Punchthrough Diode (i.e., With Bulk Potential Barrier (e.g., Camel Diode, Planar Doped Barrier Diode, Graded Bandgap Diode)) (epo) Patents (Class 257/E29.332)
-
Patent number: 8836034Abstract: A protection circuit used for a semiconductor device is made to effectively function and the semiconductor device is prevented from being damaged by a surge. A semiconductor device includes a terminal electrode, a protection circuit, an integrated circuit, and a wiring electrically connecting the terminal electrode, the protection circuit, and the integrated circuit. The protection circuit is provided between the terminal electrode and the integrated circuit. The terminal electrode, the protection circuit, and the integrated circuit are connected to one another without causing the wiring to branch. It is possible to reduce the damage to the semiconductor device caused by electrostatic discharge. It is also possible to reduce faults in the semiconductor device.Type: GrantFiled: June 17, 2010Date of Patent: September 16, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Atsushi Hirose, Hideaki Shishido
-
Patent number: 8592859Abstract: Example methods and apparatus for Antimonide-based backward diode millimeter-wave detectors are disclosed. A disclosed example backward diode includes a cathode layer adjacent to a first side of a non-uniform doping profile, and an Antimonide tunnel barrier layer adjacent to a second side of the spacer layer.Type: GrantFiled: May 27, 2009Date of Patent: November 26, 2013Assignee: University of Notre Dame du LacInventors: Patrick Fay, Ning Su
-
Patent number: 8557654Abstract: A punch-through diode and method of fabricating the same are disclosed herein. The punch-through diode may be used as a steering element in a memory device having a reversible resistivity-switching element. For example, a memory cell may include a reversible resistivity-switching element in series with a punch-through diode. The punch-through diode allows bipolar operation of a cross-point memory array. The punch-through diode may have a symmetrical non-linear current/voltage relationship. The punch-through diode has a high current at high bias for selected cells and a low leakage current at low bias for unselected cells. In other words, the ratio of Ion/Ioff is high. Therefore, the punch-through diode is compatible with bipolar switching in cross-point memory arrays having resistive switching elements.Type: GrantFiled: December 13, 2010Date of Patent: October 15, 2013Assignee: SanDisk 3D LLCInventors: Peter Rabkin, Andrei Mihnea
-
Patent number: 8525302Abstract: A bipolar diode is provided having a drift layer of a first conductivity type on a cathode side and an anode layer of a second conductivity type on an anode side. The anode layer includes a diffused anode contact layer and a double diffused anode buffer layer. The anode contact layer is arranged up to a depth of at most 5 ?m, and the anode buffer layer is arranged up to a depth of 18 to 25 ?m. The anode buffer layer has a doping concentration between 8.0*1015 and 2.0*1016 cm?3 in a depth of 5 ?m and between 1.0*1014 up to 5.0*1014 cm?3 in a depth of 15 ?m (Split C and D), resulting in good softness of the device and low leakage current. Split A and B show anode layer doping concentrations of known diodes, which have either over all depths lower doping concentrations resulting in high leakage current or enhanced doping concentration resulting in bad softness.Type: GrantFiled: June 14, 2012Date of Patent: September 3, 2013Assignee: ABB Technology AGInventor: Sven Matthias
-
Publication number: 20120319227Abstract: A bipolar diode is provided having a drift layer of a first conductivity type on a cathode side and an anode layer of a second conductivity type on an anode side. The anode layer includes a diffused anode contact layer and a double diffused anode buffer layer. The anode contact layer is arranged up to a depth of at most 5 ?m, and the anode buffer layer is arranged up to a depth of 18 to 25 ?m. The anode buffer layer has a doping concentration between 8.0*1015 and 2.0*1016 cm?3 in a depth of 5 ?m and between 1.0*1014 up to 5.0*1014 cm?3 in a depth of 15 ?m (Split C and D), resulting in good softness of the device and low leakage current. Split A and B show anode layer doping concentrations of known diodes, which have either over all depths lower doping concentrations resulting in high leakage current or enhanced doping concentration resulting in bad softness.Type: ApplicationFiled: June 14, 2012Publication date: December 20, 2012Applicant: ABB Technology AGInventor: Sven MATTHIAS
-
Patent number: 8334550Abstract: A unipolar diode with low turn-on voltage includes a subcathode semiconductor layer, a low-doped, wide bandgap cathode semiconductor layer, and a high-doped, narrow bandgap anode semiconductor layer. A junction between the cathode layer and the anode layer creates an electron barrier in the conduction band, with the barrier configured to produce a low turn-on voltage for the diode. A unipolar diode with low turn-on voltage includes an n+ subcathode semiconductor layer, a low-doped, wide bandgap cathode semiconductor layer, and an n+ narrow bandgap anode semiconductor layer. Again, a junction between the cathode layer and the anode layer creates an electron barrier in the conduction band, with the barrier configured to produce a low turn-on voltage for the diode.Type: GrantFiled: June 9, 2011Date of Patent: December 18, 2012Assignee: Northrop Grumman Systems CorporationInventors: Donald J. Sawdai, Kwok K. Loi, Vesna Radisic
-
High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
Patent number: 8212327Abstract: The present disclosure provides systems and methods for configuring and constructing a single photo detector or array of photo detectors with all fabrications circuitry on a single side of the device. Both the anode and the cathode contacts of the diode are placed on a single side, while a layer of laser treated semiconductor is placed on the opposite side for enhanced cost-effectiveness, photon detection, and fill factor.Type: GrantFiled: August 9, 2010Date of Patent: July 3, 2012Assignee: SiOnyx, Inc.Inventors: Neal T. Kurfiss, James E. Carey, Xia Li -
Patent number: 8212282Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.Type: GrantFiled: September 24, 2010Date of Patent: July 3, 2012Assignee: Ricoh Company, Ltd.Inventors: Masaya Ohtsuka, Yoshinori Ueda
