Including, Apart From Doping Materials Or Other Only Impurities, Group Iv Element (e.g., Si-sige Superlattice) (epo) Patents (Class 257/E33.009)
-
Patent number: 8890112Abstract: A method of controlling ferroelectric characteristics of integrated circuit device components includes forming a ferroelectrically controllable dielectric layer over a substrate; and forming a stress exerting structure proximate the ferroelectrically controllable dielectric layer such that a substantially uniaxial strain is induced in the ferroelectrically controllable dielectric layer by the stress exerting structure; wherein the ferroelectrically controllable dielectric layer comprises one or more of: a ferroelectric oxide layer and a normally non-ferroelectric material layer that does not exhibit ferroelectric properties in the absence of an applied stress.Type: GrantFiled: July 25, 2012Date of Patent: November 18, 2014Assignees: International Business Machines Corporation, Centre National de la Recherche ScientifiqueInventors: Catherine A. Dubourdieu, Martin M. Frank
-
Patent number: 8704240Abstract: A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer and an active region between the p-type semiconductor layer and the n-type semiconductor layer. A bond pad is provided on one of the p-type semiconductor layer or the n-type semiconductor layer, opposite the active region, the bond pad being electrically connected to the one of the p-type semiconductor layer or the n-type semiconductor layer. A conductive finger extends from and is electrically connected to the bond pad. A reduced conductivity region is provided in the light emitting device that is aligned with the conductive finger. A reflector may also be provided between the bond pad and the reduced conductivity region. A reduced conductivity region may also be provided in the light emitting device that is not aligned with the bond pad.Type: GrantFiled: April 4, 2013Date of Patent: April 22, 2014Assignee: Cree, Inc.Inventors: David Todd Emerson, Kevin Haberern, Michael John Bergmann, David B. Slater, Jr., Matthew Donofrio, John Edmond
-
Patent number: 8698192Abstract: According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting part, and a p-side electrode. The light emitting part is provided between the n-type and the p-type semiconductor layers, and includes a plurality of barrier layers and a plurality of well layers. The p-side electrode contacts the p-type semiconductor layer. The p-type semiconductor layer includes first, second, third, and fourth p-type layers. The first p-type layer contacts the p-side electrode. The second p-type layer contacts the light emitting part. The third p-type layer is provided between the first p-type layer and the second p-type layer. The fourth p-type layer is provided between the second p-type layer and the third p-type layer. The second p-type layer contains Al and contains a p-type impurity in a lower concentration lower than that in the first concentration.Type: GrantFiled: August 4, 2011Date of Patent: April 15, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Koichi Tachibana, Hajime Nago, Toshiki Hikosaka, Shigeya Kimura, Shinya Nunoue
-
Patent number: 8692228Abstract: A semiconductor light emitting device includes a first layer including at least one of n-type GaN and n-type AlGaN; a second layer including Mg-containing p-type AlGaN; and a light emitting section provided between the first and second layers. The light emitting section includes barrier layers of Si-containing AlxGa1-x-yInyN (0?x, 0?y, x+y?1), and a well layer provided between the barrier layers and made of GaInN or AlGaInN. The barrier layers have a nearest barrier layer nearest to the second layer among the barrier layers and a far barrier layer. The nearest barrier layer includes a first portion made of Si-containing AlxGa1-x-yInyN (0?x, 0?y, x+y?1), and a second portion provided between the first portion and the second layer and made of AlxGa1-x-yInyN (0?x, 0?y, x+y?1). The Si concentration in the second portion is lower than those in the first portion and in the far barrier layer.Type: GrantFiled: November 8, 2012Date of Patent: April 8, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Kei Kaneko, Yasuo Ohba, Hiroshi Katsuno, Mitsuhiro Kushibe
-
