Diode (epo) Patents (Class 257/E29.327)
-
Patent number: 11705486Abstract: The present disclosure relates to an integrated chip. The integrated chip includes a first III-V semiconductor material over a substrate and a second III-V semiconductor material over the first III-V semiconductor material. The second III-V semiconductor material is a different material than the first III-V semiconductor material. A doped region has a horizontally extending segment and one or more vertically extending segments protruding vertically outward from the horizontally extending segment. The horizontally extending segment is arranged below the first III-V semiconductor material.Type: GrantFiled: October 27, 2020Date of Patent: July 18, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Fu-Wei Yao, Chun Lin Tsai, Jiun-Lei Jerry Yu, Man-Ho Kwan
-
Patent number: 9035434Abstract: A semiconductor device having first and second portions with opposite conductivity types. There are first through fourth layers in the semiconductor device. A peak value of the impurity concentration of the fourth layer is higher than the peak value of the impurity concentration of the second layer and lower than the peak value of the impurity concentration of a first portion of the third layer. The fourth layer includes a third portion located on the first portion and a fourth portion which is located on the second portion. The semiconductor device allows a decrease in the forward voltage drop and also allows an improvement of the safe operating area tolerance. Thus, it is possible to decrease the forward voltage drop, improve the maximum reverse voltage, and suppress oscillations at the time of recovery.Type: GrantFiled: March 3, 2010Date of Patent: May 19, 2015Assignee: Mitsubishi Electric CorporationInventor: Katsumi Nakamura
-
Patent number: 9006702Abstract: Semiconductor structures including a zirconium oxide material and methods of forming the same are described herein. As an example, a semiconductor structure can include a zirconium oxide material, a perovskite structure material, and a noble metal material formed between the zirconium oxide material and the perovskite structure material.Type: GrantFiled: January 20, 2014Date of Patent: April 14, 2015Assignee: Micron Technology, Inc.Inventors: Dale W. Collins, D. V. Nirmal Ramaswamy, Matthew N. Rocklein, Swapnil A. Lengade
-
Patent number: 8975661Abstract: An asymmetrical bidirectional protection component formed in a semiconductor substrate of a first conductivity type, including: a first implanted area of the first conductivity type; a first epitaxial layer of the second conductivity type on the substrate and the first implanted area; a second epitaxial layer of the second conductivity type on the first epitaxial layer, the second layer having a doping level different from that of the first layer; a second area of the first conductivity type on the outer surface of the epitaxial layer, opposite to the first area; a first metallization covering the entire lower surface of the substrate; and a second metallization covering the second area.Type: GrantFiled: August 16, 2011Date of Patent: March 10, 2015Assignee: STMicroelectronics (Tours) SASInventor: Benjamin Morillon
-
Patent number: 8946038Abstract: A method of forming one or more diodes in a fin field-effect transistor (FinFET) device includes forming a hardmask layer having a fin pattern, said fin pattern including an isolated fin area, a fin array area, and a FinFET area. The method further includes etching a plurality of fins into a semiconductor substrate using the fin pattern, and depositing a dielectric material over the semiconductor substrate to fill spaces between the plurality of fins. The method further includes planarizing the semiconductor substrate to expose the hardmask layer. The method further includes implanting a p-type dopant into the fin array area and portions of the FinFET area, and implanting an n-type dopant into the isolated fin area, a portion of the of fin array area surrounding the p-well and portions of the FinFET area. The method further includes annealing the semiconductor substrate.Type: GrantFiled: November 25, 2013Date of Patent: February 3, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
-
Patent number: 8941191Abstract: A radio frequency microelectromechanical (RF MEMS) device can comprise an actuation p-n junction and a sensing p-n junction formed within a semiconductor substrate. The RF MEMS device can be configured to operate in a mode in which an excitation voltage is applied across the actuation p-n junction varying a non-mobile charge within the actuation p-n junction to modulate an electric field acting upon dopant ions and creating electrostatic forces. The electrostatic forces can create a mechanical motion within the actuation p-n junction. The mechanical motion can modulate a depletion capacitance of the sensing p-n junction, thereby creating a motional current. At least one of the p-n junctions can be located at an optimal location to maximize the efficiency of the RF MEMS device at high resonant frequencies.Type: GrantFiled: July 29, 2011Date of Patent: January 27, 2015Assignee: Cornell UniversityInventors: Eugene Hwang, Sunil Ashok Bhave
