Hi-lo Semiconductor Device (e.g., Memory Device) (epo) Patents (Class 257/E29.33)
-
Patent number: 8912523Abstract: A non-volatile memory device structure. The device structure includes a first electrode, a second electrode, a resistive switching material comprising an amorphous silicon material overlying the first electrode, and a thickness of dielectric material having a thickness ranging from 5 nm to 10 nm disposed between the second electrode and the resistive switching layer. The thickness of dielectric material is configured to electrically breakdown in a region upon application of an electroforming voltage to the second electrode. The electrical breakdown allows for a metal region having a dimension of less than about 10 nm by 10 nm to form in a portion of the resistive switching material.Type: GrantFiled: April 25, 2013Date of Patent: December 16, 2014Assignee: Crossbar, Inc.Inventor: Sung Hyun Jo
-
Patent number: 8723248Abstract: In one embodiment, there is provided a nonvolatile semiconductor storage device. The device includes: a plurality of nonvolatile memory cells. Each of the nonvolatile memory cells includes: a first semiconductor layer including a first source region, a first drain region, and a first channel region; a block insulating film formed on the first channel region; a charge storage layer formed on the block insulating film; a tunnel insulating film formed on the charge storage layer; a second semiconductor layer formed on the tunnel insulating film and including a second source region, a second drain region, and a second channel region. The second channel region is formed on the tunnel insulating film such that the tunnel insulating film is located between the second source region and the second drain region. A dopant impurity concentration of the first channel region is higher than that of the second channel region.Type: GrantFiled: February 24, 2012Date of Patent: May 13, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Naoki Yasuda, Jun Fujiki
-
Patent number: 8581280Abstract: An optoelectronic semiconductor chip (1) having a semiconductor layer sequence (2), which comprises an active region (3) suitable for generating radiation and has a lateral main extension direction. The semiconductor layer sequence is arranged by a substrate (4) having a side surface (17), the side surface has a side surface region (18) that is beveled with respect to the main extension direction, and/or a cutout (21), and the semiconductor chip has a radiation-transmissive and electrically conductive contact layer (5).Type: GrantFiled: December 20, 2006Date of Patent: November 12, 2013Assignee: OSRAM Opto Semiconductors GmbHInventors: Michael Fehrer, Uwe Strauss
-
Patent number: 8468692Abstract: A variable resistance memory device has memory cells that are operated by Joule's heat and which are highly thermally efficient. Conductive patterns are formed on a substrate; sacrificial patterns exposing a portion of the top surface of each of the conductive patterns are formed on the conductive patterns, lower electrodes are formed by etching upper portions of the conductive patterns using the sacrificial patterns as an etching mask, then mold patterns are formed on the lower electrodes and cover exposed sidewall surfaces of the sacrificial patterns, and then the sacrificial patterns are replaced with variable resistance patterns.Type: GrantFiled: October 4, 2011Date of Patent: June 25, 2013Assignee: Samsung Electronics Co., Ltd.Inventor: Byeung Chul Kim
-
Patent number: 8390066Abstract: According to an embodiment, a semiconductor memory device capable of stably operating even when an element is shrunk is provided. The semiconductor memory device of the embodiment includes: first and second diodes serially connected between power sources of two different potentials, formed by nanowires, and exhibiting negative differential resistances; and a select transistor connected between the first diode and the second diode. The nanowires are preferably silicon nanowires. The thickness of the silicon nanowires is preferably 8 nm or less.Type: GrantFiled: September 14, 2010Date of Patent: March 5, 2013Assignee: Kabushiki Kaisha ToshibaInventors: Hideyuki Nishizawa, Satoshi Itoh
-
Patent number: 8344346Abstract: A semiconductor memory device includes a plurality of word lines vertically formed on a surface of a semiconductor substrate, where each pair of the plurality of word lines form a set of word lines, a bit line formed parallel to the surface of the semiconductor substrate and disposed in plurality stacked between the word lines of each pair constituting the one set of word lines, and unit memory cells disposed between respective ones of the bit lines and an adjacent one of the pair of word lines of said one of the word line sets.Type: GrantFiled: March 28, 2011Date of Patent: January 1, 2013Assignee: Hynix Semiconductor Inc.Inventors: Seung Beom Baek, Ja Chun Ku, Young Ho Lee, Jin Hyock Kim