Patent number: 8642434Abstract: While embedded silicon germanium alloy and silicon carbon alloy provide many useful applications, especially for enhancing the mobility of MOSFETs through stress engineering, formation of alloyed silicide on these surfaces degrades device performance. The present invention provides structures and methods for providing unalloyed silicide on such silicon alloy surfaces placed on semiconductor substrates. This enables the formation of low resistance contacts for both mobility enhanced PFETs with embedded SiGe and mobility enhanced NFETs with embedded Si:C on the same semiconductor substrate. Furthermore, this invention provides methods for thick epitaxial silicon alloy, especially thick epitaxial Si:C alloy, above the level of the gate dielectric to increase the stress on the channel on the transistor devices.Type: GrantFiled: February 16, 2012Date of Patent: February 4, 2014Assignee: International Business Machines CorporationInventors: Yaocheng Liu, Dureseti Chidambarrao, Oleg Gluschenkov, Judson R. Holt, Renee T. Mo, Kern Rim
-
Patent number: 8492746Abstract: A light emitting diode (LED) die includes a wavelength conversion layer having a base material, and a plurality of particles embedded in the base material including wavelength conversion particles, and reflective particles. A method for fabricating light emitting diode (LED) dice includes the steps of mixing the wavelength conversion particles in the base material to a first weight percentage, mixing the reflective particles in the base material to a second weight percentage, curing the base material to form a wavelength conversion layer having a selected thickness, and attaching the wavelength conversion layer to a die.Type: GrantFiled: May 4, 2012Date of Patent: July 23, 2013Assignee: SemiLEDS Optoelectronics Co., Ltd.Inventor: Jui-Kang Yen
-
Patent number: 8455858Abstract: A semiconductor structure is provided. The semiconductor structure may include a substrate (100); a buffer layer or an insulation layer (200) formed on the substrate; a first strained wide bandgap semiconductor material layer (400) formed on the buffer layer or the insulation layer; a strained narrow bandgap semiconductor material layer (500) formed on the first strained wide bandgap semiconductor material layer; a second strained wide bandgap semiconductor material layer (700) formed on the strained narrow bandgap semiconductor material layer; a gate stack (300) formed on the second strained wide bandgap semiconductor material layer; and a source and a drain (600) formed in the first strained wide bandgap semiconductor material layer, the strained narrow bandgap semiconductor material layer and the second strained wide bandgap semiconductor material layer respectively.Type: GrantFiled: November 8, 2010Date of Patent: June 4, 2013Assignee: Tsinghua UniversityInventors: Jing Wang, Jun Xu, Lei Guo
-
Patent number: 8324611Abstract: A semiconductor light emitting device includes a first layer made of at least one of n-type GaN and n-type AlGaN; a second layer made of Mg-containing p-type AlGaN; and a light emitting section provided between the first layer and the second layer. The light emitting section included a plurality of barrier layers made of Si-containing AlxGa1-x-yInyN (0?x, 0?y, x+y?1), and a well layer provided between each pair of the plurality of barrier layers and made of GaInN or AlGaInN. The plurality of barrier layers have a nearest barrier layer and a far barrier layer. The nearest barrier layer is nearest to the second layer among the plurality of barrier layers. The nearest barrier layer includes a first portion and a second portion. The first portion is made of Si-containing AlxGa1-x-yInyN (0?x, 0?y, x+y?1). The second portion is provided between the first portion and the second layer and is made of AlxGa1-x-yInyN (0?x, 0?y, x+y?1).Type: GrantFiled: September 8, 2011Date of Patent: December 4, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Kei Kaneko, Yasuo Ohba, Hiroshi Katsuno, Mitsuhiro Kushibe
-
Publication number: 20120175586Abstract: A silicon-germanium, quantum-well, light-emitting diode (120). The light-emitting diode (120) includes a p-doped portion (410), a quantum-well portion (420), and an p-doped portion (430). The quantum-well portion (420) is disposed between the p-doped portion (410) and the n-doped portion (430). The quantum-well portion (420) includes a carrier confinement region that is configured to facilitate luminescence with emission of light (344) produced by direct recombination (340) of an electron (314) with a hole (324) confined within the carrier confinement region. The p-doped portion (410) includes a first alloy of silicon-germanium, and the n-doped portion (430) includes a second alloy of silicon-germanium.Type: ApplicationFiled: September 25, 2009Publication date: July 12, 2012Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov
