For Tft (epo) Patents (Class 257/E29.151)
  • Patent number: 8866233
    Abstract: An object is to provide a semiconductor device having a novel structure which includes a combination of semiconductor elements with different characteristics and is capable of realizing higher integration. A semiconductor device includes a first transistor, which includes a first channel formation region including a first semiconductor material, and a first gate electrode, and a second transistor, which includes one of a second source electrode and a second drain electrode combined with the first gate electrode, and a second channel formation region including a second semiconductor material and electrically connected to the second source electrode and the second drain electrode.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: October 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8865516
    Abstract: The present invention provides an oxide semiconductor capable of achieving a thin film transistor having stable transistor characteristics, a thin film transistor having a channel layer formed of the oxide semiconductor and a production method thereof, and a display device equipped with the thin film transistor. The oxide semiconductor of the present invention is an oxide semiconductor for a thin film transistor. The oxide semiconductor includes indium, gallium, zinc, and oxygen as constituent atoms, and the oxygen content of the oxide semiconductor is 87% to 95% of the stoichiometric condition set as 100%, in terms of atomic units.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 21, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ohta, Go Mori, Hirohiko Nishiki, Yoshimasa Chikama, Tetsuya Aita, Masahiko Suzuki, Okifumi Nakagawa, Michiko Takei, Yoshiyuki Harumoto, Takeshi Hara
  • Patent number: 8853687
    Abstract: A thin film transistor substrate according to an exemplary embodiment of the present invention includes a semiconductor layer including metal disposed on an insulating substrate, a gate electrode overlapping the semiconductor layer, and a source electrode and a drain electrode overlapping the semiconductor layer, wherein the metal in the semiconductor layer comprises indium (In), zinc (Zn), and tin (Sn), and a molar ratio ( R , R ? [ mol ? ? % ] = [ In ] [ In + Zn + Sn ] × 100 ) of indium (In) to the metals in the semiconductor layer is less than about 20%, and more specifically, the molar ratio (R, ( R , R ? [ mol ? ? % ] = [ In ] [ In + Zn + Sn ] / 100 ) of indium (In) of the metals in the semiconductor layer is about 5% to about 13%.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Doo Hyoung Lee, Chan Woo Yang, Seung-Ho Jung, Doo Na Kim, Bo Sung Kim, Eun Hye Park
  • Patent number: 8853703
    Abstract: A thin film transistor array panel includes a substrate, gate lines, each including a gate pad, a gate insulating layer, data lines, each including a data pad connected to a source and drain electrode, a first passivation layer disposed on the data lines and the drain electrode, a first electric field generating electrode, a second passivation layer disposed on the first electric field generating electrode, and a second electric field generating electrode. The gate insulating layer and the first and second passivation layers include a first contact hole exposing a part of the gate pad, the first and second passivation layers include a second contact hole exposing a part of the data pad, and at least one of the first and second contact holes have a positive taper structure having a wider area at an upper side than at a lower side.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ji-Young Park, Yu-Gwang Jeong, Sang Gab Kim, Joon Geol Lee
  • Patent number: 8847316
    Abstract: An object of the present invention is to provide a semiconductor device having high operation characteristic and reliability. The measures taken are: A pixel capacitor is formed between an electrode comprising anodic capable material over an organic resin film, an anodic oxide film of the electrode and a pixel electrode above. Since the anodic oxide film is anodically oxidized by applied voltage per unit time at 15V/min, there is no wrap around on the electrode, and film peeling can be prevented.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: September 30, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Murakami, Shunpei Yamazaki, Jun Koyama, Mitsuaki Osame, Yukio Tanaka, Yoshiharu Hirakata
  • Patent number: 8841678
    Abstract: A thin-film transistor device includes: a gate electrode above a substrate; a gate insulating film on the gate electrode; a crystalline silicon thin film including a channel region which is provided on the gate insulating film; semiconductor films on at least the channel region; an insulating film made of an organic material which is provided over the channel region and above the semiconductor films; a source electrode over at least an end portion of the insulating film; and a drain electrode over at least the other end portion of the insulating film and facing the source electrode. The semiconductor films include at least a first semiconductor film and a second semiconductor film provided on the first semiconductor film. A relationship ECP<EC1 is satisfied where ECP and EC1 denote energy levels at lower ends of conduction bands of the crystalline silicon thin film and the first semiconductor film, respectively.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: September 23, 2014
    Assignees: Panasonic Corporation, Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Arinobu Kanegae, Takahiro Kawashima, Hiroshi Hayashi, Genshirou Kawachi
  • Patent number: 8841679
