Device Comprising Active Layer Formed Only By Group Ii-vi Compound (e.g., Hgcdte Ir Photodiode) (epo) Patents (Class 257/E31.058)
  • Patent number: 7700957
    Abstract: The invention proposes a process for producing electrical contact connections for at least one component which is integrated in a substrate material, the substrate material having a first surface region, and at least one terminal contact being arranged at least partially in the first surface region for each component, which is distinguished in particular by application of a covering to the first surface region and production of at least one contact passage which, in the substrate material, runs transversely with respect to the first surface region, in which process, in order to form at least one contact location in a second surface region which is to be provided, at least one electrical contact connection from the contact location to at least one of the terminal contacts is produced via the respective contact passages.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: April 20, 2010
    Assignee: Schott AG
    Inventors: Florian Bieck, Jürgen Leib
  • Patent number: 7683390
    Abstract: A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Tachibana, Chie Hongo, Hajime Nago, Shinya Nunoue
  • Patent number: 7679116
    Abstract: A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C1 corresponding to a peak of the impurity concentration in the first impurity region, a concentration C2 corresponding to a peak of the impurity concentration in the second impurity region and a concentration C3 corresponding to a peak of the impurity concentration in the third impurity region satisfy the following relationship: C2<C3<C1.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: March 16, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Yuzurihara, Ryuichi Mishima, Takanori Watanabe, Takeshi Ichikawa, Seiichi Tamura
  • Patent number: 7679091
    Abstract: A semiconductor device, particularly, a photoelectric conversion element having a semiconductor layer is demonstrated. The photoelectric conversion element of the present invention comprises, over a substrate, a photoelectric conversion layer and first and second electrodes which are electrically connected to the photoelectric conversion layer. The photoelectric conversion element further comprises a wiring board over which a third and fourth electrodes are provided. The characteristic point of the present invention is that a bonding layer, which readily forms an alloy with a conductive material, is formed over the first and second electrodes. This bonding layer improves the bonding strength between the first and third electrodes and the second and fourth electrode, which contributes to the prevention of the connection defect between the substrate and the wiring board and consequentially to high reliability of the photoelectric conversion element.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Kazuo Nishi, Yuusuke Sugawara
  • Patent number: 7663202
    Abstract: Nanowire-based photodiodes are disclosed. The photodiodes include a first optical waveguide having a tapered first end, a second optical waveguide having a tapered second end, and at least one nanowire comprising at least one semiconductor material connecting the first and second ends in a bridging configuration. Methods of making the photodiodes are also disclosed.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 16, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Michael Renne Ty Tan, Alexandre M. Bratkovski, R. Stanley Williams, Nobuhiko Kobayashi
  • Patent number: 7663160
    Abstract: A photodetector including a photodiode formed in a semiconductor substrate and a waveguide element formed of a block of a high-index material extending above the photodiode in a thick layer of a dielectric superposed to the substrate, the thick layer being at least as a majority formed of silicon oxide and the block being formed of a polymer of the general formula R1R2R3SiOSiR1R2R3 where R1, R2, and R3 are any carbonaceous or metal substituents and where one of R1, R2, or R3 is a carbonaceous substituent having at least four carbon atoms and/or at least one oxygen atom.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: February 16, 2010
    Assignee: STMicroelectronics SA
    Inventors: Cyril Fellous, Nicolas Hotellier, Christophe Aumont, François Roy
  • Patent number: 7655961
    Abstract: Diodes having p-type and n-type regions in contact, having at least one of either the p-type region or n-type region including a conjugated organic material doped with an immobile dopant, conjugated organic materials for incorporation into such diodes, and methods of manufacturing such diodes and materials are provided.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: February 2, 2010
    Assignee: Maxdem Incorporated
    Inventors: Matthew L. Marrocco, III, Farshad J. Motamedi
  • Patent number: 7652309
    Abstract: A CCD solid state imaging module comprises a CCD area sensor, a substrate bias voltage setting device formed on said CCD area sensor for outputting a voltage, and a substrate bias voltage outputting device formed on a chip other than said CCD area sensor for outputting a substrate bias voltage of said CCD area sensor by selecting one voltage level from a plurality of voltages based on the voltage output by said substrate bias voltage setting device. A solid state imaging module suitable for a CCD area sensor having multiple driving modes can be provided.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: January 26, 2010
    Assignee: Fujifilm Corporation
    Inventor: Jun Hasegawa
  • Patent number: 7642117
    Abstract: Embodiments relate to a complementary metal oxide semiconductor (CMOS) image sensor. According to embodiments, the CMOS image sensor may include a semiconductor substrate, an interlayer insulating layer, a color filter layer, an overcoat layer, and a plurality of microlenses. The semiconductor substrate may include a plurality of photodiodes and transistors with a constant interval. The color filter layer may be formed on the interlayer insulating layer, and respective color filters of the color filter layer correspond to respective photodiodes. The overcoat layer may have rounded trenches at a portion corresponding to each photodiode and may be formed on a surface of the semiconductor substrate. Each of the plurality of microlenses may have a convex lens shape and is formed inside the trench.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: January 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Hyuk Woo
  • Patent number: 7638815
    Abstract: A crystalline composition is provided. The crystalline composition may include gallium and nitrogen; and the crystalline composition may have an infrared absorption peak at about 3175 cm?1, with an absorbance per unit thickness of greater than about 0.01 cm?1.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: December 29, 2009
    Assignee: Momentive Performance Materials Inc.