-
Patent number: 8093143Abstract: A method for producing a wafer with a silicon single crystal substrate having a front and a back side and a layer of SiGe deposited on the front side, the method using steps in the following order: simultaneously polishing the front and the back side of the silicon single crystal substrate; depositing a stress compensating layer on the back side of the silicon single crystal substrate; polishing the front side of the silicon single crystal substrate; cleaning the silicon single crystal substrate having the stress compensating layer deposited on the back side; and depositing a fully or partially relaxed layer of SiGe on the front side of the silicon single crystal substrate.Type: GrantFiled: March 16, 2010Date of Patent: January 10, 2012Assignee: Siltronic AGInventors: Peter Storck, Thomas Buschhardt
-
Publication number: 20110253973Abstract: A light-emitting element includes a ?-Ga2O3 substrate, a GaN-based semiconductor layer formed on the ?-Ga2O3 substrate, and a double-hetero light-emitting layer formed on the GaN-based semiconductor layer.Type: ApplicationFiled: June 22, 2011Publication date: October 20, 2011Applicant: KOHA CO., LTD.Inventors: Noburo Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
-
Patent number: 8039830Abstract: A semiconductor light emitting device includes a first layer made of at least one of n-type GaN and n-type AlGaN; a second layer made of Mg-containing p-type AlGaN; and a light emitting section provided between the first layer and the second layer. The light emitting section included a plurality of barrier layers made of Si-containing AlxGa1-x-yInyN (0?x, 0?y, x+y?1), and a well layer provided between each pair of the plurality of barrier layers and made of GaInN or AlGaInN. The plurality of barrier layers have a nearest barrier layer and a far barrier layer. The nearest barrier layer is nearest to the second layer among the plurality of barrier layers. The nearest barrier layer includes a first portion and a second portion. The first portion is made of Si-containing AlxGa1-x-yInyN (0?x, 0?y, x+y?1). The second portion is provided between the first portion and the second layer and is made of AlxGa1-x-yInyN (0?x, 0?y, x+y?1).Type: GrantFiled: July 17, 2009Date of Patent: October 18, 2011Assignee: Kabushiki Kaisha ToshibaInventors: Kei Kaneko, Yasuo Ohba, Hiroshi Katsuno, Mitsuhiro Kushibe
-
Patent number: 8035098Abstract: The present invention is directed to a transistor with an asymmetric silicon germanium source region, and various methods of making same. In one illustrative embodiment, the transistor includes a gate electrode formed above a semiconducting substrate comprised of silicon, a doped source region comprising a region of epitaxially grown silicon that is doped with germanium formed in the semiconducting substrate and a doped drain region formed in the semiconducting substrate.Type: GrantFiled: April 4, 2006Date of Patent: October 11, 2011Assignee: GLOBALFOUNDRIES Inc.Inventors: Jian Chen, James F. Buller, Akif Sultan
-
Patent number: 8017504Abstract: In a manufacturing flow for adapting the band gap of the semiconductor material with respect to the work function of a metal-containing gate electrode material, a strain-inducing material may be deposited to provide an additional strain component in the channel region. For instance, a layer stack with silicon/carbon, silicon and silicon/germanium may be used for providing the desired threshold voltage for a metal gate while also providing compressive strain in the channel region.Type: GrantFiled: September 2, 2009Date of Patent: September 13, 2011Assignee: Globalfoundries Inc.Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg
-