    Abstract: Provided is a thin film transistor array panel. The thin film transistor array panel includes: an insulation substrate including a display area with a plurality of pixels and a peripheral area around the display area; a gate line and a data line positioned in the display area of the insulation substrate; a first driving signal transfer line and a second driving signal transfer line positioned in the peripheral area of the insulation substrate; a first insulating layer positioned on the gate line and the data line; and a first photosensitive film positioned on the first driving signal transfer line and the second driving signal transfer line, in which the first photosensitive film is disposed only in the peripheral area.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Yong Shin, Woo-Sung Sohn, Hong Min Yoon, Hui Gyeong Yun
  • Patent number: 8835236
    Abstract: A method for manufacturing an oxide semiconductor thin film transistor (TFT) is provided, which includes the steps below. A source electrode and a drain electrode are provided. A patterned insulating layer is formed to partially cover the source electrode and the drain electrode, and expose a portion of the source electrode and a portion of the drain electrode. An oxide semiconductor layer is formed to contact the portion of the source electrode and the portion of the drain electrode. A gate electrode is provided. A gate dielectric layer positioned between the oxide semiconductor layer and the gate electrode is provided. An oxide semiconductor TFT is also provided herein.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: September 16, 2014
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventor: Hsi-Ming Chang
  • Patent number: 8829520
    Abstract: A thin film transistor (TFT) includes a gate, a semiconductor layer, an insulating layer, a source, a drain, and a current reduction layer. The insulating layer is disposed between the gate and the semiconductor layer. The source is connected to the semiconductor layer. The drain is connected to the semiconductor layer, and the source and the drain are separated from each other. The current reduction layer has a first part and a second part. The first part is disposed between the semiconductor layer and at least a part of the source, and the second part is disposed between the semiconductor layer and at least a part of the drain.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: September 9, 2014
    Assignee: E Ink Holdings Inc.
    Inventors: Henry Wang, Chia-Chun Yeh, Xue-Hung Tsai, Ted-Hong Shinn
  • Patent number: 8803143
    Abstract: A transistor in a display device is expected to have higher withstand voltage, and it is an object to improve the reliability of a transistor which is driven by high voltage or large current. A semiconductor device includes a transistor in which buffer layers are provided between a semiconductor layer forming a channel formation region and source and drain electrode layers. The buffer layers are provided between the semiconductor layer forming a channel formation region and the source and drain electrode layers in order to particularly relieve an electric field in the vicinity of a drain edge and improve the withstand voltage of the transistor.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 12, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8803148
    Abstract: A thin film transistor may include a substrate, a buffer layer on the substrate, a semiconductor layer formed on the buffer layer, a gate insulating pattern on the semiconductor layer, a gate electrode on the gate insulating pattern, an interlayer insulating layer covering the gate electrode and the gate insulating pattern, the interlayer insulating layer having a contact hole and an opening extending therethrough, the contact hole exposing a source area and a drain area of the semiconductor layer, and the opening exposing a channel area of the semiconductor layer, and a source electrode and a drain electrode formed on the interlayer insulating layer, the source electrode being connected with the source area and the drain electrode being connected with the drain area of the semiconductor layer.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 12, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Jong-Ryuk Park, Tak-Young Lee, Jin-Wook Seo, Ki-Yong Lee, Heung-Yeol Na
  • Patent number: 8803149
    Abstract: A hydrogen barrier layer is selectively provided over an oxide semiconductor layer including hydrogen and hydrogen is selectively desorbed from a given region in the oxide semiconductor layer by conducting oxidation treatment, so that regions with different conductivities are formed in the oxide semiconductor layer. After that, a channel formation region, a source region, and a drain region can be formed with the use of the regions with different conductivities formed in the oxide semiconductor layer.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 12, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Junichiro Sakata
  • Patent number: 8792060
    Abstract: A liquid crystal display device with a built-in touch screen, which uses a common electrode as a touch-sensing electrode including an intersection of a gate line and a data line to define a pixel region, a bridge line disposed in a central portion of the pixel, an insulating layer formed on the bridge line, a first contact hole disposed through the insulating layer to expose a predetermined portion of an upper surface of the bridge line, a contact metal on the insulating layer and inside the first contact hole, the contact metal electrically connected with the bridge line, a first passivation layer on the contact metal, a second contact hole disposed through the first passivation layer to expose a predetermined portion of an upper surface of the contact metal, a common electrode on the first passivation layer and inside the second contact hole, a conductive line electrically connected with the common electrode, and a second passivation layer on the first passivation layer and the conductive line, wherein the
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: July 29, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Kum Mi Oh, Jae Hoon Park, Han Seok Lee, Hee Sun Shin, Won Keun Park
  • Patent number: 8785264