    Inventors: Mark Philip D'Evelyn, Dong-Sil Park, Steven Francis LeBoeuf, Larry Burton Rowland, Kristi Jean Narang, Huicong Hong, Stephen Daley Arthur, Peter Micah Sandvik
  • Patent number: 7608872
    Abstract: A complementary metal oxide semiconductor (CMOS) device and a method for fabricating the same are provided. The CMOS image sensor includes: a first conductive type substrate including a trench; a channel stop layer formed by using a first conductive type epitaxial layer over an inner surface of the trench; a device isolation layer formed on the channel stop layer to fill the trench; a second conductive type photodiode formed in a portion of the substrate in one side of the channel stop layer; and a transfer gate structure formed on the substrate adjacent to the photodiode to transfer photo-electrons generated from the photodiode.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: October 27, 2009
    Inventor: Sang-Young Kim
  • Patent number: 7605013
    Abstract: An apparatus comprising at least one multilayer wafer which includes a device layer adjacent to a barrier layer, and the device layer includes at least two photoconductive regions separated by an etched channel extending through the device layer. In some instances the apparatus may be an accelerometer having two photodiodes formed on a silicon-on-insulator (SOI) wafer with the photodiodes defined by one or more etched channels extending through the device layer of the SOI wafer. Also disclosed are methods for forming such an apparatus.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 20, 2009
    Assignee: Northrop Grumman Corporation
    Inventor: Henry C. Abbink
  • Patent number: 7592645
    Abstract: A photoelectric conversion device according to the present invention has a plurality of photoreceiving portions provided in a substrate, an interlayer film overlying the photoreceiving portion, a large refractive index region which is provided so as to correspond to the photoreceiving portion and has a higher refractive index than the interlayer film, and a layer which is provided in between the photoreceiving portion and the large refractive index region, and has a lower etching rate than the interlayer film, wherein the layer of the lower etching rate is formed so as to cover at least the whole surface of the photoreceiving portion. In addition, the layer of the lower etching rate has a refractive index in between the refractive indices of the large refractive index region and the substrate. Such a configuration can provide the photoelectric conversion device which inhibits the lowering of the sensitivity and the variation of the sensitivity among picture elements.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: September 22, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Sakae Hashimoto
  • Patent number: 7592651
    Abstract: A photodiode and method of forming a photodiode has a substrate. An absorption layer is formed on the substrate to absorb lightwaves of a desired frequency range. A multiplication structure is formed on the absorption layer. The multiplication layer uses a low dark current avalanching material. The absorption layer and the multiplication layer are formed into at least one mesa having in an inverted “T” configuration to reduce junction area between the absorption layer and the multiplication layer. A dielectric layer is formed over the at least one mesa. At least one contact is formed on the dielectric layer and coupled to the at least one mesa.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: September 22, 2009
    Assignee: The Boeing Company
    Inventors: Joseph C. Boisvert, Rengarajan Sudharsanan
  • Patent number: 7592644
    Abstract: In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein, and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. Wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: September 22, 2009
    Assignee: Sony Corporation
    Inventors: Ryoji Suzuki, Keiji Mabuchi, Tomonori Mori
  • Patent number: 7589365
    Abstract: CMOS and CCD imaging devices comprising different in-pixel capacitors and peripheral capacitors and methods of formation are disclosed. The capacitors used in periphery circuits have different requirements from the capacitors used in the pixel itself. Dual stack capacitors comprising two dielectric layers may be provided to achieve low leakage and high capacitance. A single masking step may be provided such that one region has a dual dielectric capacitor and a second region has a single dielectric capacitor. A different dielectric may also be provided in one region compared to another region wherein the inter-electrode insulator comprises a single dielectric in both regions.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Aptina Imaging Corporation
    Inventor: Howard E. Rhodes
  • Patent number: 7579668