-
Patent number: 8933532Abstract: A semiconductor structure includes a III-nitride substrate characterized by a first conductivity type and having a first side and a second side opposing the first side, a III-nitride epitaxial layer of the first conductivity type coupled to the first side of the III-nitride substrate, and a plurality of III-nitride epitaxial structures of a second conductivity type coupled to the III-nitride epitaxial layer. The semiconductor structure further includes a III-nitride epitaxial formation of the first conductivity type coupled to the plurality of III-nitride epitaxial structures, and a metallic structure forming a Schottky contact with the III-nitride epitaxial formation and coupled to at least one of the plurality of III-nitride epitaxial structures.Type: GrantFiled: October 11, 2011Date of Patent: January 13, 2015Assignee: Avogy, Inc.Inventors: Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, David P. Bour, Linda Romano, Thomas R. Prunty
-
Patent number: 8896084Abstract: A semiconductor device includes a first semiconductor region of a first conductivity type and formed of a material having a band gap wider than that of silicon; a first layer selectively disposed on a surface of and forming a first junction with the first semiconductor region; a second layer selectively disposed on the first semiconductor region and forming a second junction with the first semiconductor region; a first diode formed by a region including the first junction; a second diode formed by a region including the second junction; and a fourth semiconductor region of a second conductivity type and disposed in the first semiconductor region, between and contacting the first and second junctions. A recess and elevated portion are disposed on the first semiconductor region. The first and the second junctions are formed at different depths. The second diode has a lower built-in potential than the first diode.Type: GrantFiled: February 23, 2011Date of Patent: November 25, 2014Assignees: Fuji Electric Co., Ltd.Inventor: Yoshitaka Sugawara
-
Patent number: 8890186Abstract: A molded resin product or the like that is provided with a phosphor layer made of gel-like or rubber-like resin that can maintain its shape for a long period and that can be implemented easily. The molded resin product (phosphor layer 7) includes a resin member 17 made of a gel-like or rubber-like translucent resin including a phosphor material. The resin member 17 includes a shape maintaining member 19 that is formed in a lattice shape by line-like members 20 that are made of a material having a higher elasticity modulus than the resin member 17. The molded resin product (phosphor layer 7) is in the shape of a dome. The translucent resin is made of, for example, silicon resin, and the resin member 17 is gel-like.Type: GrantFiled: March 17, 2009Date of Patent: November 18, 2014Assignee: Panasonic CorporationInventors: Toshifumi Ogata, Nobuyuki Matsui, Masumi Abe
-
Patent number: 8860025Abstract: A semiconductor device includes a semiconductor diode. The semiconductor diode includes a drift region and a first semiconductor region of a first conductivity type formed in or on the drift region. The first semiconductor region is electrically coupled to a first terminal via a first surface of a semiconductor body. The semiconductor diode includes a channel region of a second conductivity type electrically coupled to the first terminal, wherein a bottom of the channel region adjoins the first semiconductor region. A first side of the channel region adjoins the first semiconductor region.Type: GrantFiled: September 7, 2011Date of Patent: October 14, 2014Assignee: Infineon Technologies AGInventors: Anton Mauder, Franz Hirler, Hans-Peter Felsl, Hans-Joachim Schulze
-
Patent number: 8822978Abstract: An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.Type: GrantFiled: April 23, 2013Date of Patent: September 2, 2014Assignee: The State of Oregon Acting by and through...Inventors: E. William Cowell, III, John F. Wager, Brady J. Gibbons, Douglas A. Keszler
-
Patent number: 8823139Abstract: A diode includes an anode of a first conductivity type; a first cathode of the first conductivity type; and a second cathode of a second conductivity type opposite the first conductivity type. A lightly-doped region of the first conductivity type is under and vertically overlaps the anode and the first and the second cathodes. The portion of the lightly-doped region directly under the second cathode is fully depleted at a state when no bias voltage is applied between the anode and the second cathode.Type: GrantFiled: July 1, 2013Date of Patent: September 2, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jam-Wem Lee, Yi-Feng Chang
-