    Abstract: According to an embodiment of the disclosed technology, a manufacture method of an organic thin film transistor array substrate is provided. The method comprises: forming a first pixel electrode, a source electrode, a drain electrode and a data line in a first patterning process; forming an organic semiconductor island and a gate insulating island in a second patterning process; forming a data pad region in a third patterning process; and forming a second pixel electrode, a gate electrode and a gate line in a fourth patterning process.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: July 22, 2014
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Xuehui Zhang
  • Patent number: 8785939
    Abstract: A pixel electrode is provided, with a nanostructure-film deposited over an active matrix substrate, such that the pixel electrode makes electrical contact with an underlying layer. Similarly, auxiliary data pads and auxiliary gate pads are provided, which also have nanostructure-films deposited over an active matrix substrate, such that they make electrical contact with underlying layers.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Bae Park, George Gruner, Liangbing Hu
  • Patent number: 8772752
    Abstract: An object is to prevent light leakage caused due to misregistration even when the width of a black matrix layer is not expanded to a designed value or larger. One embodiment of the present invention is a semiconductor device including a single-gate thin film transistor in which a first semiconductor layer is sandwiched between a bottom-gate electrode and a first black matrix layer. The first semiconductor layer and the first black matrix layer overlap with each other.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: July 8, 2014
    Assignees: Semiconductor Energy Laboratory Co., Ltd., Sharp Kabushiki Kaisha
    Inventors: Hidekazu Miyairi, Atsushi Hirose, Yoshitaka Yamamoto, Tomohiro Kimura
  • Patent number: 8772784
    Abstract: One of factors that increase the contact resistance at the interface between a first semiconductor layer where a channel is formed and source and drain electrode layers is a film with high electric resistance formed by dust or impurity contamination of a surface of a metal material serving as the source and drain electrode layers. As a solution, a first protective layer and a second protective layer including a second semiconductor having a conductivity that is less than or equal to that of the first semiconductor layer is stacked successively over source and drain electrode layers without exposed to air, the stack of films is used for the source and drain electrode layers.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 8, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Masashi Tsubuku
  • Patent number: 8772897
    Abstract: A thin-film transistor includes a semiconductor pattern, a first gate electrode, a source electrode, a drain electrode and a second gate electrode. The semiconductor pattern is formed on a substrate. A first conductive layer has a pattern that includes the first gate electrode which is electrically insulated from the semiconductor pattern. A second conductive layer has a pattern that includes a source electrode electrically connected to the semiconductor pattern, a drain electrode spaced apart from the source electrode, and a second gate electrode electrically connected to the first gate electrode. The second gate electrode is electrically insulated from the semiconductor pattern, the source electrode and the drain electrode.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: July 8, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ki-Won Kim, Kap-Soo Yoon, Woo-Geun Lee, Yeong-Keun Kwon, Hye-Young Ryu, Jin-Won Lee, Hyun-Jung Lee
  • Patent number: 8749725
    Abstract: A flat panel display apparatus including a gate electrode on a substrate, a first insulating layer and a semiconductor layer sequentially stacked on the gate electrode and including a transparent conductive oxide, a capacitor first electrode extending on a plane on which the gate electrode extends, and a capacitor second electrode extending on a plane on which the semiconductor layer extends and including a material of the semiconductor layer, wherein the first insulating layer is between the capacitor second electrode and the semiconductor layer, source and drain electrodes that are separated by a second insulating layer and are connected to the semiconductor layer and the capacitor second electrode, a third insulating layer covering the source and drain electrodes, and a pixel electrode electrically connected to the source or drain electrode on the third insulating layer and being electrically connected to one of the source electrode and/or the drain electrode.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: June 10, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Joo-Sun Yoon, Seong-Min Wang
  • Patent number: 8741672
    Abstract: Exemplary embodiments of the invention disclose a method of manufacturing a thin film transistor array panel having reduced overall processing time and providing a uniform crystallization. Exemplary embodiments of the invention also disclose a crystallization method of a thin film transistor, including forming on a substrate a semiconductor layer including a first pixel area, a second pixel area, and a third pixel area. The crystallization method includes crystallizing a portion of the semiconductor layer corresponding to a channel region of a thin film transistor using a micro lens array.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: June 3, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Joo-Han Kim, Hwa-Dong Jung, Wan-Soon Lim, Jee-Hun Lim, Joo Seok Yeom, Tae-Kyung Yim, Jae-Hak Lee, Hyuk Soon Kwon, Hyoung Cheol Lee, Jeong-Ju Park, Se-Myung Kwon, So-Young Koo
  • Patent number: 8742424