-
Patent number: 8314023Abstract: Methods involve using a memory array having memory cells comprising a diode and an antifuse, in which the antifuse is made smaller and programmed at lower voltage by using an antifuse material having a higher dielectric constant and a higher acceleration factor than those of silicon dioxide, and in which the diode is made of a material having a lower band gap than that of silicon. Such memory arrays can be made to have long operating lifetimes by using the high acceleration factor and lower band gap materials. Antifuse materials having dielectric constants between 5 and 27, for example, hafnium silicon oxynitride or hafnium silicon oxide, are particularly effective. Diode materials with band gaps lower than that of silicon, such as germanium or a silicon-germanium alloy, are particularly effective.Type: GrantFiled: February 6, 2009Date of Patent: November 20, 2012Assignee: SanDisk 3D LLCInventors: Xiaoyu Yang, Roy E. Scheuerlein, Feng Li, Albert T. Meeks
-
Patent number: 8288751Abstract: A semiconductor memory device includes a plurality of memory cell arrays each includes a plurality of memory cells, the plurality of memory cell arrays being stacked on a semiconductor substrate to form a three-dimensional structure, a first well formed in the semiconductor substrate and having a first conductivity type, an element isolation insulating film including a bottom surface shallower than a bottom surface of the first well in the first well, and buried in the semiconductor substrate, a second well including a bottom surface shallower than the bottom surface of the first well in the first well, formed along a bottom surface of at least a portion of the element isolation insulating film, and made of an impurity having a second conductivity type, and a contact line electrically connected to the first well.Type: GrantFiled: April 13, 2010Date of Patent: October 16, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Mitsuhiko Noda, Mitsuhiro Noguchi, Hiroomi Nakajima, Masato Endo
-
Patent number: 8212232Abstract: A resistance changing device includes a resistive layer of a hetero structure interposed between a lower electrode and an upper electrode, and including a plurality of resistive material layers, each having a different resistivity, stacked therein, wherein resistivities of the resistive material layers decrease from the lower electrode toward the upper electrode. Since the resistive layer has a hetero structure in which a plurality of resistive material layers, each having a different resistivity, are stacked in such a manner that the resistivity decreases as it goes from the lower electrode to the upper electrode, it is possible to improve the distributions of the set/reset voltage and the set/reset current, while reducing a reset current of a resistance changing device at the same time.Type: GrantFiled: February 1, 2010Date of Patent: July 3, 2012Assignee: Hynix Semiconductor Inc.Inventor: Yu-Jin Lee
-
Patent number: 8212282Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.Type: GrantFiled: September 24, 2010Date of Patent: July 3, 2012Assignee: Ricoh Company, Ltd.Inventors: Masaya Ohtsuka, Yoshinori Ueda
-
High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
Patent number: 8212327Abstract: The present disclosure provides systems and methods for configuring and constructing a single photo detector or array of photo detectors with all fabrications circuitry on a single side of the device. Both the anode and the cathode contacts of the diode are placed on a single side, while a layer of laser treated semiconductor is placed on the opposite side for enhanced cost-effectiveness, photon detection, and fill factor.Type: GrantFiled: August 9, 2010Date of Patent: July 3, 2012Assignee: SiOnyx, Inc.Inventors: Neal T. Kurfiss, James E. Carey, Xia Li -
Patent number: 8174062Abstract: A semiconductor memory device includes: a semiconductor substrate; a first impurity region; a second impurity region; a channel region; a first gate formed on a main surface on a side of the first impurity region; a second gate formed on the main surface on a side of the second impurity region, with a second insulating film being interposed; and a third insulating film formed on a side surface of the first gate. An interface between the third insulating film and the semiconductor substrate directly under the third insulating film is located above an interface between the second insulating film and the main surface of the semiconductor substrate directly under the second insulating film. The total number of steps can thus be reduced, and lower cost is achieved.Type: GrantFiled: July 16, 2009Date of Patent: May 8, 2012Assignee: Renesas Electronics CorporationInventor: Motoi Ashida
