Comprising Only Group Iv Element (epo) Patents (Class 257/E33.015)
  • Patent number: 8987719
    Abstract: An organic light emitting diode (OLED) display includes: a substrate; an organic light emitting element formed on the substrate; a first thin film transistor connected to the organic light emitting element and including an amorphous silicon channel region; and at least one other thin film transistor connected to the first thin film transistor and including a polysilicon channel region.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: March 24, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sung-Hoon Moon
  • Patent number: 8895337
    Abstract: A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: November 25, 2014
    Assignee: Sandia Corporation
    Inventors: George T. Wang, Qiming Li
  • Patent number: 8748908
    Abstract: A semiconductor optical emission device comprising a layer of material containing a plurality of stress variations and adhering to a surface of a semiconductor is described. In one embodiment the semiconductor is an indirect band gap semiconductor and is silicon in one aspect, the material of the layer comprises silicon and metal oxides and is prepared by a sol-gel process including thermal annealing in one aspect. The layer urges a plurality of randomly distributed elastic deformations in the semiconductor that substantially enhances the radiative recombination interactions among free carriers in the semiconductor.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 10, 2014
    Inventors: Sufian Abedrabbo, Anthony Thomas Fiory
  • Publication number: 20130306964
    Abstract: A method of fabricating a light emitting diode device comprises providing a substrate, growing an epitaxial structure on the substrate. The epitaxial structure includes a first layer on the substrate, an active layer on the first layer and a second layer on the active layer. The method further comprises depositing a conductive and reflective layer on the epitaxial structure, forming a group of first trenches and a second trench. Each of the first and second trenches extends from surface of the conductive and reflective layer to the first layer to expose part of the first layer. The method further comprises depositing conductive material to cover a portion of the conductive and reflective layer to form a first contact pad, and cover surfaces between adjacent first trenches to form a second contact pad. The second contact pad electrically connects the first layer by filling the conductive material in the first trenches.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Applicant: Starlite LED Inc
    Inventor: Chang HAN
  • Publication number: 20130256650
    Abstract: A semiconductor device and fabrication method thereof are provided, wherein the fabrication method of the semiconductor device includes the following steps. Forming a semiconductor layer on a substrate, wherein the semiconductor layer has a top surface and a bottom surface that is opposite to the top surface. The bottom surface is in contact with the substrate, and the top surface has a plurality of pits, the pits are extended from the top surface toward the bottom surface. Preparing a solution, wherein the solution includes a plurality of nanoparticles. Filling the nanoparticles into the pits. Forming a conducting layer on the semiconductor layer after filling the nanoparticles into the pits.
    Type: Application
    Filed: May 27, 2012
    Publication date: October 3, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Chih-Chung Yang, Horng-Shyang Chen, Shao-Ying Ting, Che-Hao Liao, Chih-Yen Chen, Chieh Hsieh, Hao-Tsung Chen, Yu-Feng Yao, Dong-Ming Yeh
  • Publication number: 20130161643
    Abstract: A method is provided for fabricating three-dimensional gallium nitride (GaN) pillar structures with planar surfaces. After providing a substrate, the method grows a GaN film overlying a top surface of the substrate and forms cavities in a top surface of the GaN film. The cavities are formed using a laser ablation, ion implantation, sand blasting, or dry etching process. The cavities in the GaN film top surface are then wet etched, forming planar sidewalls extending into the GaN film. More explicitly, the cavities are formed into a c-plane GaN film top surface, and the planar sidewalls are formed perpendicular to a c-plane, in the m-plane or a-plane family.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Inventors: Mark Albert Crowder, Changqing Zhan, Paul J. Schuele
  • Patent number: 8436333
    Abstract: A light-emitting device according to the present invention includes a first electrode unit for injecting an electron, a second electrode unit for injecting a hole, and light-emitting units and electrically connected to the first electrode unit and the second electrode unit respectively, wherein the light-emitting units and are formed of single-crystal silicon, the light-emitting units and having a first surface (topside surface) and a second surface (underside surface) opposed to the first surface, plane orientation of the first and second surfaces being set to a (100) plane, thicknesses of the light-emitting units and in a direction orthogonal to the first and second surfaces being made extremely thin.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 7, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Saito, Digh Hisamoto, Tadashi Arai, Takahiro Onai
  • Publication number: 20130062627
    Abstract: Stress regulated semiconductor devices and associated methods are provided. In one aspect, for example, a stress regulated semiconductor device can include a semiconductor layer, a stress regulating interface layer including a carbon layer formed on the semiconductor layer, and a heat spreader coupled to the carbon layer opposite the semiconductor layer. The stress regulating interface layer is operable to reduce the coefficient of thermal expansion difference between the semiconductor layer and the heat spreader to less than or equal to about 10 ppm/° C.
