Planar Pn Junction Diode (epo) Patents (Class 257/E29.328)
  • Patent number: 12191387
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes: a first conductive type buried layer disposed on a substrate; a first conductive type deep well region, a second conductive type body region, and a first conductive type drift region which are disposed on the first conductive type buried layer; a source region disposed in the second conductive type body region; a drain region disposed in the first conductive type deep well region; and a gate electrode disposed on the second conductive type body region and the first conductive type drift region.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: January 7, 2025
    Assignee: SK keyfoundry Inc.
    Inventor: Hanseob Cha
  • Patent number: 12107120
    Abstract: A power semiconductor device includes a substrate, including an active region and edge regions, including a semiconductor layer of a first conductive type including silicon carbide (SiC); an insulating film disposed on the edge regions; a field plate pattern disposed on the insulating film; a first doped region of a second conductive type disposed inside the substrate to extend downward from a top surface of the edge regions; a second doped region of the second conductive type, buried in the edge regions, extends in a direction having a vector component parallel to the top surface of the substrate; and a third doped region of the first conductive type is disposed on the second doped region and at a side portion of the first doped region.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: October 1, 2024
    Assignee: Hyundai Mobis Co., Ltd.
    Inventors: Tae Youp Kim, Hyuk Woo
  • Patent number: 12020736
    Abstract: A spin-orbit torque magnetoresistive random-access memory device formed by forming an array of transistors, where a column of the array includes a source line contacting the source contact of each transistor of the column, forming a spin-orbit-torque (SOT) line contacting the drain contacts of the transistors of the row, and forming an array of unit cells, each unit cell including a spin-orbit-torque (SOT) magnetoresistive random access memory (MRAM) cell stack disposed above and in electrical contact with the SOT line, where the SOT-MRAM cell stack includes a free layer, a tunnel junction layer, and a reference layer, a diode structure above and in electrical contact with the SOT-MRAM cell stack, an upper electrode disposed above and in electrical contact with the diode structure.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 25, 2024
    Assignee: International Business Machines Corporation
    Inventors: Daniel Worledge, Pouya Hashemi, John Kenneth DeBrosse
  • Patent number: 11978788
    Abstract: The present application teaches, among other innovations, power semiconductor devices in which breakdown initiation regions, on BOTH sides of a die, are located inside the emitter/collector regions, but laterally spaced away from insulated trenches which surround the emitter/collector regions. Preferably this is part of a symmetrically-bidirectional power device of the “B-TRAN” type. In one advantageous group of embodiments (but not all), the breakdown initiation regions are defined by dopant introduction through the bottom of trench portions which lie within the emitter/collector region. In one group of embodiments (but not all), these can advantageously be separated trench portions which are not continuous with the trench(es) surrounding the emitter/collector region(s).
    Type: Grant
    Filed: May 24, 2023
    Date of Patent: May 7, 2024
    Assignee: IDEAL POWER INC.
    Inventors: Richard A. Blanchard, William C. Alexander
  • Patent number: 11869928
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: January 9, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11856746
    Abstract: An integrated circuit structure includes: a well region having a first conductivity type; a semiconductor structure extending away from the well region from a major surface of the well region, the semiconductor structure having the first conductivity type; a source/drain feature disposed on the semiconductor structure, the source/drain feature having a second conductivity type different from the first conductivity type; an isolation layer laterally surrounding at least a portion of the semiconductor structure; a dielectric layer disposed on the isolation layer, where at least a portion of the source/drain feature is disposed in the dielectric layer; and a conductive plug continuously extending through the dielectric layer and the isolation layer to physically contact the major surface of the well region, wherein the conductive plug is coupled to a power supply line to bias the well region.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 11844203
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A memory device including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density material.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Noriyuki Sato, Niloy Mukherjee, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Somilkumar J. Rathi, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 11802800
    Abstract: A temperature-sensing device configured to monitor a temperature is disclosed. The temperature-sensing device includes: a first capacitor comprising a first oxide layer with a first thickness; a second capacitor comprising a second oxide layer with a second thickness, wherein the second thickness of the second oxide layer is different from the first thickness of the first oxide layer; and a control logic circuit, coupled to the first and second capacitors, and configured to determine whether the monitored temperature is equal to or greater than a threshold temperature based on whether at least one of the first and second oxide layers breaks down.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: October 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Shih-Lien Linus Lu
  • Patent number: 11699746
    Abstract: The present application teaches, among other innovations, power semiconductor devices in which breakdown initiation regions, on BOTH sides of a die, are located inside the emitter/collector regions, but laterally spaced away from insulated trenches which surround the emitter/collector regions. Preferably this is part of a symmetrically-bidirectional power device of the “B-TRAN” type. In one advantageous group of embodiments (but not all), the breakdown initiation regions are defined by dopant introduction through the bottom of trench portions which lie within the emitter/collector region. In one group of embodiments (but not all), these can advantageously be separated trench portions which are not continuous with the trench(es) surrounding the emitter/collector region(s).
