, the shielding layer overlapping at least one of the pixel transistor and the driving transistor; and a second protection layer disposed on the shielding layer.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: April 9, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sungin Ro, Donggun Oh
  • Patent number: 9040992
    Abstract: A display device includes a laminated wiring formed of a low-resistance conductive film, and a low-reflection film mainly containing Al and functioning as an antireflective film which are sequentially arranged on a transparent substrate, a wiring terminal part provided at an end part of the laminated wiring and has the same laminated structure as that of the laminated wiring, and an insulating film for covering the laminated wiring and the wiring terminal part, in which the insulating film side serves as a display surface side, the wiring terminal part has a first opening part penetrating the insulating film and the low-reflection film and reaching the low-resistance conductive film, and an outer peripheral portion of the first opening part has a laminated structure of the low-resistance conductive film, the low-reflection film, and the insulating film, in at least one part.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masami Hayashi, Kenichi Miyamoto, Kazushi Yamayoshi, Junichi Tsuchimichi
  • Patent number: 9041202
    Abstract: An object is to provide a semiconductor device with high aperture ratio or a manufacturing method thereof. Another object is to provide semiconductor device with low power consumption or a manufacturing method thereof. A light-transmitting conductive layer which functions as a gate electrode, a gate insulating film formed over the light-transmitting conductive layer, a semiconductor layer formed over the light-transmitting conductive layer which functions as the gate electrode with the gate insulating film interposed therebetween, and a light-transmitting conductive layer which is electrically connected to the semiconductor layer and functions as source and drain electrodes are included.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: May 26, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 8921859
    Abstract: An array substrate for an electrophoresis type display device includes a plurality of gate lines on a substrate; a gate insulating layer on the plurality of gate lines; a plurality of data lines on the gate insulating layer and crossing the plurality of gate lines to define a plurality of pixel regions; a thin film transistor corresponding to each pixel region, the thin film transistor including a gate electrode, a semiconductor layer, and source and drain electrodes; a first passivation layer on the plurality of data lines; a second passivation layer on the first passivation layer, wherein the second passivation layer includes a first hole over the data line, and/or a second hole over the gate line with at least the gate insulating layer therebetween; and a pixel electrode on the second passivation layer and connected to the drain electrode, wherein a portion of the pixel electrode covers the first hole, and another portion of the pixel electrode covers the second hole.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 30, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Seung-Chul Kang, Sung-Jin Park
  • Patent number: 8686528
    Abstract: A semiconductor device of the present invention includes: a lower electrode (110); a contact layer (130) including a first contact layer (132), a second contact layer (134) and a third contact layer (136) overlapping with a semiconductor layer (120); and an upper electrode (140) including a first upper electrode (142), a second upper electrode (144) and a third upper electrode (146). The second contact layer (134) includes a first region (134a), and a second region (134b) separate from the first region (134a), and the second upper electrode (144) is directly in contact with the semiconductor layer (120) in a region between the first region (134a) and the second region (134b) of the second contact layer (134).
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: April 1, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yudai Takanishi, Masao Moriguchi
  • Patent number: 8673694
    Abstract: A thin film transistor array panel includes a passivation layer formed on a plurality of end portions of a plurality of gate lines. A portion of the passivation layer has a porous structure formed between a connection portion of a flexible printed circuit substrate and a thin film transistor substrate such that when the flexible printed circuit substrate and the thin film transistor array panel are connected to each other, the passivation layer having a porous structure and which is formed at the connection portion therebetween connects the flexible printed circuit substrate with the thin film transistor array panel thereby minimizing an exposed area of the metal of the connection portion to improve a corrosion resistance thereof.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: March 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sun Park, Chun-Gi You
  • Patent number: 8124975
    Abstract: Provided is a display device capable of suppressing generation of optical leakage current as well as increase in capacitance in a case where a plurality of thin film transistors (TFTs) including a gate electrode film on a light source side are formed in series. Relative areas of opposing regions between a semiconductor film and the gate electrode film with respect to channel regions are different in at least a part of the plurality of TFTs, to thereby provide a flat panel display having a structure for suppressing increase in capacitance while suppressing generation of optical leakage current.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: February 28, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takeshi Noda, Toshio Miyazawa, Takuo Kaitoh, Hiroyuki Abe
  • Patent number: 8076733