    Abstract: The present invention provides a shift register and a display device, each of which operates stably. The present invention relate to a shift register, comprising a thin-film transistor which includes a source electrode, a drain electrode, and a gate electrode, the thin-film transistor being a bottom gate thin-film transistor which includes a comb-shaped source/drain structure, the gate electrode being provided with at least one of a cut and an opening in at least one of a region overlapping with the source electrode and a region overlapping with the drain electrode.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Chikao Yamasaki, Tetsuo Kikuchi, Shinya Tanaka, Junya Shimada
  • Patent number: 8742423
    Abstract: In a thin-film transistor array according to an embodiment of the present invention, thin-film transistors are disposed in a matrix array, the thin-film transistor including a gate electrode that is formed on a substrate, a gate insulating layer that is formed on the gate electrode, a source electrode that is formed on the gate insulating layer, a pixel electrode that is formed on the gate insulating layer, a drain electrode that is connected to the pixel electrode, and a semiconductor layer that is formed between the source electrode and the drain electrode, the gate electrode is connected to a gate line while the source electrode is connected to a source line, the thin-film transistor is formed within a region of the source line and the thin-film transistor array includes a stripe insulating film such that the source line and the semiconductor layer are covered with the stripe insulating film.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: June 3, 2014
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Ryohei Matsubara, Mamoru Ishizaki
  • Patent number: 8735889
    Abstract: There are provided a structure of a semiconductor device in which low power consumption is realized even in a case where a size of a display region is increased to be a large size screen and a manufacturing method thereof. A gate electrode in a pixel portion is formed as a three layered structure of a material film containing mainly W, a material film containing mainly Al, and a material film containing mainly Ti to reduce a wiring resistance. A wiring is etched using an IPC etching apparatus. The gate electrode has a taper shape and the width of a region which becomes the taper shape is set to be 1 ?m or more.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideomi Suzawa, Yoshihiro Kusuyama, Koji Ono, Jun Koyama
  • Patent number: 8728861
    Abstract: A method is provided for fabricating a thin film transistor. A plurality of layers is deposited on a substrate. The plurality of layers includes a conductive gate contact layer, a gate insulator layer, an undoped channel layer, an etch-stop layer, and a conductive contact layer. The etch-stop layer is positioned between the conductive contact layer and the undoped channel layer. A portion of the conductive contact layer is selectively removed while removal of a portion of the undoped channel layer is prevented by the etch-stop layer during the selective removal. A portion of the etch-stop layer is selectively removed and an exposed portion of the etch-stop layer is converted from a conductor to an insulator by oxidizing the exposed portion of the etch-stop layer in air. A portion of remaining layers of the plurality of layers is selectively removed to form the thin film transistor.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 20, 2014
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Burhan Bayraktaroglu, Kevin Leedy
  • Patent number: 8716715
    Abstract: A thin film transistor substrate including a thin film transistor having a drain electrode with an electrode portion, which overlaps with a semiconductor layer, and an extended portion, which extends from the electrode portion and has a portion overlapping with a storage electrode or storage electrode line. A passivation layer is arranged on the drain electrode, and it has a contact hole that partially exposes the extended portion of the drain electrode without exposing a step in the extended portion caused by the storage electrode or storage electrode line. A pixel electrode is arranged on the passivation layer and is electrically connected with the extended portion of the drain electrode through the contact hole.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: May 6, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyuk-Jin Kim, Kyung-Wook Kim
  • Patent number: 8716711
    Abstract: A thin-film transistor including a channel layer being formed of an oxide semiconductor transparent to visible light and having a refractive index of nx, a gate-insulating layer disposed on one face of the channel layer, and a transparent layer disposed on the other face of the channel layer and having a refractive index of nt, where there is a relationship of nx>nt. A thin-film transistor including a substrate having a refractive index of no, a transparent layer disposed on the substrate and having a refractive index of nt, and a channel layer disposed on the transparent layer and having a refractive index of nx, where there is a relationship of nx>nt>no.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: May 6, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tatsuya Iwasaki
  • Patent number: 8710503
    Abstract: An organic light emitting display (OLED) device is disclosed. The OLED device includes a thin-film transistor (TFT), which includes a gate electrode; an active layer insulated from the gate electrode; source and drain electrodes insulated from the gate electrode and contacting the active layer; and an insulation layer interposed between the source and drain electrodes and the active layer; and an organic light-emitting element electrically connected to the TFT, wherein the insulation layer includes a first insulation sub-layer contacting the active layer; and a second insulation sub-layer formed on the first insulation sub-layer.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: April 29, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Tae-Kyung Ahn
  • Patent number: 8698172