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: July 11, 2023
    Assignee: IDEAL POWER INC.
    Inventors: Richard A. Blanchard, William C. Alexander
  • Patent number: 11626487
    Abstract: An embodiment relates to a semiconductor component, comprising a semiconductor body of a first conductivity type comprising a voltage blocking layer and islands of a second conductivity type on a contact surface and optionally a metal layer on the voltage blocking layer, and a first conductivity type layer comprising the first conductivity type not in contact with a gate dielectric layer or a source layer that is interspersed between the islands of the second conductivity type.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: April 11, 2023
    Assignee: GeneSiC Semiconductor Inc.
    Inventors: Siddarth Sundaresan, Ranbir Singh, Jaehoon Park
  • Patent number: 11626531
    Abstract: A semiconductor body and a method for producing a semiconductor body are disclosed. In an embodiment a semiconductor body includes a p-conducting region, wherein the p-conducting region has at least one barrier zone and a contact zone, wherein the barrier zone has a first magnesium concentration and a first aluminum concentration, wherein the contact zone has a second magnesium concentration and a second aluminum concentration, wherein the first aluminum concentration is greater than the second aluminum concentration, wherein the first magnesium concentration is at least ten times less than the second magnesium concentration, wherein the contact zone forms an outwardly exposed surface of the semiconductor body, and wherein the barrier zone adjoins the contact zone, and wherein the semiconductor body is based on a nitride compound semiconductor material.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: April 11, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Massimo Drago, Alexander Frey, Joachim Hertkorn, Ingrid Koslow
  • Patent number: 11515387
    Abstract: A method of manufacturing a silicon carbide substrate having a parallel pn layer. The method includes preparing a starting substrate containing silicon carbide, forming a first partial parallel pn layer on the starting substrate by a trench embedding epitaxial process, stacking a second partial parallel pn layer by a multi-stage epitaxial process on the first partial parallel pn layer, and stacking a third partial parallel pn layer on the second partial parallel pn layer by another trench embedding epitaxial process. Each of the first, second and third partial parallel pn layers is formed to include a plurality of first-conductivity-type regions and a plurality of second-conductivity-type regions alternately disposed in parallel to a main surface of the silicon carbide substrate.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: November 29, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yasuyuki Kawada
  • Patent number: 8916872
    Abstract: A method of forming a stacked low temperature diode and related devices. At least some of the illustrative embodiments are methods comprising forming a metal interconnect disposed within an inter-layer dielectric. The metal interconnect is electrically coupled to at least one underlying integrated circuit device. A barrier layer is deposited on the metal interconnect and the inter-layer dielectric. A semiconductor layer is deposited on the barrier layer. A metal layer is deposited on the semiconductor layer. The barrier layer, the semiconductor layer, and the metal layer are patterned. A low-temperature anneal is performed to induce a reaction between the patterned metal layer and the patterned semiconductor layer. The reaction forms a silicided layer within the patterned semiconductor layer. Moreover, the reaction forms a P-N junction diode.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: December 23, 2014
    Assignee: Inoso, LLC
    Inventors: Ziep Tran, Kiyoshi Mori, Giang Trung Dao, Michael Edward Ramon
  • Patent number: 8907318
    Abstract: A resistance change memory includes a first conductive line extending in a first direction, a second conductive line extending in a second direction which is crossed to the first direction, a cell unit including a memory element and a rectifying element connected in series between the first and second conductive lines, and a control circuit which is connected to both of the first and second conductive lines. The control circuit controls a voltage to change a resistance of the memory element between first and second values reversibly. The rectifying element is a diode including an anode layer, a cathode layer and an insulating layer therebetween.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Sonehara, Takayuki Okamura, Takashi Shigeoka, Masaki Kondo
  • Patent number: 8860081