Patent number: 7968879Abstract: One object of the present invention is reduction of off current of a thin film transistor. Another object of the present invention is improvement of electric characteristics of the thin film transistor. Further, another object of the present invention is improvement of image quality of the display device including the thin film transistor. The thin film transistor includes a semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at. % or a conductive film which is provided over a gate electrode with the gate insulating film interposed therebetween and which is provided in an inner region of the gate electrode so as not to overlap with an end portion of the gate electrode, a film covering at least a side surface of the semiconductor film containing germanium at a concentration greater than or equal to 5 at. % and less than or equal to 100 at.Type: GrantFiled: December 24, 2008Date of Patent: June 28, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Shunpei Yamazaki
-
Patent number: 7884354Abstract: Germanium on insulator (GOI) semiconductor substrates are generally described. In one example, a GOI semiconductor substrate comprises a semiconductor substrate comprising an insulative surface region wherein a concentration of dopant in the insulative surface region is less than a concentration of dopant in the semiconductor substrate outside of the insulative surface region and a thin film of germanium coupled to the insulative surface region of the semiconductor substrate wherein the thin film of germanium and the insulative surface region are simultaneously formed by oxidation anneal of a thin film of silicon germanium (Si1-xGex) deposited to the semiconductor substrate wherein x is a value between 0 and 1 that provides a relative amount of silicon and germanium in the thin film of Si1-xGex.Type: GrantFiled: July 31, 2008Date of Patent: February 8, 2011Assignee: Intel CorporationInventors: Ravi Pillarisetty, Been-Yih Jin, Willy Rachmady, Marko Radosavljevic
-
Patent number: 7786469Abstract: A silicon/germanium (SiGe) superlattice thermal sensor is provided with a corresponding fabrication method. The method forms an active CMOS device in a first Si substrate, and a SiGe superlattice structure on a second Si-on-insulator (SOI) substrate. The first substrate is bonded to the second substrate, forming a bonded substrate. An electrical connection is formed between the SiGe superlattice structure and the CMOS device, and a cavity is formed between the SiGe superlattice structure and the bonded substrate.Type: GrantFiled: September 23, 2008Date of Patent: August 31, 2010Assignee: Sharp Laboratories of America, Inc.Inventors: Jer-Shen Maa, Jinke Tang, Jong-Jan Lee, Douglas J. Tweet, Sheng Teng Hsu
-
Patent number: 7700936Abstract: In one embodiment, a method of producing an optoelectronic nanostructure includes preparing a substrate; providing a quantum well layer on the substrate; etching a volume of the substrate to produce a photonic crystal. The quantum dots are produced at multiple intersections of the quantum well layer within the photonic crystal. Multiple quantum well layers may also be provided so as to form multiple vertically aligned quantum dots. In another embodiment, an optoelectronic nanostructure includes a photonic crystal having a plurality of voids and interconnecting veins; a plurality of quantum dots arranged between the plurality of voids, wherein an electrical connection is provided to one or more of the plurality of quantum dots through an associated interconnecting vein.Type: GrantFiled: June 30, 2006Date of Patent: April 20, 2010Assignee: University of DelawareInventors: Janusz Murakowski, Garrett Schneider, Dennis W. Prather
-
Patent number: 7612364Abstract: A semiconductor structure includes a semiconductor substrate; a gate stack on the semiconductor substrate; a stressor having at least a portion in the semiconductor substrate and adjacent to the gate stack, wherein the stressor comprises an impurity of a first conductivity type; and a portion of the semiconductor substrate adjoining the stressor and on an opposite side of the stressor from the gate stack, wherein the portion of the semiconductor substrate is doped with an impurity of the first conductivity type.Type: GrantFiled: November 20, 2006Date of Patent: November 3, 2009Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry Chuang, Kong-Beng Thei, Yuan-Chen Sun
-
Patent number: 7598513Abstract: A novel method for synthesizing device-quality alloys and ordered phases in a Si—Ge—Sn system uses a UHV-CVD process and reactions of SnD4 with SiH3GeH3. Using the method, single-phase SixSnyGe1-x-y semiconductors (x?0.25, y?0.11) are grown on Si via Ge1-xSnx buffer layers The Ge1-xSnx buffer layers facilitate heteroepitaxial growth of the SixSnyGe1-x-y films and act as compliant templates that can conform structurally and absorb the differential strain imposed by the more rigid Si and Si—Ge—Sn materials. The SiH3GeH3 species was prepared using a new and high yield method that provided high purity semiconductor grade material.Type: GrantFiled: June 14, 2004Date of Patent: October 6, 2009Inventors: John Kouvetakis, Matthew Bauer, John Tolle