-
Patent number: 7932543Abstract: Provided are a wire structure and a semiconductor device having the wire structure. The wire structure includes a first wire that has a first region having a width of several to tens of nanometers and a second region having a width wider than that of the first region.Type: GrantFiled: December 27, 2007Date of Patent: April 26, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-jun Choi, Jung-hyun Lee, Hyung-jin Bae, Chang-soo Lee
-
Patent number: 7888200Abstract: In some aspects, a method of forming a memory circuit is provided that includes (1) forming a two-terminal memory element on a substrate between a gate layer and a first metal layer of the memory circuit; and (2) forming a CMOS transistor on the substrate, the CMOS transistor for programming the two-terminal memory element. Numerous other aspects are provided.Type: GrantFiled: January 31, 2007Date of Patent: February 15, 2011Assignee: Sandisk 3D LLCInventor: Christopher J. Petti
-
Patent number: 7863655Abstract: A self aligning memory device, with a memory element switchable between electrical property states by the application of energy, includes a substrate and word lines, at least the sides of the word lines covered with a dielectric material which defines gaps. An access device within a substrate has a first terminal under a second gap and second terminals under first and third gaps. First and second source lines are in the first and third gaps and are electrically connected to the second terminals. A first electrode in the second gap is electrically connected to the first terminal. A memory element in the second gap is positioned over and electrically connected to the first electrode. A second electrode is positioned over and contacts the memory element. The first contact, the first electrode, the memory element and the second electrode are self aligning. A portion of the memory element may have a sub lithographically dimensioned width.Type: GrantFiled: October 24, 2006Date of Patent: January 4, 2011Assignee: Macronix International Co., Ltd.Inventor: Hsiang-Lan Lung
-
Patent number: 7851778Abstract: The present invention relates to a non-volatile electrical phase change memory device comprising a substrate, a first interlayer dielectric film deposited on the substrate, a bottom electrode layer formed on the first dielectric layer, a second interlayer dielectric film formed on the bottom electrode layer, a phase change material layer deposited on the second interlayer dielectric film, and a top electrode layer formed on said phase change material layer, the bottom electrode layer being brought into contact with the phase change material layer through a contact hole which is formed in the second interlayer dielectric film and filled with the phase change material or bottom electrode material, so that the phase change layer and the bottom electrode layer come into close contact with each other, wherein an interfacial control layer is formed at the interface of the contact hole between the phase change layer and the bottom electrode layer, said interfacial control layer having strong chemical bonds with theType: GrantFiled: May 24, 2007Date of Patent: December 14, 2010Assignees: Korea Institute of Science and Technology, Seoul National University Industry FoundationInventors: Dae-Hwan Kang, In-Ho Kim, Byung Ki Cheong, Jeung-Hyun Jeong, Taek Sung Lee, Won Mok Kim, Ki-Bum Kim
-
Patent number: 7842967Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.Type: GrantFiled: June 8, 2007Date of Patent: November 30, 2010Assignee: Ricoh Company, Ltd.Inventors: Masaya Ohtsuka, Yoshinori Ueda
-
Patent number: 7807995Abstract: A nonvolatile semiconductor memory apparatus 25 comprises a semiconductor substrate 11, a lower-layer wire 12 formed on the semiconductor substrate 11, an upper-layer wire 20 formed above the lower-layer wire 12 to cross the lower-layer wire 12, an interlayer insulating film 13 provided between the lower-layer wire 12 and the upper-layer wire 20, and a resistance variable layer 15 which is embedded in a contact hole 14 formed in the interlayer insulating film 13 and is electrically connected to the lower-layer wire 12 and the upper-layer wire 20. The upper-layer wire 20 includes at least two layers which are a lowermost layer 21 made of an electrically-conductive material having a hydrogen barrier property and an electric conductor layer 22 having a specific resistance which is lower than a specific resistance of the lowermost layer 21.Type: GrantFiled: July 18, 2007Date of Patent: October 5, 2010Assignee: Panasonic CorporationInventors: Takumi Mikawa, Takesi Takagi