    Abstract: To improve the performance of a protection circuit including a diode formed using a semiconductor film. A protection circuit is inserted between two input/output terminals. The protection circuit includes a diode which is formed over an insulating surface and is formed using a semiconductor film. Contact holes for connecting an n-type impurity region and a p-type impurity region of the diode to a first conductive film in the protection circuit are distributed over the entire impurity regions. Further, contact holes for connecting the first conductive film and a second conductive film in the protection circuit are dispersively formed over the semiconductor film. By forming the contact holes in this manner, wiring resistance between the diode and a terminal can be reduced and the entire semiconductor film of the diode can be effectively serve as a rectifier element.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Osamu Fukuoka, Masahiko Hayakawa, Hideaki Shishido
  • Patent number: 8836034
    Abstract: A protection circuit used for a semiconductor device is made to effectively function and the semiconductor device is prevented from being damaged by a surge. A semiconductor device includes a terminal electrode, a protection circuit, an integrated circuit, and a wiring electrically connecting the terminal electrode, the protection circuit, and the integrated circuit. The protection circuit is provided between the terminal electrode and the integrated circuit. The terminal electrode, the protection circuit, and the integrated circuit are connected to one another without causing the wiring to branch. It is possible to reduce the damage to the semiconductor device caused by electrostatic discharge. It is also possible to reduce faults in the semiconductor device.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Atsushi Hirose, Hideaki Shishido
  • Patent number: 8742534
    Abstract: A semiconductor device having a lateral diode includes a semiconductor layer, a first semiconductor region in the semiconductor layer, a contact region having an impurity concentration greater than that of the first semiconductor region, a second semiconductor region located in the semiconductor layer and separated from the contact region, a first electrode electrically connected through the contact region to the first semiconductor region, and a second electrode electrically connected to the second semiconductor region. The second semiconductor region includes a low impurity concentration portion, a high impurity concentration portion, and an extension portion. The second electrode forms an ohmic contact with the high impurity concentration portion. The extension portion has an impurity concentration greater than that of the low impurity concentration portion and extends in a thickness direction of the semiconductor layer.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: June 3, 2014
    Assignee: DENSO CORPORATION
    Inventors: Takao Yamamoto, Norihito Tokura, Hisato Kato, Akio Nakagawa
  • Patent number: 8659086
    Abstract: An Electro-Static Discharge (ESD) protection device is formed in an isolated region of a semiconductor substrate. The ESD protection device may be in the form of a MOS or bipolar transistor or a diode. The isolation structure may include a deep implanted floor layer and one or more implanted wells that laterally surround the isolated region. The isolation structure and ESD protection devices are fabricated using a modular process that includes virtually no thermal processing. Since the ESD device is isolated, two or more ESD devices may be electrically “stacked” on one another such that the trigger voltages of the devices are added together to achieve a higher effective trigger voltage.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: February 25, 2014
    Assignee: Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Donald Ray Disney, Jun-Wei Chen, Richard K. Williams, HyungSik Ryu, Wai Tien Chan
  • Publication number: 20130234198
    Abstract: A novel electrical circuit protection design with dielectrically-isolated diode configuration and architecture is disclosed. In one embodiment of the invention, a plurality of diodes connected in series is monolithically integrated in a single piece of semiconductor substrates by utilizing dielectrically-isolated trenching and silicon-on-insulator substrates, which enable formation of “silicon islands” to insulate a diode structure electrically from adjacent structures. In one embodiment of the invention, the plurality of diodes connected in series includes at least one Zener diode, which provides a clamping voltage approximately equal to its breakdown voltage value in case of a voltage spike or a power surge event.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 12, 2013
    Applicant: Manufacturing Networks Incorporated (MNI)
    Inventors: Moiz Khambaty, David Burgess, Vallangiman V. Srinivasan
  • Patent number: 8460977
    Abstract: A method of forming an electronic device, including forming a preliminary buffer layer on a drift layer, forming a first layer on the preliminary buffer layer, selectively etching the first layer to form a first mesa that exposes a portion of the preliminary buffer layer, and selectively etching the exposed portion of the preliminary buffer layer to form a second mesa that covers a first portion of the drift layer, that exposes a second portion of the drift layer, and that includes a mesa step that protrudes from the first mesa. Dopants are selectively implanted into the drift layer adjacent the second mesa to form a junction termination region in the drift layer. Dopants are selectively implanted through a horizontal surface of the mesa step into a portion of the drift layer beneath the mesa step to form a buried junction extension in the drift layer.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: June 11, 2013