    Abstract: Provided are an organic TFT that reduces contact resistance between a source and drain electrode and an organic semiconductor layer and that can be easily manufactured, a flat panel display device having the organic TFT, and methods of manufacturing the organic TFT and the flat panel display device having the same. The organic TFT includes; a substrate; a gate electrode and a blocking layer formed on the substrate; a gate insulating film covering the gate electrode and the blocking layer; a source electrode and a drain electrode located on the gate insulating film; an auxiliary source electrode and an auxiliary drain electrode respectively located on the source electrode and the drain electrode; and an organic semiconductor layer contacting the auxiliary source electrode and the auxiliary drain electrode.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Hun-Jung Lee, Sung-Jin Kim, Jong-Han Jeong
  • Patent number: 8063403
    Abstract: An impurity element imparting one conductivity type is included in a layer close to a gate insulating film of layers with high crystallinity, so that a channel formation region is formed not in a layer with low crystallinity which is formed at the beginning of film formation but in a layer with high crystallinity which is formed later in a microcrystalline semiconductor film. Further, the layer including an impurity element is used as a channel formation region. Furthermore, a layer which does not include an impurity element imparting one conductivity type or a layer which has an impurity element imparting one conductivity type at an extremely lower concentration than other layers, is provided between a pair of semiconductor films including an impurity element functioning as a source region and a drain region and the layer including an impurity element functioning as a channel formation region.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: November 22, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi Godo, Hidekazu Miyairi
  • Patent number: 8062917
    Abstract: A display panel structure having a circuit element disposed thereon and method of manufacture are provided. The display panel includes a substrate and the circuit element disposed on the substrate. The circuit element has a first interface layer and a first conductive layer. Both the first interface layer and the first conductive layer have cooper materials. The material which makes the first interface layer includes a reactant or a compound of the material which makes the first conductive layer. The method for manufacturing includes the following steps: forming a first interface layer on the substrate; forming a first conductive layer on the first interface layer; and etching the first conductive and interface layers to form a pattern. The existence of the first interface reduces the penetration of the first conductive layer on the substrate and improves the adhesive force between the first conductive layer and the substrate.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 22, 2011
    Assignee: AU Optronics Corporation
    Inventors: Chun-Nan Lin, Kuo-Yuan Tu, Shu-Feng Wu, Wen-Ching Tsai
  • Patent number: 8030654
    Abstract: A thin film transistor comprising a gate electrode, a gate insulating layer, an active layer, and source and drain electrodes is provided. The gate electrode overlaps with a channel region of the active layer, the gate insulating layer is provided between the gate electrode and the active layer, the source and drain electrodes overlap a source region and a drain region of the active layer, respectively, and a thin film of SiNx or SiOxNy through which electrons are allowed to tunnel is provided between the active layer and the source and drain electrodes.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: October 4, 2011
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventors: Jianshe Xue, Seung Moo Rim, Ke Liang
  • Patent number: 7947525
    Abstract: A method for manufacturing a liquid crystal display includes the following steps. First, source/drain and a bottom electrode are formed over a color filter substrate with a color filter layer. The next step forms source/drain junction regions over the source/drain. A channel region is also formed between the source/drain in this step. A gate dielectric layer and a gate are formed over the channel region and the source/drain junction regions in this step as well. Moreover, a plurality of stack layers and an upper electrode are formed over the bottom electrode in this step, too. Then, a pixel electrode is formed to electrically connect one of the source/drain and the bottom electrode. Then, a passivation layer pattern is formed to cover the source/drain, the gate, the upper electrode and the bottom electrode by backside exposure. Finally, a plurality of steps are performed to finish the liquid crystal display.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 24, 2011
    Assignee: AU Optronics Corporation
    Inventor: Ming-Hung Shih
  • Patent number: 7943405
    Abstract: A liquid crystal display panel and a fabricating method thereof comprising an image sensing capability, image scanning, and touch inputting. In the liquid crystal display device, a gate line and a data line are formed to intersect each other on a substrate to define a pixel area in which a pixel electrode is positioned. A first thin film transistor is positioned at an intersection area of the gate line and the data line. A sensor thin film transistor senses light having image information and supplied with a first driving voltage from the data line. A driving voltage supply line is positioned in parallel to the gate line to supply a second driving voltage to the sensor thin film transistor.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 17, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Hee Kwang Kang, Kyo Seop Choo
  • Patent number: 7928445
    Abstract: A disclosed semiconductor device includes a MOS transistor that causes no problems concerning the formation of a thick gate insulating film and that is applicable to high withstand voltage devices. A drain region has a double diffusion structure including an N-drain region 3d and an N+ drain region 11d. A gate electrode includes a first gate electrode 9 formed on an insulating film 7 and a second gate electrode 13 formed on the first gate electrode 9 via a gate electrode insulating film 11. Between the gate insulating film 7 and the N+ source region 11s, a field insulating film 15 is disposed, over which an edge of the first gate electrode 9 is disposed. A gate voltage applied to the second gate electrode 13 via a gate wiring 13g is divided between the gate insulating film 7 and the gate electrode insulating film 11.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 19, 2011
    Assignee: Ricoh Company, Ltd.