Patent number: 8759935Abstract: A power semiconductor device includes an active device region disposed in a semiconductor substrate, an edge termination region disposed in the semiconductor substrate between the active device region and a lateral edge of the semiconductor substrate and a trench disposed in the edge termination region which extends from a first surface of the semiconductor substrate toward a second opposing surface of the semiconductor substrate. The trench has an inner sidewall, an outer sidewall and a bottom. The inner sidewall is spaced further from the lateral edge of the semiconductor substrate than the outer sidewall, and an upper portion of the outer sidewall is doped opposite as the inner sidewall and bottom of the trench to increase the blocking voltage capacity. Other structures can be provided which yield a high blocking voltage capacity such as a second trench or a region of chalcogen dopant atoms disposed in the edge termination region.Type: GrantFiled: June 3, 2011Date of Patent: June 24, 2014Assignee: Infineon Technologies Austria AGInventor: Gerhard Schmidt
-
Patent number: 8759878Abstract: According to one embodiment, a nitride semiconductor device includes a first semiconductor, a second semiconductor layer, a third semiconductor layer, a fourth semiconductor layer, a first electrode, a second electrode and a third electrode. The first, second and fourth semiconductor layers include a nitride semiconductor. The second semiconductor layer is provided on the first semiconductor layer, has a band gap not less than that of the first semiconductor layer. The third semiconductor layer is provided on the second semiconductor layer. The third semiconductor layer is GaN. The fourth semiconductor layer is provided on the third semiconductor layer to have an interspace on a part of the third semiconductor layer, has a band gap not less than that of the second semiconductor layer. The first electrode is provided on a portion of the third semiconductor layer. The fourth semiconductor layer is not provided on the portion.Type: GrantFiled: September 21, 2011Date of Patent: June 24, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Yasunobu Saito, Hidetoshi Fujimoto, Tetsuya Ohno, Akira Yoshioka, Wataru Saito
-
Patent number: 8742506Abstract: With a microwave FET, an incorporated Schottky junction capacitance or PN junction capacitance is small and such a junction is weak against static electricity. However, with a microwave device, the method of connecting a protecting diode cannot be used since this method increases the parasitic capacitance and causes degradation of the high-frequency characteristics. In order to solve the above problems, a protecting element, having a first n+-type region-insulating region-second n+-type region arrangement is connected in parallel between two terminals of a protected element having a PN junction, Schottky junction, or capacitor. Since discharge can be performed between the first and second n+ regions that are adjacent each other, electrostatic energy that would reach the operating region of an FET can be attenuated without increasing the parasitic capacitance.Type: GrantFiled: May 18, 2012Date of Patent: June 3, 2014Assignee: Semiconductor Components Industries, LLCInventors: Tetsuro Asano, Mikito Sakakibara, Toshikazu Hirai
-
Patent number: 8742534Abstract: A semiconductor device having a lateral diode includes a semiconductor layer, a first semiconductor region in the semiconductor layer, a contact region having an impurity concentration greater than that of the first semiconductor region, a second semiconductor region located in the semiconductor layer and separated from the contact region, a first electrode electrically connected through the contact region to the first semiconductor region, and a second electrode electrically connected to the second semiconductor region. The second semiconductor region includes a low impurity concentration portion, a high impurity concentration portion, and an extension portion. The second electrode forms an ohmic contact with the high impurity concentration portion. The extension portion has an impurity concentration greater than that of the low impurity concentration portion and extends in a thickness direction of the semiconductor layer.Type: GrantFiled: August 3, 2011Date of Patent: June 3, 2014Assignee: DENSO CORPORATIONInventors: Takao Yamamoto, Norihito Tokura, Hisato Kato, Akio Nakagawa
-
Patent number: 8716745Abstract: A diode is defined on a die. The diode includes a substrate of P conductivity having an upper surface and a lower surface, the substrate having first and second ends corresponding to first and second edges of the die. An anode contacts the lower surface of the substrate. A layer of N conductivity is provided on the upper surface of the substrate, the layer having an upper surface and a lower surface. A doped region of N conductivity is formed at an upper portion of the layer. A cathode contacts the doped region. A passivation layer is provided on the upper surface of the layer and proximate to the cathode.Type: GrantFiled: May 11, 2006Date of Patent: May 6, 2014Assignee: IXYS CorporationInventor: Subhas Chandra Bose Jayappa Veeramma
-
Publication number: 20140110814Abstract: A trench-isolated RESURF diode structure (100) is provided which includes a substrate (150) in which is formed anode (130, 132) and cathode (131) contact regions separated from one another by a shallow trench isolation region (114, 115), along with a buried cathode extension region (104) formed under a RESURF anode extension region (106, 107) such that the cathode extension region (104) extends beyond the cathode contact (131) to be sandwiched between upper and lower regions (103, 106, 107) of opposite conductivity type.Type: ApplicationFiled: October 19, 2012Publication date: April 24, 2014Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