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant K. Agarwal
  • Patent number: 8174047
    Abstract: To improve the performance of a protection circuit including a diode formed using a semiconductor film. A protection circuit is inserted between two input/output terminals. The protection circuit includes a diode which is formed over an insulating surface and is formed using a semiconductor film. Contact holes for connecting an n-type impurity region and a p-type impurity region of the diode to a first conductive film in the protection circuit are distributed over the entire impurity regions. Further, contact holes for connecting the first conductive film and a second conductive film in the protection circuit are dispersively formed over the semiconductor film. By forming the contact holes in this manner wiring resistance between the diode and a terminal can be reduced and the entire semiconductor film of the diode can be effectively serve as a rectifier element.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: May 8, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Osamu Fukuoka, Masahiko Hayakawa, Hideaki Shishido
  • Patent number: 8102024
    Abstract: A semiconductor integrated circuit having a diode element includes a diffusion layer which constitutes the anode and two diffusion layers which are provided on the left and right sides of the anode and which constitute the cathode, such that the anode and the cathode constitute the diode. A well contact is provided to surround both the diffusion layers of the anode and cathode. Distance tS between a longer side of the well contact and the diffusion layers of the cathode is shorter, while distance tL between a shorter side of the well contact and the diffusion layers of the anode and cathode is longer (tL>tS). Accordingly, the resistance value between the diffusion layer of the anode and the shorter side of the well contact is larger, so that the current from the diffusion layer of the anode is unlikely to flow toward the shorter side of the well contact.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: January 24, 2012
    Assignee: Panasonic Corporation
    Inventor: Shiro Usami
  • Patent number: 7994578
    Abstract: An Electro-Static Discharge (ESD) protection device is formed in an isolated region of a semiconductor substrate. The ESD protection device may be in the form of a MOS or bipolar transistor or a diode. The isolation structure may include a deep implanted floor layer and one or more implanted wells that laterally surround the isolated region. The isolation structure and ESD protection devices are fabricated using a modular process that includes virtually no thermal processing. Since the ESD device is isolated, two or more ESD devices may be electrically “stacked” on one another such that the trigger voltages of the devices are added together to achieve a higher effective trigger voltage.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 9, 2011
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong)
    Inventors: Donald Ray Disney, Jun-Wei Chen, Richard K. Williams, HyungSik Ryu, Wai Tien Chan
  • Patent number: 7936023
    Abstract: A diode, includes a semiconductor substrate, a first region doped with a first dopant type in the substrate, a second region doped with a second dopant type in the substrate, a first well of the first dopant type in the substrate and surrounding the first region and the second region, and a second well of the second dopant type in the substrate connecting the first region and the second region. The first dopant type is opposite the second dopant type.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 3, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Jaejune Jang, Bill Phan, Helmut Puchner
  • Publication number: 20110037102
    Abstract: The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    Type: Application
    Filed: June 17, 2010
    Publication date: February 17, 2011
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Paul A. Tchertchian, Clark J. Wagner, J. Gary Eden
  • Publication number: 20110001218
    Abstract: A semiconductor integrated circuit having a diode element includes a diffusion layer which constitutes the anode and two diffusion layers which are provided on the left and right sides of the anode and which constitute the cathode, such that the anode and the cathode constitute the diode. A well contact is provided to surround both the diffusion layers of the anode and cathode. Distance tS between a longer side of the well contact and the diffusion layers of the cathode is shorter, while distance tL between a shorter side of the well contact and the diffusion layers of the anode and cathode is longer (tL>tS). Accordingly, the resistance value between the diffusion layer of the anode and the shorter side of the well contact is larger, so that the current from the diffusion layer of the anode is unlikely to flow toward the shorter side of the well contact.