    Inventor: Naohiro Ueda
  • Patent number: 7902670
    Abstract: A display panel structure having a circuit element disposed thereon and method of manufacture are provided. The display panel includes a substrate and the circuit element disposed on the substrate. The circuit element has a first interface layer and a first conductive layer. Both the first interface layer and the first conductive layer have copper materials. The material which makes the first interface layer includes a reactant or a compound of the material which makes the first conductive layer. The method for manufacturing includes the following steps: forming a first interface layer on the substrate; forming a first conductive layer on the first interface layer; and etching the first conductive and interface layers to form a pattern. The existence of the first interface reduces the penetration of the first conductive layer on the substrate and improves the adhesive force between the first conductive layer and the substrate.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: March 8, 2011
    Assignee: AU Optronics Corporation
    Inventors: Chun-Nan Lin, Kuo-Yuan Tu, Shu-Feng Wu, Wen-Ching Tsai
  • Patent number: 7902003
    Abstract: An image display device capable of high-resolution and smooth moving image display, equipped with TFTs in an n-type (or p-type) semiconductor layer with a high on-off ratio and a low resistance. In polysilicon crystallization by laser annealing, an n-type (or p-type) semiconductor layer with a low resistance is produced by performing the following processes in order: implanting nitrogen (N) ions into an amorphous silicon precursor semiconductor film; laser crystallization; implanting n-type (or p-type) dopant ions; and annealing for dopant activation. When fabricating TFTs, this low-resistance semiconductor layer is used to form a source and a drain. Since C, N, and O impurities decrease the mobility of the TFTs, polysilicon is used in which the contaminants concentrations meet the following conditions: carbon concentration ?3×1019 cm?3, nitrogen concentration ?5×1017 cm?3, and oxygen concentration ?3×1019 cm?3.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: March 8, 2011
    Assignee: Hitachi Displays, Ltd.
    Inventors: Kiyoshi Ouchi, Mutsuko Hatano, Takeshi Sato, Mitsuharu Tai
  • Patent number: 7868396
    Abstract: A power semiconductor component includes a drift zone in a semiconductor body, a component junction and a compensation zone. The component junction is disposed between the drift zone and a further component zone, which is configured such that when a blocking voltage is applied to the component junction, a space charge zone forms extending generally in a first direction in the drift zone. The compensation zone is disposed adjacent to the drift zone in a second direction and includes at least one high-dielectric material having a temperature-dependent dielectric constant. The temperature dependence of the compensation zone varies in the second direction.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: January 11, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Rueb, Franz Hirler
  • Patent number: 7858983
    Abstract: An electrochromic display is disclosed which comprises an array-side substrate (10) wherein a TFT (14) and a pixel electrode (15) connected with the TFT (14) are formed, a color filter-side substrate (50) wherein a counter electrode (53) is formed, and an electrolyte layer (80) injected between the array-side substrate (10) and the color filter-side substrate (50). In this electrochromic display, the TFT (14) is formed to have an area not less than 30% of the area of the pixel, thereby supplying a larger current. Consequently, oxidation-reduction reaction in the electrochromic phenomenon proceeds at a higher rate, thereby enabling a high-speed response.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 28, 2010
    Inventors: Satoshi Morita, Takao Yamauchi, Yutaka Sano
  • Patent number: 7807487
    Abstract: A thin film transistor including: an active layer on a substrate, the active layer having at least two unit channels; and source and drain electrodes on the active layer, wherein an interval D between each of the channels is larger than a unit channel width W.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 5, 2010
    Assignee: LG Display Co., Ltd.
    Inventor: Seok Woo Lee
  • Patent number: 7781767
    Abstract: Disclosed are a thin film transistor substrate where barrier metal can be omitted to be formed between a semiconductor layer of a thin film transistor and source and drain electrodes (barrier metal need not be formed between the semiconductor layer of the thin film transistor and the source and drain electrodes), and a display device. (1) A thin film transistor substrate has a semiconductor layer of a thin film transistor, a source electrode, a drain electrode, and a transparent conductive film, wherein the substrate has a structure in which the source and drain electrodes are directly connected to the semiconductor layer of the thin film transistor, and the source and drain electrodes include an Al alloy thin film containing Ni of 0.1 to 6.0 atomic percent, La of 0.1 to 1.0 atomic percent, and Si of 0.1 to 1.5 atomic percent. (2) A display device has the thin film transistor substrate.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: August 24, 2010
    Assignee: Kobe Steel, Ltd.