-
Patent number: 8698194Abstract: A first annular isolation trench is formed in a periphery of an element region, and a second annular isolation trench is formed around the first annular isolation trench with a predetermined distance provided from the first annular isolation trench, and a semiconductor layer between the first annular isolation trench and the second annular isolation trench is separated into a plurality of portions by a plurality of linear isolation trenches formed in the semiconductor layer between the first annular isolation trench and the second annular isolation trench, and the semiconductor layer (source-side isolation region) which opposes a p-type channel layer end portion and is located between the first annular isolation trench and the second annular isolation trench is separated from other semiconductor layers (drain-side isolation regions) by the linear isolation trenches.Type: GrantFiled: July 21, 2011Date of Patent: April 15, 2014Assignee: Hitachi, Ltd.Inventors: Takuo Nagase, Junichi Sakano
-
Patent number: 8686470Abstract: An integrated circuit device provides electrostatic discharge (ESD) protection. In connection with various example embodiments, an ESD protection circuit includes a diode-type circuit having a p-n junction that exhibits a low breakdown voltage. Connected in series with the diode between an internal node susceptible to an ESD pulse and ground, are regions of opposite polarity having junctions therebetween for mitigating the passage of leakage current via voltage sharing with the diode's junction. Upon reaching the breakdown voltage, the diode shunts current to ground via another substrate region, bypassing one or more junctions of the regions of opposite polarity and facilitating a low clamping voltage.Type: GrantFiled: January 7, 2011Date of Patent: April 1, 2014Assignee: NXP, B.V.Inventor: Hans-Martin Ritter
-
Patent number: 8669554Abstract: A fast recovery rectifier structure with the combination of Schottky structure to relieve the minority carriers during the forward bias condition for the further reduction of the reverse recovery time during switching in addition to the lifetime killer such as Pt, Au, and/or irradiation. This fast recovery rectifier uses unpolished substrates and thick impurity diffusion for low cost production. A reduced p-n junction structure with a heavily p-type doped thin film is provided to terminate and shorten the p-n junction space charge region. This reduced p-n junction with less total charge in the p-n junction to further improve the reverse recovery time. This reduced p-n junction can be used alone, with the traditional lifetime killer method, with the Schottky structure and/or with the epitaxial substrate.Type: GrantFiled: January 11, 2012Date of Patent: March 11, 2014Inventor: Ho-Yuan Yu
-
Patent number: 8664699Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.Type: GrantFiled: March 13, 2013Date of Patent: March 4, 2014Assignee: The Board of Trustees of the University of IllinoisInventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
-
Publication number: 20140043096Abstract: Representative implementations of devices and techniques provide a bandgap reference voltage using at least one polysilicon diode and no silicon diodes. The polysilicon diode is comprised of three portions, a lightly doped portion flanked by a more heavily doped portion on each end.Type: ApplicationFiled: August 9, 2012Publication date: February 13, 2014Inventor: Adrian FINNEY
-
Patent number: 8643085Abstract: A high-voltage-resistant semiconductor component (1) has vertically conductive semiconductor areas (17) and a trench structure (5). These vertically conductive semiconductor areas are formed from semiconductor body areas (10) of a first conductivity type and are surrounded by a trench structure (5) on the upper face (6) of the semiconductor component. For this purpose the trench structure has a base (7) and a wall area (8) and is filled with a material (9) with a relatively high dielectric constant (?r). The base area (7) of the trench structure (5) is provided with a heavily doped semiconductor material (11) of the same conductivity type as the lightly doped semiconductor body areas (17), and/or having a metallically conductive material (12).Type: GrantFiled: September 23, 2005Date of Patent: February 4, 2014Assignee: Infineon Technologies AGInventor: Frank Pfirsch
-
Publication number: 20130334648Abstract: High voltage diodes are disclosed. A semiconductor device is provided having a P well region; an N well region adjacent to the P well region and forming a p-n junction with the P well region; a P+ region forming an anode at the upper surface of the semiconductor substrate in the P well region; an N+ region forming a cathode at the upper surface of the semiconductor substrate in the N well region; and an isolation structure formed over the upper surface of the semiconductor substrate between the anode and the cathode and electrically isolating the anode and cathode including a first dielectric layer overlying a portion of the upper surface of the semiconductor substrate, and a second dielectric layer overlying a portion of the first dielectric layer and a portion of the upper surface of the semiconductor substrate. Methods for forming the devices are disclosed.Type: ApplicationFiled: June 15, 2012Publication date: December 19, 2013Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Wan-Yen Lin, Yi-Feng Chang, Jam-Wem Lee