    Abstract: Thinned and highly reliable light emitting elements are provided. Further, light emitting devices in which light emitting elements are formed over flexible substrates are manufactured with high yield. One light emitting device includes a flexible substrate, a light emitting element formed over the flexible substrate, and a resin film covering the light emitting element, and in the light emitting element, an insulating layer serving as a partition has a convex portion and the convex portion is embedded in the resin film, that is, the resin film covers an entire surface of the insulating layer and an entire surface of the second electrode, whereby the light emitting element can be thinned and highly reliable. In addition, a light emitting device can be manufactured with high yield in a manufacturing process thereof.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masahiro Katayama, Shingo Eguchi, Yoshiaki Oikawa, Ami Nakamura, Satoshi Seo, Kaoru Hatano
  • Patent number: 8692250
    Abstract: A method for fabricating a TFT array substrate including the following steps is provided. A substrate having a pixel region and a photosensitive region is provided. A first patterned conductive layer is formed on the substrate, wherein the first patterned conductive layer includes a gate electrode disposed in the pixel region and a first electrode disposed in the photosensitive region, and a photosensitive dielectric layer is formed on the first electrode. A gate insulation layer is formed to cover the gate electrode, the photosensitive dielectric layer and the first electrode. A patterned semiconductor layer is formed on the gate insulation layer above the gate electrode. A source electrode and a drain electrode are formed on the patterned semiconductor layer at two sides of the gate electrode, wherein the gate electrode, the source electrode, and the drain electrode constitute a TFT. A second electrode is formed on the photosensitive dielectric layer.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: April 8, 2014
    Assignee: Au Optronics Corporation
    Inventors: Ming-Hsien Lee, Ching-Chieh Shih, An-Thung Cho, Chia-Tien Peng, Kun-Chih Lin
  • Patent number: 8680521
    Abstract: An intrinsic or substantially intrinsic semiconductor, which has been subjected to a step of dehydration or dehydrogenation and a step of adding oxygen so that the carrier concentration is less than 1×1012/cm3 is used for an oxide semiconductor layer of an insulated gate transistor, in which a channel region is formed. The length of the channel formed in the oxide semiconductor layer is set to 0.2 ?m to 3.0 ?m inclusive and the thicknesses of the oxide semiconductor layer and the gate insulating layer are set to 15 nm to 30 nm inclusive and 20 nm to 50 nm inclusive, respectively, or 15 nm to 100 nm inclusive and 10 nm to 20 nm inclusive, respectively. Consequently, a short-channel effect can be suppressed, and the amount of change in threshold voltage can be less than 0.5 V in the range of the above channel lengths.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: March 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiromichi Godo, Daisuke Kawae
  • Patent number: 8680525
    Abstract: A method for manufacturing a thin film transistor is provided. In the method, a gate electrode is formed on a substrate. A crystalline gate insulating layer is formed on an entire surface of the substrate having the gate electrode formed thereon. A microcrystalline silicon layer and a doped amorphous silicon layer are sequentially formed on the crystalline gate insulating layer. A metal layer is deposited on the substrate including the crystalline gate insulating layer, the microcrystalline silicon layer and the doped amorphous silicon layer. Source and drain electrodes, an ohmic contact layer and an active layer are formed by etching predetermined portions of the metal layer and the doped amorphous silicon layer to expose a predetermined portion of the microcrystalline silicon layer.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 25, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Chang Wook Han
  • Patent number: 8673694
    Abstract: A thin film transistor array panel includes a passivation layer formed on a plurality of end portions of a plurality of gate lines. A portion of the passivation layer has a porous structure formed between a connection portion of a flexible printed circuit substrate and a thin film transistor substrate such that when the flexible printed circuit substrate and the thin film transistor array panel are connected to each other, the passivation layer having a porous structure and which is formed at the connection portion therebetween connects the flexible printed circuit substrate with the thin film transistor array panel thereby minimizing an exposed area of the metal of the connection portion to improve a corrosion resistance thereof.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: March 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sun Park, Chun-Gi You
  • Patent number: 8674350
    Abstract: A thin film transistor (TFT) includes a gate electrode, a gate insulating layer, a first protective pattern, a second protective pattern, a source electrode, a drain electrode, a semiconductor channel layer, and a passivation layer. The first protective pattern and the second protective pattern are disposed on the gate insulating layer above the gate electrode. The source electrode is disposed on the gate insulating layer and the first protective pattern. The drain electrode is disposed on the gate insulating layer and the second protective pattern. The semiconductor channel layer is disposed on the gate insulating layer, the source electrode, and the drain electrode. In an extending direction from the source electrode to the drain electrode, a length of the first protective pattern is shorter than that of the source electrode, and a length of the second protective pattern is shorter than that of the drain electrode.