    Type: Application
    Filed: September 16, 2010
    Publication date: January 6, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Shiro Usami
  • Publication number: 20100176375
    Abstract: In accordance with an embodiment, a diode comprises a substrate, a dielectric material including an opening that exposes a portion of the substrate, the opening having an aspect ratio of at least 1, a bottom diode material including a lower region disposed at least partly in the opening and an upper region extending above the opening, the bottom diode material comprising a semiconductor material that is lattice mismatched to the substrate, a top diode material proximate the upper region of the bottom diode material, and an active diode region between the top and bottom diode materials, the active diode region including a surface extending away from the top surface of the substrate.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 15, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Anthony J. Lochtefeld
  • Patent number: 7732869
    Abstract: Channel regions continuous with transistor cells are disposed also below a gate pad electrode. The channel region below the gate pad electrode is fixed to a source potential. Thus, a predetermined reverse breakdown voltage between a drain and a source is secured without forming a p+ type impurity region below the entire lower surface of the gate pad electrode. Furthermore, a protection diode is formed in polysilicon with a stripe shape below the gate pad electrode.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: June 8, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Yasunari Noguchi, Eio Onodera, Hiroyasu Ishida
  • Patent number: 7612410
    Abstract: The present invention is a trigger device useful, for example, in triggering an SCR in an ESD protection circuit. Illustratively, an NMOS trigger device comprises a gate and heavily doped P and N regions in a P-well on opposite sides of the gate. A first N type source/drain extension and a first P-type pocket region extend from the P region toward the N region with the pocket region located under the source/drain extension and extending under the gate. A second N-type source/drain extension and a second P-type pocket region extend from the N region toward the P region with the pocket region located under the source/drain extension and extending under the gate. Preferably, the gate itself is heavily doped so that one half of the gate on the side adjacent the heavily doped P region is also heavily doped with dopants of P-type conductivity and the other half of the gate on the side adjacent the heavily doped N region is also heavily doped with dopants of N-type conductivity.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: November 3, 2009
    Assignee: Altera Corporation
    Inventors: Jeffrey Watt, Irfan Rahim
  • Patent number: 7602022
    Abstract: To prevent the destruction of a semiconductor element due to negative resistance, and to reduce the dynamic resistance of a static electricity prevention diode, the ratio of the maximum electric field intensity during an avalanche and the average electric field in a strong electric field region, as well as the impurity density gradient in the vicinity of the strong electric field region are optimized. During avalanche breakdown, a depletion layer is formed across the entire high resistivity region, and its average electric field is kept to ½ or more of the maximum electric field intensity. The density gradients (the depths and impurity densities) of a p+ region and of an n+ region that form a p-n junction of the diode are controlled so that the density gradient in the neighborhood of the high resistivity region does not have negative resistance with respect to increase of the avalanche current.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: October 13, 2009
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Naoki Kumagai, Hiroshi Kanemaru, Yuiichi Harada, Yoshihiro Ikura, Ryuu Saitou
  • Publication number: 20090230393
    Abstract: In a pn junction diode having a conductivity modulating element provided on a first principal surface of a semiconductor substrate, when an impurity concentration of a p type impurity region is lowered to shorten a reverse recovery time, hole injection is suppressed, thereby causing a problem that a forward voltage value is increased at a certain current point. Moreover, introduction of a life time killer to shorten the reverse recovery time leads to a problem of increased leak current. On an n? type semiconductor layer that is a single crystal silicon layer, a p type polycrystalline silicon layer (p type polysilicon layer) is provided. Since the polysilicon layer has more grain boundaries than the single crystal silicon layer, an amount of holes injected into the n? type semiconductor layer from the p type polysilicon layer in forward voltage application can be suppressed.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 17, 2009
    Applicants: SANYO Electric Co., Ltd.
    Inventors: Seiji MIYOSHI, Tetsuya OKADA
  • Publication number: 20090206440
    Abstract: A semiconductor device has a heavily doped substrate and an upper layer with doped silicon of a first conductivity type disposed on the substrate, the upper layer having an upper surface and including an active region that comprises a well region of a second, opposite conductivity type. An edge termination zone has a junction termination extension (JTE) region of the second conductivity type, the region having portions extending away from the well region and a number of field limiting rings of the second conductivity type disposed at the upper surface in the junction termination extension region.