-
Patent number: 8610241Abstract: Diodes and bipolar junction transistors (BJTs) are formed in IC devices that include fin field-effect transistors (FinFETs) by utilizing various process steps in the FinFET formation process. The diode or BJT includes an isolated fin area and fin array area having n-wells having different depths and a p-well in a portion of the fin array area that surrounds the n-well in the isolated fin area. The n-wells and p-well for the diodes and BJTs are implanted together with the FinFET n-wells and p-wells.Type: GrantFiled: June 12, 2012Date of Patent: December 17, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
-
Patent number: 8581242Abstract: The present invention relates to an apparatus combining bypass diode and wire. According to the present invention, the bypass diode can connect with the wire directly. It is not necessary to reserve an extra region on the substrate of the solar cell as the wire soldering area. Thereby, the required area of the ceramic substrate is reduced, and hence lowering the manufacturing cost of the solar cell substantially.Type: GrantFiled: February 21, 2012Date of Patent: November 12, 2013Assignee: Atomic Energy Council—Institute of Nuclear Energy ResearchInventors: Yueh-Mu Lee, Zun-Hao Shih, Hwen-Fen Hong
-
Patent number: 8581367Abstract: A semiconductor device includes a substrate having first main face having rectangular shape, a first electrode provided at the center on first main face of substrate, first electrode is made of conducting material harder than substrate, and a second electrode provided along at least a part of the periphery on first main face so as to surround first electrode, second electrode is integrated with first electrode by the same conducting material as that of the first electrode, and second electrode has a thinner film thickness than that of the first electrode.Type: GrantFiled: September 2, 2008Date of Patent: November 12, 2013Assignee: Rohm Co., Ltd.Inventor: Tadahiro Okazaki
-
Publication number: 20130285208Abstract: A FinFET diode and method of fabrication are disclosed. In one embodiment, the diode comprises, a semiconductor substrate, an insulator layer disposed on the semiconductor substrate, a first silicon layer disposed on the insulator layer, a plurality of fins formed in a diode portion of the first silicon layer. A region of the first silicon layer is disposed adjacent to each of the plurality of fins. A second silicon layer is disposed on the plurality of fins formed in the diode portion of the first silicon layer. A gate ring is disposed on the first silicon layer. The gate ring is arranged in a closed shape, and encloses a portion of the plurality of fins formed in the diode portion of the first silicon layer.Type: ApplicationFiled: April 26, 2012Publication date: October 31, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Theodorus Eduardus Standaert, Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Tenko Yamashita
-
Patent number: 8552530Abstract: A vertical transient voltage suppressor for protecting an electronic device is disclosed. The vertical transient voltage includes a conductivity type substrate having highly doping concentration; a first type lightly doped region is arranged on the conductivity type substrate, wherein the conductivity type substrate and the first type lightly doped region respectively belong to opposite types; a first type heavily doped region and a second type heavily doped region are arranged in the first type lightly doped region, wherein the first and second type heavily doped regions and the conductivity type substrate belong to same types; and a deep first type heavily doped region is arranged on the conductivity type substrate and neighbors the first type lightly doped region, wherein the deep first type heavily doped region and the first type lightly doped region respectively belong to opposite types, and wherein the deep first type heavily doped region is coupled to the first type heavily doped region.Type: GrantFiled: August 2, 2010Date of Patent: October 8, 2013Assignee: Amazing Microelectronics Corp.Inventors: Kun-Hsien Lin, Zi-Ping Chen, Che-Hao Chuang, Ryan Hsin-Chin Jiang
-
Publication number: 20130241056Abstract: A well-through type diode element/component manufacturing method which has a pair (pairs) of first and said second electrodes of a diode element/component built on same plane by a process of metallization after a mode of well-through type to penetrate a PN junction depletion region/barrier region, and leads electrons of one of the electrodes to flow through the Depletion/Barrier region without hindrance; the present invention directly conduct the operations of insulation protecting, metallization and the process of elongate welding ball etc., it can independently complete a novel technique of Chip-Scale Package (CSP); it has the features of: grains being exactly the article produced, no need of connecting lines, low energy consumption, low cost and light, thin and small etc.Type: ApplicationFiled: March 13, 2012Publication date: September 19, 2013Applicant: FORMOSA MICROSEMI CO., Ltd.Inventors: Wen-Ping HUANG, Wen-Hu Wu, His-Piao Lai, Chien-Wu Chen