-
Patent number: 7569848Abstract: Compressive or tensile materials are selectively introduced beneath and in alignment with spacer areas and adjacent to channel areas of a semiconductor substrate to enhance or degrade electron and hole mobility in CMOS circuits. A process entails steps of creating dummy spacers, forming a dielectric mandrel (i.e., mask), removing the dummy spacers, etching recesses into the underlying semiconductor substrate, introducing a compressive or tensile material into a portion of each recess, and filling the remainder of each recess with substrate material.Type: GrantFiled: February 28, 2006Date of Patent: August 4, 2009Assignee: International Business Machines CorporationInventors: Michael P. Belyansky, Bruce B. Doris, Oleg G. Gluschenkov
-
Patent number: 7528403Abstract: Device designs and techniques for providing efficient hybrid silicon-on-insulator devices where a silicon waveguide core or resonator is clad by the insulator and a top functional cladding layer in some implementations of the designs.Type: GrantFiled: April 25, 2006Date of Patent: May 5, 2009Assignee: California Institute of TechnologyInventors: Matthew Borselli, Thomas J Johnson, Oskar Painter
-
Patent number: 7518188Abstract: A p-channel MOS transistor includes a gate electrode formed on a silicon substrate in correspondence to a channel region therein via a gate insulation film, the gate electrode carrying sidewall insulation films on respective sidewall surfaces thereof, and source and drain regions of p-type are formed in the substrate at respective outer sides of the sidewall insulation films, wherein each of the source and drain regions encloses a polycrystal region of p-type accumulating therein a compressive stress.Type: GrantFiled: July 14, 2005Date of Patent: April 14, 2009Assignee: Fujitsu Microelectronics LimitedInventors: Masashi Shima, Yosuke Shimamune, Akiyoshi Hatada, Akira Katakami, Naoyoshi Tamura
-
Patent number: 7442599Abstract: A silicon/germanium (SiGe) superlattice thermal sensor is provided with a corresponding fabrication method. The method forms an active CMOS device in a first Si substrate, and a SiGe superlattice structure on a second Si-on-insulator (SOI) substrate. The first substrate is bonded to the second substrate, forming a bonded substrate. An electrical connection is formed between the SiGe superlattice structure and the CMOS device, and a cavity is formed between the SiGe superlattice structure and the bonded substrate.Type: GrantFiled: September 15, 2006Date of Patent: October 28, 2008Assignee: Sharp Laboratories of America, Inc.Inventors: Jer-Shen Maa, Jinke Tang, Jong-Jan Lee, Douglas J. Tweet, Sheng Teng Hsu
-
Patent number: 7417248Abstract: A method of manufacturing a transistor and a structure thereof, wherein a very shallow region having a high dopant concentration of germanium is implanted into a channel region of a transistor at a low energy level, forming an amorphous germanium implantation region in a top surface of the workpiece, and forming a crystalline germanium implantation region beneath the amorphous germanium implantation region. The workpiece is annealed using a low-temperature anneal to convert the amorphous germanium region to a crystalline state while preventing a substantial amount of diffusion of germanium further into the workpiece, also removing damage to the workpiece caused by the implantation process. The resulting structure includes a crystalline germanium implantation region at the top surface of a channel, comprising a depth below the top surface of the workpiece of about 120 ? or less. The transistor has increased mobility and a reduced effective oxide thickness (EOT).Type: GrantFiled: June 5, 2006Date of Patent: August 26, 2008Assignee: Infineon Technologies AGInventor: Hong-Jyh Li
-