    Type: Application
    Filed: March 13, 2009
    Publication date: August 20, 2009
    Inventors: Hans-Joachim Schulze, Frank Hille, Thomas Raker
  • Publication number: 20090014756
    Abstract: A method for growing a SiC-containing film on a Si substrate is disclosed. The SiC-containing film can be formed on a Si substrate by, for example, plasma sputtering, chemical vapor deposition, or atomic layer deposition. The thus-grown SiC-containing film provides an alternative to expensive SiC wafers for growing semiconductor crystals.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Inventors: Narsingh Bahadur Singh, Brian P. Wagner, David J. Knuteson, David Kahler, Andre E. Berghmans, Michael Aumer, Jerry W. Hedrick, Marc E. Sherwin, Michael M. Fitelson, Mark S. Usefara, Sean McLaughlin, Travis Randall, Thomas J. Knight
  • Patent number: 7439591
    Abstract: Method, apparatus, and article of manufacture for a diode defined by a portion of a gate layer of an integrated circuit. Illustrative, non-limiting embodiments of the invention are provided, including a temperature compensated DRAM, a temperature compensated CPU, a temperature compensated logic circuit and other on-chip temperature sensor applications.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: October 21, 2008
    Assignee: Infineon Technologies AG
    Inventor: Woo-Tag Kang
  • Publication number: 20080203389
    Abstract: A semiconductor apparatus is provided. The semiconductor apparatus includes a semiconductor substrate and a temperature sensing diode that is disposed on a surface part of the semiconductor substrate. A relation between a forward current flowing through the temperature sensing diode and a corresponding voltage drop across the temperature sensing diode varies with temperature. The semiconductor apparatus further includes a capacitor that is coupled with the temperature sensing diode, configured to reduce noise to act on the temperature sensing diode, and disposed such that the capacitor and the temperature sensing diode have a layered structure in a thickness direction of the semiconductor substrate.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Applicant: DENSO CORPRORATION
    Inventors: Shoji Ozoe, Shoji Mizuno, Takaaki Aoki, Tomofusa Shiga
  • Publication number: 20080179672
    Abstract: A semiconductor component is described. In one embodiment, the semiconductor component includes a semiconductor body with a first side and a second side. A drift zone is provided, which is arranged in the semiconductor body below the first side and extends in a first lateral direction of the semiconductor body between a first and a second doped terminal zone. At least one field electrode is provided, which is arranged in the drift zone, extends into the drift zone proceeding from the first side and is configured in a manner electrically insulated from the semiconductor body.
    Type: Application
    Filed: January 25, 2008
    Publication date: July 31, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Franz Hirler, Armin Willmeroth, Markus Schmitt, Carolin Tolksdorf, Gerald Deboy, Ralf Henninger
  • Patent number: 7384840
    Abstract: A technique for making a bulk isolated PN diode. Specifically, a technique is provided for making a voltage clamp with a pair of bulk isolated PN diode. Another embodiment provides for a voltage clamp with a pair of bulk isolated PN diodes in parallel with a pair of MOSFET diode-connected transistors. In addition, a method for manufacturing the bulk isolated PN diodes is recited.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 10, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Kurt D. Beigel
  • Publication number: 20080001139
    Abstract: Photonic devices monolithically integrated with CMOS are disclosed, including sub-100nm CMOS, with active layers comprising acceleration regions, light emission and absorption layers, and optional energy filtering regions. Light emission or absorption is controlled by an applied voltage to deposited films on a pre-defined CMOS active area of a substrate, such as bulk Si, bulk Ge, Thick-Film SOI, Thin-Film SOI, Thin-Film GOI.
    Type: Application
    Filed: July 28, 2005
    Publication date: January 3, 2008
    Inventor: Carols Augusto
  • Publication number: 20070290230
    Abstract: A nitride semiconductor device according to the present invention includes a p-type nitride semiconductor layer, an n-type nitride semiconductor layer, and an active layer interposed between the p-type nitride semiconductor layer and the n-type nitride semiconductor layer. The p-type nitride semiconductor layer includes: a first p-type nitride semiconductor layer containing Al and Mg; and a second p-type nitride semiconductor layer containing Mg. The first p-type nitride semiconductor layer is located between the active layer and the second p-type nitride semiconductor layer, and the second p-type nitride semiconductor layer has a greater band gap than a band gap of the first p-type nitride semiconductor layer.
    Type: Application
    Filed: September 24, 2004
    Publication date: December 20, 2007
    Inventors: Yasutoshi Kawaguchi, Toshitaka Shimamoto, Akihiko Ishibashi, Isao Kidoguchi, Toshiya Yokogawa
  • Patent number: 6967363
    Abstract: Various circuit devices, including diodes, and methods manufacturing therefor are provided. In one aspect, a method manufacturing is provided that includes forming a gate structure on a semiconductor portion of a substrate. The semiconductor portion has a first conductivity type. First and spacer structures are formed on opposite sides of the gate structure. A first impurity region of a second conductivity type is formed proximate the first spacer structure while the semiconductor portion lateral to the second spacer structure is masked. The first impurity region and the semiconductor portion define a junction. A width of the second spacer structure is reduced while the second spacer structure and the first impurity region are masked. A second impurity region of the first conductivity type is formed in the semiconductor portion proximate the second spacer structure. The method provides a diode with reduced series resistance.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: November 22, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventor: James F. Buller