    Inventors: Nobuyuki Kawakami, Hiroshi Gotoh, Aya Hino
  • Patent number: 7777231
    Abstract: A method for forming a thin film transistor on a substrate is disclosed. A gate electrode and a gate insulation layer are disposed on a surface of the substrate. A deposition process is performed by utilizing hydrogen diluted silane to form a silicon-contained thin film on the gate insulation layer first. A hydrogen plasma etching process is thereafter performed. The deposition process and the etching process are repeated for at least one time to form an interface layer. Finally, an amorphous silicon layer, n+ doped Si layers, a source electrode, and a drain electrode are formed on the interface layer.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: August 17, 2010
    Assignee: AU Optronics Corp.
    Inventors: Feng-Yuan Gan, Han-Tu Lin
  • Patent number: 7767478
    Abstract: The invention provides a thin film transistor (TFT) array panel that includes an insulating substrate; a gate line formed on the insulating substrate and having a first layer of an Al containing metal, a second layer of a Cu containing metal that is thicker than the first layer, and a gate electrode; a gate insulating layer arranged on the gate line; a semiconductor arranged on the gate insulating layer; a data line having a source electrode and arranged on the gate insulating layer and the semiconductor; a drain electrode arranged on the gate insulating layer and the semiconductor and facing the source electrode; a passivation layer having a contact hole and arranged on the data line and the drain electrode; and a pixel electrode arranged on the passivation layer and coupled with the drain electrode through the contact hole.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: August 3, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Hun Lee, Yang-Ho Bae, Beom-Seok Cho, Chang-Oh Jeong
  • Patent number: 7741646
    Abstract: A liquid crystal display panel and a fabricating method thereof comprising an image sensing capability, image scanning, and touch inputting. In the liquid crystal display device, a gate line and a data line are formed to intersect each other on a substrate to define a pixel area in which a pixel electrode is positioned. A first thin film transistor is positioned at an intersection area of the gate line and the data line. A sensor thin film transistor senses light having image information and supplied with a first driving voltage from the data line. A driving voltage supply line is positioned in parallel to the gate line to supply a second driving voltage to the sensor thin film transistor.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: June 22, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Hee Kwang Kang, Kyo Seop Choo
  • Patent number: 7714387
    Abstract: A semiconductor device with a TFT includes a substrate, an island-shaped semiconductor film serving as an active layer of the TFT on or over the substrate, a pair of source/drain regions formed in the semiconductor film, and a channel region formed between the pair of source/drain regions in the semiconductor film. The pair of source/drain regions is thinner than the remainder of the semiconductor film other than the source/drain regions. The thickness difference between the pair of source/drain regions and the remainder of the semiconductor film is in a range from 10 angstrom (?) to 100 angstrom. The total process steps are reduced and the operation characteristic and reliability of the device are improved.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: May 11, 2010
    Assignee: NEC LCD Technologies, Ltd.
    Inventors: Kunihiro Shiota, Hiroshi Okumura
  • Patent number: 7687870
    Abstract: A laterally configured electrooptical device including: a substrate having a surface; a first semiconductor layer of a first type semiconductor material; a second semiconductor layer formed of a second type semiconductor material different from the first type semiconductor material; a first electrode; and a second electrode. The lower surface of the first semiconductor layer is coupled to a section of the surface of the substrate. The lower surface of the second semiconductor layer is coupled to the upper surface of the first semiconductor layer to form a junction. The first electrode is directly electrically coupled to one side of the first semiconductor layer and the second electrode is directly electrically coupled to an opposite side of the second semiconductor layer. These electrodes are configured such that the lower surface of the first semiconductor layer and/or the upper surface of the second semiconductor layer are substantially unoccluded by them.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 30, 2010
    Assignees: Panasonic Corporation, Cornell Research Foundation, Inc.
    Inventors: Hon Hang Fong, George G. Malliaras, Kiyotaka Mori
  • Patent number: RE49718
    Abstract: A substrate for a display device, includes: an insulation substrate; an insulation film, which is formed on the insulation substrate and is primarily made of one of silicon oxide and oxidized metal; an inorganic film, which is formed to be in direct contact with the insulation film and has an insulator part that is formed by changing oxide semiconductor into insulator; and a wiring film, which is formed to be in direct contact with the insulator part.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: October 31, 2023
    Assignee: Trivale Technologies
    Inventors: Toshihiko Iwasaka, Yusuke Yamagata, Kazunori Inoue