    Abstract: A method for photo-detecting and an apparatus for the same are provided. The apparatus for photo-detecting includes a first P-N diode and a second P-N diode. The first P-N diode, has a first P-N junction which has a first thickness, by which a first electrical signal is generated when irradiated by light, and the second P-N diode has a second P-N junction which has a second thickness, by which a second electrical signal is generated when irradiated by light. The second thickness is larger than the first thickness and an operation of the first electrical signal and the second electrical signal is proceeded for obtaining a third electrical signal.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 25, 2009
    Assignee: National Taiwan University
    Inventors: Chee-Wee Liu, Chun-Hung Lai, Meng-kun Chen, Wei-Shuo Ho
  • Patent number: 7575941
    Abstract: A method of manufacturing of a photodiode is provided. The photodiode is formed on a substrate of a first conductive type. First, an isolation structure is formed in the substrate to define a photosensitive area in the substrate. Thereafter, trenches are formed in the substrate. Next, a doped layer of a second conductive type is formed on the substrate. The doped layer covers at least the inner wall of the trenches and a top portion of the substrate. The method of fabricating the photodiode can reduce overall processing time and cost and improve production efficiency.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 18, 2009
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Ko-Hsing Chang, Su-Yuan Chang
  • Patent number: 7566925
    Abstract: Image sensors and methods of fabricating the same are provided. The image sensor includes a blocking pattern disposed on photodiodes. The blocking pattern is formed of insulation material having a metal diffusion coefficient which is lower than a silicon oxide diffusion coefficient. Therefore, dark defects of the image sensor are reduced. In addition, the image sensor includes a color-ratio control layer. The color ratio control layer controls color ratios between the sensitivities to blue, green and red. As a result, color distinction of the picture that is embodied by the image sensor can be improved.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Jae-Ho Song, Young-Hoon Park, Sang-Hak Shin
  • Patent number: 7547927
    Abstract: In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein, and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. Wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: June 16, 2009
    Assignee: Sony Corporation
    Inventors: Ryoji Suzuki, Keiji Mabuchi, Tomonori Mori
  • Patent number: 7544975
    Abstract: A forward light monitoring photodiode having a high reflection film with low dark current for detecting forward light emitted from a laser diode and power of the laser diode in spite of the change of temperatures or yearly degradation. The high reflection film is made by depositing an SiON layer upon an InP window layer or an InP substrate by a plasma CVD method. Al2O3/Si reciprocal layers or Al2O3/TiO2 reciprocal layers are produced upon the SiON layer. The high reflection film reflects 80%-90% of a 45 degree inclination incidence beam and allows 20%-10% of the incidence beam to pass the film and arrive at the InP window or substrate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 9, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hiroshi Inada
  • Patent number: 7538363
    Abstract: A solid-state imaging device includes: a plurality of light-receiving parts arranged in an array in a substrate and performing photoelectric conversion on incident light; and a plurality of color separators each provided for adjacent four of the light-receiving parts arranged in two rows and two columns. In each of the color separators, absorption color filters and transmission color filters are combined.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: May 26, 2009
    Assignee: Panasonic Corporation
    Inventors: Atsuo Nakagawa, Mamoru Honjo, Yoshiaki Nishi
  • Patent number: 7504672
    Abstract: A photodiode for detection of preferably infrared radiation wherein photons are absorbed in one region and detected in another. In one example embodiment, an absorbing P region is abutted with an N region of lower doping such that the depletion region is substantially (preferably completely) confined to the N region. The N region is also chosen with a larger bandgap than the P region, with compositional grading of a region of the N region near the P region. This compositional grading mitigates the barrier between the respective bandgaps. Under reverse bias, the barrier is substantially reduced or disappears, allowing charge carriers to move from the absorbing P region into the N region (and beyond) where they are detected. The N region bandgap is chosen to be large enough that the dark current is limited by thermal generation from the field-free p-type absorbing volume, and also large enough to eliminate tunnel currents in the wide gap region of the diode.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 17, 2009
    Assignee: DRS Sensors & Targeting Systems, Inc.