-
Patent number: 8531005Abstract: Electrostatic discharge (ESD) protection clamps for I/O terminals of integrated circuit (IC) cores comprise a bipolar transistor with an integrated Zener diode coupled between the base and collector of the transistor. Variations in clamp voltage in different parts of the same IC chip or wafer caused by conventional deep implant geometric mask shadowing are avoided by using shallow implants and forming the base coupled anode and collector coupled cathode of the Zener using opposed edges of a single relatively thin mask. The anode and cathode are self-aligned, and the width of the Zener space charge region between them is defined by the opposed edges substantially independent of location and orientation of the ESD clamps on the die or wafer. Because the mask is relatively thin and the anode and cathode implants relatively shallow, mask shadowing is negligible and prior art clamp voltage variations are avoided.Type: GrantFiled: August 24, 2012Date of Patent: September 10, 2013Assignee: Freescale Semiconductor, Inc.Inventors: James D. Whitfield, Changsoo Hong
-
Publication number: 20130187238Abstract: According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a first conductivity type, a third semiconductor layer of a second conductivity type, an isolation layer, and a guard ring layer of the second conductivity type. The second semiconductor layer is provided on the first semiconductor layer. The third semiconductor layer is provided on the second semiconductor layer to be joined to the second semiconductor layer. The isolation layer surrounds a periphery of the third semiconductor layer and is deeper than the third semiconductor layer. The guard ring layer is provided between the third semiconductor layer and the isolation layer, adjacent to the third semiconductor layer, and deeper than the third semiconductor layer.Type: ApplicationFiled: June 11, 2012Publication date: July 25, 2013Applicant: Kabushiki Kaisha ToshibaInventors: Koji Shirai, Mariko Shimizu
-
Patent number: 8476736Abstract: A diode includes an anode of a first conductivity type; a first cathode of the first conductivity type; and a second cathode of a second conductivity type opposite the first conductivity type. A lightly-doped region of the first conductivity type is under and vertically overlaps the anode and the first and the second cathodes. The portion of the lightly-doped region directly under the second cathode is fully depleted at a state when no bias voltage is applied between the anode and the second cathode.Type: GrantFiled: February 18, 2011Date of Patent: July 2, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jam-Wem Lee, Yi-Feng Chang
-
Patent number: 8476721Abstract: A transistor device includes a magnetic field source adapted to deflect a flow of free electron carriers within a channel of the device, between a source region and a drain region thereof. According to preferred configurations, the magnetic field source includes a magnetic material layer extending over a side of the channel that is opposite a gate electrode of the transistor device.Type: GrantFiled: April 18, 2011Date of Patent: July 2, 2013Assignee: Seagate Technology LLCInventors: Yang Li, Insik Jin, Harry Liu, Song S. Xue, Shuiyuan Huang, Michael X. Tang
-
Patent number: 8436337Abstract: An electronic structure comprising: (a) a first metal layer; (b) a second metal layer; (c) and at least one insulator layer located between the first metal layer and the second metal layer, wherein at least one of the metal layers comprises an amorphous multi-component metallic film. In certain embodiments, the construct is a metal-insulator-metal (MIM) diode.Type: GrantFiled: May 10, 2010Date of Patent: May 7, 2013Assignee: The State of Oregon Acting By and Through The State Board of Higher Education on Behalf of Oregon State UnitiversityInventors: E. William Cowell, III, John F. Wager, Brady J. Gibbons, Douglas A. Keszler
-
Publication number: 20130093038Abstract: An embodiment is a semiconductor structure. The semiconductor structure comprises a p-type region in a substrate; a first n-type well in the p-type region; a first p-type well in the p-type region; and a second p-type well in the first p-type well. A concentration of a p-type impurity in the first p-type well is less than a concentration of a p-type impurity in the second p-type well. Additional embodiments further comprise further n-type and p-type wells in the substrate. A method for forming a semiconductor structure is also disclosed.Type: ApplicationFiled: October 12, 2011Publication date: April 18, 2013Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jam-Wem Lee, Yi-Feng Chang
-