Patent number: 7304328Abstract: A method of forming a relaxed SiGe-on-insulator substrate having enhanced relaxation, significantly lower defect density and improved surface quality is provided. The method includes forming a SiGe alloy layer on a surface of a first single crystal Si layer. The first single crystal Si layer has an interface with an underlying barrier layer that is resistant to Ge diffusion. Next, ions that are capable of forming defects that allow mechanical decoupling at or near said interface are implanted into the structure and thereafter the structure including the implanted ions is subjected to a heating step which permits interdiffusion of Ge throughout the first single crystal Si layer and the SiGe layer to form a substantially relaxed, single crystal and homogeneous SiGe layer atop the barrier layer. SiGe-on-insulator substrates having the improved properties as well as heterostructures containing the same are also provided.Type: GrantFiled: November 5, 2004Date of Patent: December 4, 2007Assignee: International Business Machines CorporationInventors: Stephen W. Bedell, Keith E. Fogel, Devendra K. Sadana
-
Publication number: 20070224787Abstract: Some embodiments of the invention are related to manufacturing semiconductors. Methods and apparatuses are disclosed that provide thin and fully relaxed SiGe layers. In some embodiments, the presence of oxygen between a single crystal structure and a SiGe heteroepitaxial layer, and/or within the SiGe heteroepitaxial layer, allow the SiGe layer to be thin and fully relaxed. In some embodiments, a strained layer of Si can be deposited over the fully relaxed SiGe layer.Type: ApplicationFiled: March 23, 2006Publication date: September 27, 2007Inventors: Keith Weeks, Paul Brabant
-
Patent number: 7233018Abstract: Provided are high voltage metal oxide semiconductor field effect transistor (HVMOSFET) having a Si/SiGe heterojunction structure and method of manufacturing the same. In this method, a substrate on which a Si layer, a relaxed SiGe epitaxial layer, a SiGe epitaxial layer, and a Si epitaxial layer are stacked or a substrate on which a Si layer having a well region, a SiGe epitaxial layer, and a Si epitaxial layer are stacked is formed. For the device having the heterojunction structure, the number of conduction carriers through a potential well and the mobility of the carriers increase to reduce an on resistance, thus increasing saturation current. Also, an intensity of vertical electric field decreases so that a breakdown voltage can be maintained at a very high level. Further, a reduction in vertical electric field due to the heterojunction structure leads to a gain in transconductance (Gm), with the results that a hot electron effect is inhibited and the reliability of the device is enhanced.Type: GrantFiled: July 15, 2005Date of Patent: June 19, 2007Assignee: Electronics and Telecommunications Research InstituteInventors: Young Kyun Cho, Sung Ku Kwon, Tae Moon Roh, Dae Woo Lee, Jong Dae Kim
-
Patent number: 7227174Abstract: A semiconductor device may include a superlattice comprising a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base silicon monolayers defining a base silicon portion and an energy band-modifying layer thereon. The energy band-modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The semiconductor device may further include a semiconductor layer adjacent the superlattice and comprising at least one first region therein including a first conductivity type dopant. The superlattice may also include at least one second region therein including a second conductivity type dopant to define, with the at least one first region, at least one semiconductor junction.Type: GrantFiled: April 1, 2005Date of Patent: June 5, 2007Assignee: RJ Mears, LLCInventors: Robert J. Mears, Robert John Stephenson
-
Patent number: 7161168Abstract: Fabrication of metallic or non-metallic wires with nanometer widths and nanometer separation distances without the use of lithography. Wires are created in a two-step process involving forming the wires at the desired dimensions and transferring them to a planar substrate. The dimensions and separation of the wires are determined by the thicknesses of alternating layers of different materials that are in the form of a superlattice. Wires are created by evaporating the desired material onto the superlattice that has been selectively etched to provide height contrast between layers. The wires thus formed upon one set of superlattice layers are then transferred to a substrate.Type: GrantFiled: July 28, 2003Date of Patent: January 9, 2007Assignee: The Regents of the University of CaliforniaInventors: James R. Heath, Pierre M. Petroff, Nicholas A. Melosh