    Inventor: Michael A. Kinch
  • Patent number: 7479659
    Abstract: A process for manufacturing encapsulated optical sensors, including the steps of: forming a plurality of mutually spaced optical sensors in a wafer of semiconductor material; bonding a plate of transparent material to the wafer so as to seal the optical sensors; and dividing the wafer into a plurality of dies, each comprising an optical sensor and a respective portion of the plate.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: January 20, 2009
    Assignee: STMicroelectronics S.r.l.
    Inventors: Carlo Cognetti, Ubaldo Mastromatteo
  • Patent number: 7422919
    Abstract: An avalanche photodiode includes at least one crystal layer having a larger band-gap than that of an absorption layer formed by a composition or material different from that of the absorption layer formed on a junction interface between a compound semiconductor absorbing an optical signal and an Si multiplication layer, and the crystal layer may be intentionally doped with n or p type impurities to cancel electrical influences of the impurities containing oxides present on the junction interface of compound semiconductor and surface of Si.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: September 9, 2008
    Assignees: Hitachi, Ltd., Opnext Japan, Inc.
    Inventors: Shigehisa Tanaka, Sumiko Fujisaki, Yasunobu Matsuoka
  • Patent number: 7417268
    Abstract: An image sensor including a pixel assembly, each pixel including a photodiode and an access transistor connected to a read circuit, the photodiode and the access transistor being formed in and above a first semiconductor substrate, all or part of the read circuit being formed in a second semiconductor substrate, the second substrate being placed above the first substrate and separated therefrom by an intermediary insulating layer covering the access transistor, the photodiode receiving incident photons on its lower surface side opposite to the intermediary insulating layer.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: August 26, 2008
    Assignee: STMicroelectronics S.A.
    Inventors: Yvon Cazaux, Didier Herault
  • Patent number: 7408207
    Abstract: A device manufacturing method, including: a first process for providing the plural elements on the original substrate via a separation layer in a condition where terminal sections are exposed to a surface on an opposite side to the separation layer; a second process for adhering the surface where the terminal sections of the elements to be transferred on the original substrate are exposed, via conductive adhesive, to a surface of the final substrate on a side where conductive sections for conducting with the terminal sections of the elements are provided; a third process for producing exfoliation in the separation layer between the original substrate and the final substrate; and a fourth process for separating the original substrate from which the transfer of elements has been completed, from the final substrate.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: August 5, 2008
    Assignee: Seiko Epson Corporation
    Inventors: Takashi Hashimoto, Atshushi Takakuwa, Tomoyuki Kamakura, Sumio Utsunomiya
  • Patent number: 7382002
    Abstract: An apparatus comprising at least one multilayer wafer includes a device layer adjacent to a barrier layer, and the device layer includes at least two photoconductive regions separated by an etched channel extending through the device layer. In some instances the apparatus may be an accelerometer having two photodiodes formed on a silicon-on-insulator (SOI) wafer with the photodiodes defined by one or more etched channels extending through the device layer of the SOI wafer. Also disclosed are methods for forming such an apparatus.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 3, 2008
    Assignee: Litton Systems, Inc.