Patent number: 8421087Abstract: A semiconductor module having one or more silicon carbide diode elements mounted on a switching element is provided in which the temperature rise is reduced by properly disposing each of the diode elements on the switching element, to thereby provide a thermal dissipation path for the respective diode elements. The respective diode elements are arranged on a non-central portion of the switching element, to facilitate dissipation of the heat produced by each of the diode elements, whereby the temperature rise in the semiconductor module is reduced.Type: GrantFiled: December 6, 2011Date of Patent: April 16, 2013Assignee: Mitsubishi Electric CorporationInventors: Kiyoshi Arai, Gourab Majumdar
-
Patent number: 8415773Abstract: A semiconductor component having at least one pn junction and an associated production method. The semiconductor component has a layer sequence of a first zone having a first dopant. The first zone faces a first main area. Adjacent to the first zone are a second zone having a low concentration of a second dopant, a subsequent buffer layer, the third zone, also having the second dopant and a subsequent fourth zone having a high concentration of the second dopant. The fourth zone faces a second main area. In this case, the concentration of the second doping of the buffer layer is higher at the first interface of the barrier layer with the second zone than at the second interface with the fourth zone. According to the invention, the buffer layer is produced by ion implantation.Type: GrantFiled: June 20, 2008Date of Patent: April 9, 2013Assignee: Semikron Elektronik GmbH & Co., KGInventor: Bernhard Koenig
-
Publication number: 20130075877Abstract: A semiconductor device with a lateral element includes a semiconductor substrate, first and second electrodes on the substrate, and a resistive field plate extending from the first electrode to the second electrode. The lateral element passes a current between the first and second electrodes. A voltage applied to the second electrode is less than a voltage applied to the first electrode. The resistive field plate has a first end portion and a second end portion opposite to the first end portion. The second end portion is located closer to the second electrode than the first end portion. An impurity concentration in the second end portion is equal to or greater than 1×1018 cm?3.Type: ApplicationFiled: September 14, 2012Publication date: March 28, 2013Applicant: DENSO CORPORATIONInventors: Takeshi SAKAI, Akira Yamada, Shigeki Takahashi, Youichi Ashida, Satoshi Shiraki
-
Publication number: 20130056731Abstract: A semiconductor device includes a semiconductor diode. The semiconductor diode includes a drift region and a first semiconductor region of a first conductivity type formed in or on the drift region. The first semiconductor region is electrically coupled to a first terminal via a first surface of a semiconductor body. The semiconductor diode includes a channel region of a second conductivity type electrically coupled to the first terminal, wherein a bottom of the channel region adjoins the first semiconductor region. A first side of the channel region adjoins the first semiconductor region.Type: ApplicationFiled: September 7, 2011Publication date: March 7, 2013Applicant: INFINEON TECHNOLOGIES AGInventors: Anton Mauder, Franz Hirler, Hans Peter Felsl, Hans-Joachim Schulze
-
Patent number: 8384186Abstract: A power semiconductor device, such as a power diode, and a method for producing such a device, are disclosed. The device includes a first layer of a first conductivity type, a second layer of a second conductivity type arranged in a central region on a first main side of the first layer, a third electrically conductive layer arranged on the second layer, and a fourth electrically conductive layer arranged on the first layer at a second main side opposite to the first main side. A junction termination region surrounds the second layer with self-contained sub-regions of the second conductivity type. A spacer region is arranged between the second layer and the junction termination region and includes a self-contained spacer sub-region of the second conductivity type which is electrically disconnected from the second layer.Type: GrantFiled: December 17, 2010Date of Patent: February 26, 2013Assignee: ABB Technology AGInventors: Sven Matthias, Arnost Kopta
-
Patent number: 8378382Abstract: A semiconductor device having high-aspect-ratio PN-junctions is provided. The semiconductor device includes a conducting layer. The semiconductor device further includes a plurality of first doped regions formed over the conducting layer. The sidewalls of the doped regions are doped to form PN-junctions. The semiconductor device also includes a plurality of second doped regions over the first doped regions.Type: GrantFiled: December 30, 2004Date of Patent: February 19, 2013Assignee: Macronix International Co., Ltd.Inventors: Chao-I Wu, Ming Hsiu Lee
-