-
Patent number: 7781805Abstract: A memory array having memory cells comprising a diode and an antifuse can be made smaller and programmed at lower voltage by using an antifuse material having a higher dielectric constant and a higher acceleration factor than those of silicon dioxide, and by using a diode having a lower band gap than that of silicon. Such memory arrays can be made to have long operating lifetimes by using the high acceleration factor and lower band gap materials. Antifuse materials having dielectric constants between 5 and 27, for example, hafnium silicon oxynitride or hafnium silicon oxide, are particularly effective. Diode materials with band gaps lower than that of silicon, such as germanium or a silicon-germanium alloy, are particularly effective.Type: GrantFiled: February 6, 2009Date of Patent: August 24, 2010Assignee: SanDisk 3D LLCInventors: Xiaoyu Yang, Roy E. Scheurelein, Feng Li, Albert T. Meeks
-
Patent number: 7696043Abstract: A method of manufacturing a flash memory device includes the steps of forming trenches by forming a tunnel oxide layer and a conductive layer for a floating gate over a semiconductor substrate, and then etching a portion of the conductive layer, the tunnel oxide layer and the semiconductor substrate to form the trenches, filling the trenches with an insulating layer to form isolation layers projecting above the floating gate, forming spacers on sidewalls of the isolation layers projecting above the floating gate, etching the conductive layer using the spacers as a mask, thereby forming a U-shaped conductive layer, removing the spacers, etching the top surface of the isolation layers, thereby controlling an Effective Field Height (EFH) of the isolation layer, and forming a dielectric layer and a conductive layer for a control gate on the resulting surface.Type: GrantFiled: June 26, 2007Date of Patent: April 13, 2010Assignee: Hynix Semiconductor Inc.Inventor: Byoung Ki Lee
-
Patent number: 7687847Abstract: A method of fabricating a semiconductor device is described. A substrate having a memory cell region and a high voltage circuit region are provided. First and second source/drain regions are formed in the substrate within these two regions. A silicon oxide layer, a first conductive layer and a top layer are sequentially formed over the substrate. A floating gate is defined in the memory cell region and the top layer and the first conductive layer of the high voltage circuit region are removed. The exposed silicon oxide layer is thickened. Thereafter, the top layer is removed and then a barrier layer is formed on the exposed surface of the floating gate. A second conductor layer is formed over the substrate, and then a gate is defined in the high voltage circuit region and a control gate is defined in the memory cell region.Type: GrantFiled: April 19, 2007Date of Patent: March 30, 2010Assignee: United Microelectronics Corp.Inventors: Wen-Fang Lee, Dave Hsu, Asam Lin
-
Patent number: 7349248Abstract: A non-volatile memory cell includes an upper electrode; a lower electrode and a state-variable region, in which a conductive state changes only once. The state variable region is formed in a region between the upper electrode and the lower electrode. The state-variable region comprises a first semiconductor layer of a first conductive type; and second semiconductor layers of a second conductive type, opposing to the first conductive type, which are formed on upper and lower surfaces of the first semiconductor layer via PN junctions.Type: GrantFiled: January 24, 2007Date of Patent: March 25, 2008Assignee: Oki Electric Industry Co., Ltd.Inventors: Yoshiyuki Kawazu, Hiroyuki Tanaka
-
Publication number: 20080023790Abstract: A mixed-use memory array is disclosed. In one preferred embodiment, a memory array is provided comprising a first set of memory cells operating as one-time programmable memory cells and a second set of memory cells operating as rewritable memory cells. In another preferred embodiment, a memory array is provided comprising a first set of memory cells operating as memory cells that are programmed with a forward bias and a second set of memory cells operating as memory cells that are programmed with a reverse bias.Type: ApplicationFiled: July 31, 2006Publication date: January 31, 2008Inventor: Roy E. Scheuerlein
-
Patent number: 7307280Abstract: The present memory device includes first and second electrodes, an active layer; and a passive layer, the active and passive layers being between the first and second electrodes, with at least one of the active layer and passive layer being a doped a sol-gel.Type: GrantFiled: September 16, 2005Date of Patent: December 11, 2007Assignee: Spansion LLCInventors: Xiaobo Shi, Richard Kingsborough