    Type: Application
    Filed: March 5, 2012
    Publication date: March 14, 2013
    Inventors: Chien-Min Sung, Ming-Chi Kan, Shao Chung Hu
  • Publication number: 20130026491
    Abstract: The present invention discloses a LED structure and a method for manufacturing the LED structure. The LED structure includes a substrate, a reflection layer, a first conducting layer, a light emitting layer, and a second conducting layer. The substrate has a plurality of grooves, and the reflection layer is disposed inside the plurality of grooves. The reflection layer is formed as a reflection block inside each of the grooves. The first conducting layer is disposed on the substrate, that is, the reflection layer is disposed between the first conducting layer and the substrate. The light emitting layer and the second conducting layer are sequentially disposed on the first conducting layer. The light emitting layer generates light when a current pass through the light emitting layer. Accordingly, the light generated by the light emitting layer can be emitted to the same side of the LED structure.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 31, 2013
    Applicant: LEXTAR ELECTRONICS CORP.
    Inventors: CHENG-HUNG CHEN, DER-LIN HSIA, CHIA-HUNG HOU
  • Publication number: 20120305942
    Abstract: An epitaxial substrate includes: a base member; and a plurality of spaced apart light-transmissive members, each of which is formed on and tapers from an upper surface of the base member, and each of which is made of a light-transmissive material having a refractive index lower than that of the base member. A light-emitting diode having the epitaxial substrate, and methods for making the epitaxial substrate and the light-emitting diode are also disclosed.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 6, 2012
    Applicant: Aceplux Optotech Inc.
    Inventors: Hsin-Ming LO, Shih-Chang SHEI
  • Publication number: 20120299013
    Abstract: A semiconductor light emitting structure including a substrate, a patterned structure, a first semiconductor layer, an active layer and a second semiconductor layer is provided. The patterned structure is protruded from or indented into a surface of the substrate, so that the surface of the substrate becomes a roughed surface. The patterned structure has an asymmetrical geometric shape. The first semiconductor layer is disposed on the roughed surface. The active layer is disposed on the first semiconductor layer. The second semiconductor is disposed on the active layer.
    Type: Application
    Filed: December 8, 2011
    Publication date: November 29, 2012
    Applicant: LEXTAR ELECTRONICS CORPORATION
    Inventors: Chang-Chin Yu, Mong-Ea Lin
  • Publication number: 20120265122
    Abstract: Methods and apparatuses to produce graphene and nanoparticle catalysts supported on graphene without the use of reducing agents, and with the concomitant production of heat, are provided. The methods and apparatuses employ radiant energy to reduce (deoxygenate) graphite oxide (GO) to graphene, or to reduce a mixture of GO plus one or more metals to to produce nanoparticle catalysts supported on graphene. Methods and systems to generate and utilize heat that is produced by irradiating GO, graphene and their metal and semiconductor nanocomposites with visible, infrared and/or ultraviolet radiation, e.g. using sunlight, lasers, etc. are also provided.
    Type: Application
    Filed: December 10, 2010
    Publication date: October 18, 2012
    Inventors: M. Samy El-Shall, Victor Abdelsayed, Saud I. Al-Resayes, Zeid Abdullah M. Alothman
  • Publication number: 20120119187
    Abstract: The present invention relates to a GaN based nitride based light emitting device improved in Electrostatic Discharge (ESD) tolerance (withstanding property) and a method for fabricating the same including a substrate and a V-shaped distortion structure made of an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer on the substrate and formed with reference to the n-type nitride semiconductor layer.