Patent number: 8377757Abstract: A transient voltage suppressor (TVS) device includes a semiconductor substrate of a first conductivity type, and a first and a second semiconductor regions of a second conductivity type overlying the semiconductor substrate. A semiconductor layer of the second conductivity type overlies the first and the second semiconductor regions. The TVS device has a first trench extending through the semiconductor layer and the first semiconductor region and into the semiconductor substrate, and a fill material of the second conductivity type disposed in the first trench. A clamping diode in the TVS device has a junction between an out-diffused region from the fill material and a portion of the semiconductor substrate. The TVS device also includes a first P-N diode formed in a first portion of the semiconductor layer, and a second P-N diode having a junction between the second semiconductor region and the semiconductor substrate.Type: GrantFiled: April 30, 2010Date of Patent: February 19, 2013Assignee: Shanghai SIM-BCD Semiconductor Manufacturing LimitedInventors: Francis Edward Hawe, Jinsui Liang, Xiaoqiang Cheng, Xianfeng Liu
-
Publication number: 20130039116Abstract: A bit cell of the PROM-device comprises a carbon nanotube having a tilted portion comprising a free end and a fixed portion which is to the reference node. The carbon nanotube comprises a structural defect between the fixed and the tilted portion which causes the carbon nanotube to tilt such that the free end is electrically connected to either the storage electrode or an opposite release electrode.Type: ApplicationFiled: July 24, 2012Publication date: February 14, 2013Inventors: Holger Kropp, Meinolf Blawat
-
Publication number: 20130037852Abstract: Super-junction MOSFETs by trench fill system requires void-free filling epitaxial growth. This may require alignment of plane orientations of trenches in a given direction. Particularly, when column layout at chip corner part is bilaterally asymmetrical with a diagonal line between chip corners, equipotential lines in a blocking state are curved at corner parts due to column asymmetry at chip corner. This tends to cause points where equipotential lines become dense, which may cause breakdown voltage reduction. In the present invention, in power type semiconductor active elements such as power MOSFETs, a ring-shaped field plate is disposed in chip peripheral regions around an active cell region, etc., assuming a nearly rectangular shape. The field plate has an ohmic-contact part in at least a part of the portion along the side of the rectangle. However, in the portion corresponding to the corner part of the rectangle, an ohmic-contact part is not disposed.Type: ApplicationFiled: July 13, 2012Publication date: February 14, 2013Applicant: RENESAS ELECTRONICS CORPORATIONInventor: Tomohiro TAMAKI
-
Patent number: 8373253Abstract: A semiconductor structure. The semiconductor comprises a substrate, a first deep well, a diode and a transistor. The first deep well is formed in the substrate. The diode is formed in the first deep well. The transistor is formed in the first deep well. The diode is connected to a first voltage, the transistor is connected to a second voltage, and the diode and the transistor are cascaded.Type: GrantFiled: September 3, 2010Date of Patent: February 12, 2013Assignee: System General Corp.Inventors: Han-Chung Tai, Hsin-Chih Chiang
-
Patent number: 8368178Abstract: A phase change memory apparatus is provided that includes a first electrode that is longer than it is wide, the first electrode having a trench formed on an active region of a semiconductor substrate, a second electrode formed in a bottom portion of the trench, and a bottom electrode contact formed on the second electrode.Type: GrantFiled: December 28, 2009Date of Patent: February 5, 2013Assignee: SK Hynix Inc.Inventor: Jang Uk Lee
-
Patent number: 8350289Abstract: A semiconductor device includes: a first semiconductor layer; a first electrode provided on a first surface side of the first semiconductor layer; a first insulating layer; and a second semiconductor layer. The first insulating layer is provided between the first semiconductor layer and the first electrode and configured to constrict current flowing between the first semiconductor layer and the first electrode. The second semiconductor layer has a first conductivity type and is provided at least on a path of the current constricted by the first insulating layer. The second semiconductor layer is in contact with the first electrode. The second semiconductor layer contains first impurities at a concentration higher than a concentration of impurities contained in the first semiconductor layer.Type: GrantFiled: August 21, 2009Date of Patent: January 8, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Masanori Tsukuda
-
Publication number: 20120319299Abstract: A semiconductor diode has a first semiconductor layer (102) of a first conductivity type and a second semiconductor layer of a second conductivity type having a doping. The second semiconductor layer has a vertical electrical via region (106) which is connected to the first semiconductor layer and in which the doping is modified in such a way that the electrical via region (106) has the first conductivity type. A method for producing such a semiconductor diode is described.Type: ApplicationFiled: February 10, 2011Publication date: December 20, 2012Inventors: Tony Albrecht, Markus Maute, Martin Reufer, Heribert Zull