-
Publication number: 20120145984Abstract: A punch-through diode and method of fabricating the same are disclosed herein. The punch-through diode may be used as a steering element in a memory device having a reversible resistivity-switching element. For example, a memory cell may include a reversible resistivity-switching element in series with a punch-through diode. The punch-through diode allows bipolar operation of a cross-point memory array. The punch-through diode may have a symmetrical non-linear current/voltage relationship. The punch-through diode has a high current at high bias for selected cells and a low leakage current at low bias for unselected cells. In other words, the ratio of Ion/Ioff is high. Therefore, the punch-through diode is compatible with bipolar switching in cross-point memory arrays having resistive switching elements.Type: ApplicationFiled: December 13, 2010Publication date: June 14, 2012Inventors: Peter Rabkin, Andrei Mihnea
-
Publication number: 20110278694Abstract: A bipolar punch-through semiconductor device has a semiconductor substrate, which includes at least a two-layer structure, a first main side with a first electrical contact, and a second main side with a second electrical contact. One of the layers in the two-layer structure is a base layer of the first conductivity type. A buffer layer of the first conductivity type is arranged on the base layer. A first layer includes alternating first regions of the first conductivity type and second regions of the second conductivity type. The first layer is arranged between the buffer layer and the second electrical contact. The second regions are activated regions with a depth of at maximum 2 ?m and a doping profile, which drops from 90% to 10% of the maximum doping concentration within at most 1 ?m.Type: ApplicationFiled: June 15, 2011Publication date: November 17, 2011Applicant: ABB Technology AGInventors: Munaf RAHIMO, Ulrich Schlapbach, Arnost Kopta
-
Publication number: 20110089391Abstract: A storage system and method for forming a storage system that uses punch-through diodes as a steering element in series with a reversible resistivity-switching element is described. The punch-through diode allows bipolar operation of a cross-point memory array. The punch-through diode may have a symmetrical non-linear current/voltage relationship. The punch-through diode has a high current at high bias for selected cells and a low leakage current at low bias for unselected cells. Therefore, it is compatible with bipolar switching in cross-point memory arrays having resistive switching elements. The punch-through diode may be a N+/P?/N+ device or a P+/N?/P+ device.Type: ApplicationFiled: October 20, 2009Publication date: April 21, 2011Inventors: Andrei Mihnea, Deepak C. Sekar, George Samachisa, Roy Scheuerlein, Li Xiao
-
Patent number: 7842967Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.Type: GrantFiled: June 8, 2007Date of Patent: November 30, 2010Assignee: Ricoh Company, Ltd.Inventors: Masaya Ohtsuka, Yoshinori Ueda
-
Patent number: 7728404Abstract: A semiconductor device includes a substrate of a first conductivity type, and a first semiconductor region that includes a plurality of sub-regions of the first conductivity type that have a first doping concentration and a further semiconductor region of a second conductivity type opposite to the first conductivity type. The further semiconductor region separates the sub-regions from each other and the first semiconductor region is located on the substrate. The semiconductor device further includes a second semiconductor region of the first conductivity type located on the first semiconductor region, a third semiconductor region of the second conductivity type located on the second semiconductor region, and a fourth semiconductor region of the first conductivity type located on the third semiconductor region.Type: GrantFiled: September 26, 2008Date of Patent: June 1, 2010Assignee: NXP B.V.Inventors: Rob Van Dalen, Gerrit Elbert Johannes Koops
-
Patent number: 7683390Abstract: A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.Type: GrantFiled: February 25, 2008Date of Patent: March 23, 2010Assignee: Kabushiki Kaisha ToshibaInventors: Koichi Tachibana, Chie Hongo, Hajime Nago, Shinya Nunoue
-
Patent number: 7482669Abstract: The invention relates to a so-termed punchthrough diode (10) with a stack of, for example, n++, n?, p+, n++ regions (1,2,3,4). In the known diode, these semiconductor regions (1,2,3,4) are positioned in said order on a substrate (11). The diode is provided with connection conductors (5,6). Such a diode does not have a steep I-V characteristic and is therefore less suitable as a TVSD (=Transient Voltage Suppression Device). In particular at voltages below 5 volts, a punchthrough diode could form an attractive alternative as TVSD. In a punchthrough diode (10) according to the invention, a part of the first semiconductor region (1) bordering on the second semiconductor region (2) comprises a number of sub-regions (1A) which are separated from each other by a further semiconductor region (7) of the second, for example p+, conductivity type which is electrically connected to the first connection conductor (5).Type: GrantFiled: February 12, 2004Date of Patent: January 27, 2009Assignee: NXP B.V.Inventors: Rob Van Dalen, Gerrit Elbert Johannes Koops
-
Publication number: 20080121993Abstract: A semiconductor device includes a drift layer having a first conductivity type and a body region adjacent the drift layer. The body region has a second conductivity type opposite the first conductivity type and forms a p-n junction with the drift layer. The device further includes a contactor region in the body region and having the first conductivity type, and a shunt channel region extending through the body region from the contactor region to the drift layer. The shunt channel region has the first conductivity type. The device further includes a first terminal in electrical contact with the body region and the contactor region, and a second terminal in electrical contact with the drift layer.Type: ApplicationFiled: November 3, 2006Publication date: May 29, 2008Inventors: Allen Hefner, Sei-Hyung Ryu, Anant Agarwal