    Inventor: Henry C. Abbink
  • Patent number: 7352013
    Abstract: There is a demand of a solid-state imaging device capable of being driven at a high speed and in which the shading of sensitivity and illuminance defect can be prevented from being caused. A solid-state imaging device (20) comprises a light-receiving sensor section disposed on the surface layer portion of a substrate (21) for performing a photoelectric conversion, a charge transfer section for transferring a signal charge read out from the light-receiving sensor section, a transfer electrode (27) (28) made of polysilicon formed on a substrate (21) at its position approximately above the charge transfer section through an insulating film (26), and an interconnection made of polysilicon and interconnected to the transfer electrode (27) (28). At least one of the polysilicon transfer electrode (27)(28) and the interconnection is formed on a polysilicon layer (27a) (28a) by selectively depositing a high-melting point metal having a resistance value lower than that of polysilicon.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: April 1, 2008
    Assignee: Sony Corporation
    Inventors: Yasushi Maruyama, Hideshi Abe
  • Patent number: 7351598
    Abstract: A solid-state image pickup device includes an element isolation insulating film electrically isolating pixels on the surface of a well region; a first isolation diffusion layer electrically isolating the pixels under the element isolation insulating film; and a second isolation diffusion layer electrically isolating the pixels under the first isolation diffusion layer, wherein a charge accumulation region is disposed in the well region surrounded by the first and second isolation diffusion layers, the inner peripheral part of the first isolation diffusion layer forms a projecting region, an impurity having a conductivity type of the first isolation diffusion layer and an impurity having a conductivity type of the charge accumulation region are mixed in the projecting region, and a part of the charge accumulation region between the charge accumulation region and the second isolation diffusion layer is abutted or close to the second isolation diffusion layer under the projecting region.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: April 1, 2008
    Assignee: Sony Corporation
    Inventors: Keiji Tatani, Hideshi Abe, Masanori Ohashi, Atsushi Masagaki, Atsuhiko Yamamoto, Masakazu Furukawa
  • Patent number: 7348600
    Abstract: The invention provides a nitride semiconductor light-emitting device comprising gallium nitride semiconductor layers formed on a heterogeneous substrate, wherein light emissions having different light emission wavelengths or different colors are given out of the same active layer. Recesses 106 are formed by etching in the first electrically conductive (n) type semiconductor layer 102 formed on a substrate with a buffer layer interposed between them. Each recess is exposed in plane orientations different from that of the major C plane. For instance, the plane orientation of the A plane is exposed. An active layer is grown and joined on the plane of this plane orientation, on the bottom of the recess and the C-plane upper surface of a non-recess portion. The second electrically conductive (p) type semiconductor layer is formed on the inner surface of the recess.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: March 25, 2008
    Assignees: Nichia Corporation, California Institute of Technology
    Inventors: Yukio Narukawa, Isamu Niki, Axel Scherer, Koichi Okamoto, Yoichi Kawakami, Mitsuru Funato, Shigeo Fujita
  • Patent number: 7312484
    Abstract: A semiconductor structure, having a doped well region being formed in a substrate layer and a transistor having a terminal provided within said doped well region. The semiconductor structure also includes an oxide layer formed over the substrate layer, the doped well region, a poly silicon region, and the terminal of the transistor. The oxide layer including a step region being located where a height of the oxide layer transitions from a height associated with the doped well region to a height associated with the terminal of the transistor.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: December 25, 2007
    Assignee: Cypress Semiconductor Corporation
    Inventors: Clifford I. Drowley, Ching-Chun Wang, Jungwook Yang
  • Patent number: 7294519
    Abstract: Provided are a semiconductor light-emitting device having nano-needles and a method of manufacturing the same. The provided semiconductor light-emitting device improves the extraction efficiency of photons, and includes a gallium nitride (GaN) group multi-layer and nano-needles grown on the GaN group multi-layer. The nano-needles improve the extraction efficiency of photons.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: November 13, 2007
    Assignee: Luxpia Co., Ltd.
    Inventors: Jong Soo Lee, Min Sang Lee, Young Ki Lee
  • Patent number: 7122398
    Abstract: A method for manufacturing optoelectronic devices is disclosed. A layered structure may be formed with a plurality of layers including a bottom electrode layer, a top electrode layer, and one or more active layers between the top and bottom electrode layers. The layered structure is divided into one or more separate device module sections by cutting through one or more of the layers of the layered structure. At least one of the layers is an unpatterned layer at the time of cutting. Each of the resulting device module sections generally includes a portion of the active layer disposed between portions of the top and bottom electrode layers. An edge of a device section may optionally be protected against undesired electrical contact between two or more of the bottom electrode, top electrode and active layer portions.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: October 17, 2006
    Assignee: Nanosolar, Inc.
    Inventor: Karl Pichler