    Type: Grant
    Filed: October 30, 2011
    Date of Patent: March 18, 2014
    Assignee: AU Optronics Corp.
    Inventors: Chung-Tao Chen, Wu-Hsiung Lin, Po-Hsueh Chen
  • Patent number: 8664703
    Abstract: The instant application describes a display device that includes a substrate; a gate electrode provided on the substrate; a gate insulating film provided on the gate electrode; a semiconductor layer provided on the gate insulating film; a source electrode and a drain electrode provided on the semiconductor layer; a protective insulating film provided on the source electrode and the drain electrode; a pixel electrode provided on the protective insulating film, and connected to one of the source electrode and the drain electrode through a contact hole formed through the protective insulating film; and a shield provided on the protective insulating film, the shield not being electrically connected to the pixel electrode.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 4, 2014
    Assignee: Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Shin-ichi Shimakawa, Shigekazu Horino, Takao Takano
  • Patent number: 8643012
    Abstract: A method of forming a display substrate includes forming an array layer on a substrate, forming a passivation layer on the array layer, forming a photoresist pattern on the passivation layer corresponding to a gate line, a source line and a thin-film transistor of the array layer, etching the passivation layer using the photoresist pattern as a mask, Non-uniformly surface treating a surface of the photoresist pattern, forming a transparent electrode layer on the substrate having the surface-treated photoresist pattern formed thereon and forming a pixel electrode. The forming a pixel electrode includes removing the photoresist pattern and the transparent electrode layer, such as by infiltrating a strip solution into the surface-treated photoresist pattern.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 4, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Seok Oh, Bong-Kyu Shin, Sang-Gab Kim, Eun-Guk Lee, Hong-Kee Chin, Yu-Gwang Jeong, Seung-Ha Choi
  • Patent number: 8642364
    Abstract: A high-performance thin film transistor structure which is easily manufactured is provided. The thin film transistor structure includes: a first electrode; second and third electrodes apart from each other in a hierarchical level different from that of the first electrode; first, second, and third wirings connected to the first, second, and third electrodes, respectively; a main stack body disposed so as to be opposed to the first electrode with an interlayer insulating layer in between, between the first electrode, and the second and third electrodes; and a sub stack body including an insulating layer and a semiconductor layer, disposed so as to be opposed to the first wiring with the interlayer insulating layer in between, between the first and second wirings in a position where the first and second wirings overlap and/or between the first and third wirings in a position where the first and third wirings overlap.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: February 4, 2014
    Assignee: Sony Corporation
    Inventors: Iwao Yagi, Hideki Ono, Mari Sasaki
  • Patent number: 8643021
    Abstract: A semiconductor display device is formed including an interlayer insulating. Specifically, a TFT is formed and then a nitrogen-containing inorganic insulating film that transmits less moisture compared to organic resin film is formed so as to cover the TFT. Next, organic resin including photosensitive acrylic resin is applied and an opening is formed by partially exposing the organic resin film to light. The organic resin film where the opening is formed, is then covered with a nitrogen-containing inorganic insulating film which transmits less moisture than organic resin film does. Thereafter, the gate insulating film and the two layers of the nitrogen-containing inorganic insulating films are partially etched away in the opening of the organic resin film to expose the active layer of the TFT.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: February 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Murakami, Masahiko Hayakawa, Kiyoshi Kato, Mitsuaki Osame, Takashi Hirosure, Saishi Fujikawa
  • Patent number: 8624244
    Abstract: A thin film transistor includes a gate electrode, a semiconductor layer, and a source electrode and a drain electrode placed on the semiconductor layer and electrically connected with the semiconductor layer. The semiconductor layer includes a light-transmitting semiconductor film and an ohmic conductive film placed on the light-transmitting semiconductor film and having a lower light transmittance than the light-transmitting semiconductor film. The ohmic conductive film is formed not to protrude from the light-transmitting semiconductor film. The ohmic conductive film is formed in separate parts with a channel part between the source electrode and the drain electrode interposed therebetween. The source electrode and the drain electrode are connected to the light-transmitting semiconductor film through the ohmic conductive film.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: January 7, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Reiko Noguchi, Kazunori Inoue, Masaru Aoki, Toshihiko Iwasaka
  • Patent number: 8624330
    Abstract: A method and structures to achieve improved TFTs and high fill-factor pixel circuits are provided. This system relies on the fact that jet-printed lines have print accuracy, which means the location and the definition of the printed lines and dots is high. The edge of a printed line is well defined if the printing conditions are optimized. This technique utilizes the accurate definition and placement of the edges of printed lines of conductors and insulators to define small features and improved structures.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 7, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jurgen H. Daniel, Ana Claudia Arias
  • Patent number: 8598635
    Abstract: It is an object to provide a thin film transistor with high speed operation, in which a large amount of current can flow when the thin film transistor is on and off-state current is extremely reduced when the thin film transistor is off. The thin film transistor is a vertical thin film transistor in which a channel formation region is formed using an oxide semiconductor film in which hydrogen is contained in an oxide semiconductor at a concentration of lower than or equal to 5×1019/cm3, preferably lower than or equal to 5×1018/cm3, more preferably lower than or equal to 5×1017/cm3, hydrogen or an OH group contained in the oxide semiconductor is/are removed, and carrier concentration is lower than or equal to 5×1014/cm3, preferably lower than or equal to 5×1012/cm3.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8581255
    Abstract: A pixel structure includes a first electrode on a substrate, a first insulation layer covering the first electrode, a gate located on the first insulation layer, a second electrode located on the first insulation layer above the first electrode, a second insulation layer covering the gate and the second electrode, a semiconductor layer located on the second insulation layer above the gate, a source and a drain that are located on the semiconductor layer, a third electrode, a third insulation layer, and a pixel electrode. The third electrode is located on the second insulation layer above the second electrode and electrically connected to the first electrode. The third insulation layer covers the source, the drain, and the third electrode. The pixel electrode is located on the third insulation layer and electrically connected to the drain.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: November 12, 2013
    Assignee: Au Optronics Corporation
    Inventors: Chuan-Sheng Wei, Chau-Shiang Huang, Wu-Liu Tsai, Chih-Hung Lin, Maw-Song Chen
  • Patent number: 8575621
    Abstract: Circuits and systems comprising one or more switches are provided. A circuit includes a first switch formed on a substrate; and a second switch formed on the substrate, the second switch including a first terminal coupled to a third terminal of the first switch. A system includes a supply; a first switch formed on a substrate, the first switch coupled to the supply; a second switch formed on the substrate, the second switch coupled to the first switch; a third switch formed on the substrate, the third switch coupled to the supply; a fourth switch formed on the substrate, the fourth switch coupled to the third switch; and a driver coupled to respective second terminals of the first, second, third, and fourth switches.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: November 5, 2013
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8575720
    Abstract: A process is described for integrating, on an inert substrate, a device having at least one passive component and one active component. The process comprises: deposition of a protection dielectric layer on the inert substrate; formation of a polysilicon island on the protection dielectric layer; integration of the active component on the polysilicon island; deposition of the covering dielectric layer on the protection dielectric layer and on the active component; integration of the passive component on the covering dielectric layer; formation of first contact structures in openings realised in the covering dielectric layer in correspondence with active regions of the active component; and formation of second contact structures in correspondence with the passive component. An integrated device obtained through this process is also described.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: November 5, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Salvatore Leonardi, Salvatore Coffa, Claudia Caligiore, Francesca Paola Tramontana
  • Patent number: 8575617
    Abstract: A thin film transistor array panel and a manufacturing method therefor. A shorting bar for connecting a thin film transistor with data lines is formed separate from the data lines, and then the data lines and the shorting bar are connected through a connecting member. As a result, all the data lines are floated during manufacture, so that variation in etching speed between data lines does not occur. Since variation in etching speed between the data lines can be prevented, performance deterioration of the transistor caused by a thickness difference in the lower layer of the data line can be prevented, as can resulting deterioration in display quality. Also, the influence of static electricity can be reduced or eliminated. Furthermore, since the data lines and the shorting bar are connected to each other, the generation of static electricity can be prevented or reduced, and quality testing is more readily performed.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 5, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Gwang-Bum Ko, Sang Jin Jeon
  • Patent number: 8569122
    Abstract: A manufacturing method for a low temperature polysilicon (LTPS) thin film transistor (TFT) array substrate, comprising: forming a polysilicon layer on a substrate; forming a gate insulating layer on the polysilicon layer; forming a gate metal layer on the gate insulating layer; and patterning the gate metal layer, the gate insulating layer and the polysilicon layer by using a half tone mask (HTM) or a gray tone mask (GTM) so as to obtain a gate electrode and a polysilicon semiconductor pattern in a single mask process, a central part of the polysilicon semiconductor pattern is covered by the gate electrode, and the polysilicon semiconductor pattern has two parts, which are not covered by the gate electrode at two sides of the gate electrode, for forming a source region and a drain region.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: October 29, 2013
    Assignee: BOE Technology Group., Ltd.
    Inventors: Guangcai Yuan, Gang Wang
  • Patent number: 8557621
    Abstract: A method for manufacturing a thin film transistor array panel, including: sequentially forming a first silicon layer, a second silicon layer, a lower metal layer, and an upper metal layer on a gate insulating layer and a gate line; forming a first film pattern on the upper metal layer; forming a first lower metal pattern and a first upper metal pattern that includes a protrusion, by etching the upper metal layer and the lower metal layer; forming first and second silicon patterns by etching the first and second silicon layers; forming a second film pattern by ashing the first film pattern; forming a second upper metal pattern by etching the first upper metal pattern; forming a data line and a thin film transistor by etching the first lower metal pattern and the first and second silicon patterns; and forming a passivation layer and a pixel electrode on the resultant.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Choung, Yang Ho Bae, Jean Ho Song, O Sung Seo, Sun-Young Hong, Hwa Yeul Oh, Bong-Kyun Kim, Nam Seok Suh, Dong-Ju Yang, Wang Woo Lee
  • Patent number: 8551822
    Abstract: A method for manufacturing a substrate for a flat panel display device is disclosed. The present method uses photolithography with four masks to manufacture a TFT-LCD. After the third half-tone mask is used, the manufacturing of the TFTs and the defining of the pixel area of the substrate can be completed. The present method can avoid the alignment deviation and the generation of parasitic capacitance happened on the substrate made through the conventional photolithography with five masks. Therefore, the present method can reduce the costs and increase the yield. Moreover, the substrate for the TFT-LCD made by the present method can define a channel region in the semiconductor layer after the second half-tone mask. Hence, the subsequent manufacturing for forming a transparent conductive layer, a source, and a drain can be achieved by wet etching to effectively reduce the non-homogeneous etching for the channel region in the semiconductor layer.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: October 8, 2013
    Assignee: Quanta Display Inc.
    Inventor: Chun-Hao Tung
  • Patent number: 8551826
    Abstract: In a thin film transistor, first and second thin film transistors are connected to an Nth gate line and an Mth data line, and first and second sub pixel electrodes are connected to the first and second thin film transistors, respectively. A third thin film transistor includes a gate electrode connected to an (N+1)th gate line, a semiconductor layer overlapping with the gate electrode, a source electrode connected to the second sub pixel electrode and partially overlapping with the gate electrode, and a drain electrode facing the source electrode. A first auxiliary electrode is connected to the drain electrode and arranged on the same layer as the first and second sub pixel electrodes. An opposite electrode is arranged on the same layer as the gate line and at least partially overlaps with the first auxiliary electrode with at least one insulating layer disposed therebetween.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: October 8, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yoon-Sung Um, Hoon Kim, Hye-Ran You, Jae-Jin Lyu, Seung-Beom Park
  • Patent number: 8542337
    Abstract: An embodiment of the invention provides a pixel structure of an active matrix organic light emitting display comprising a gate line, a common electrode line, a signal line, a power line, a first thin film transistor which is used as an addressing element, and a second thin film transistor which controls the organic light emitting display. A short-circuit-ring structure is connected between the common electrode line and the signal line and the short-circuit-ring structure communicates the signal line and the common electrode line in the case where a large current flows.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: September 24, 2013
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventor: Mi Zhang
  • Patent number: 8536579
    Abstract: The invention relates to an electronic device including a sequence of a first thin film transistor (TFT) and a second TFT, the first TFT including a first set of electrodes separated by a first insulator, the second TFT comprising a second set of electrodes separated by a second insulator, wherein the first set of electrodes and the second set of electrodes are formed from a first shared conductive layer and a second shared conductive layer, the first insulator and the second insulator being formed by a shared dielectric layer. The invention further relates to a method of manufacturing an electronic device.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: September 17, 2013
    Assignee: Creator Technology B.V.
    Inventors: Christoph Wilhelm Sele, Monica Johanna Beenhakkers, Gerwin Hermanus Gelinck, Nicolaas Aldegonda Jan Maria Van Aerle, Hjalmar Edzer Ayco Huitema