    Type: Application
    Filed: January 25, 2012
    Publication date: May 17, 2012
    Applicant: SAMSUNG LED CO., LTD
    Inventors: Sang Won KANG, Yong Chun KIM, Dong Hyun CHO, Jeong Tak OH, Dong Joon KIM
  • Publication number: 20120097976
    Abstract: A light emitting diode chip includes an electrically conductive substrate, a reflecting layer disposed on the substrate, a semiconductor structure formed on the reflecting layer, an electrode disposed on the semiconductor structure, and a plurality of slots extending through the semiconductor structure. The semiconductor structure includes a P-type semiconductor layer formed on the reflecting layer, a light-emitting layer formed on the P-type semiconductor layer, and an N-type semiconductor layer formed on the light-emitting layer. A current diffusing region is defined in the semiconductor structure and around the electrode. The slots are located outside the current diffusing region.
    Type: Application
    Filed: August 22, 2011
    Publication date: April 26, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: PO-MIN TU, SHIH-CHENG HUANG, SHUN-KUEI YANG, CHIA-HUNG HUANG
  • Publication number: 20120043557
    Abstract: The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
    Type: Application
    Filed: November 1, 2011
    Publication date: February 23, 2012
    Applicant: SAMSUNG LED CO., LTD.
    Inventors: Sun Woon KIM, Hyun Kyung KIM, Je Won KIM, In Seok CHOI, Kyu Han LEE, Jeong Tak OH
  • Publication number: 20120037923
    Abstract: [PROBLEM] To provide a light emitting diode which can obtain emission at shorter wavelength side of emission range of normal 6H-type SiC doped with B and N, and a method for manufacturing the same. [MEANS FOR SOLVING] Porous layer 124 consisting of single crystal 6H-type SiC of porous state is formed on a SiC substrate 102 of a light emitting diode element 100 such that visible light which is from blue color to green color when the porous layer 124 is excited by ultra violet light emitted from nitride semiconductor layer.
    Type: Application
    Filed: March 26, 2010
    Publication date: February 16, 2012
    Applicant: MEIJO UNIVERSITY
    Inventors: Satoshi Kamiyama, Motoaki Iwaya, Hiroshi Amano, Isamu Akasaki, Takuya Nishimura, Fumiharu Teramae, Toshiyuki Kondo
  • Publication number: 20120012863
    Abstract: An indirect-bandgap-semiconductor, light-emitting diode. The indirect-bandgap-semiconductor, light-emitting diode includes a plurality of portions including a p-doped portion of an indirect-bandgap semiconductor, an intrinsic portion of the indirect-bandgap semiconductor, and a n-doped portion of the indirect-bandgap semiconductor. The intrinsic portion is disposed between the p-doped portion and the n-doped portion and forms a p-i junction with the p-doped portion, and an i-n junction with the n-doped portion. The p-i junction and the i-n junction are configured to facilitate formation of at least one hot electron-hole plasma in the intrinsic portion when the indirect-bandgap-semiconductor, light-emitting diode is reverse biased and to facilitate luminescence produced by recombination of a hot electron with a hole.
    Type: Application
    Filed: March 23, 2009
    Publication date: January 19, 2012
    Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov
  • Publication number: 20110215340
    Abstract: A semiconductor light-emitting device according to the present invention includes: a GaN substrate 1 containing an n-type impurity and being made of silicon carbide or a nitride semiconductor; a multilayer structure 10 provided on a main surface of the GaN substrate 1; a p-electrode 17 formed on the multilayer structure 10; a first n-electrode 18 substantially covering the entire rear surface of the GaN substrate 1; and a second n-electrode 20 provided on the first n-electrode 18 so as to expose at least a portion of the periphery of the first n-electrode 18.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Inventors: Naomi Anzue, Gaku Sugahara, Yoshiaki Hasegawa, Akihiko Ishibashi, Toshiya Yokogawa
  • Patent number: 7750352
    Abstract: Light strips for emergency lighting, path lighting, accent lighting and device lighting are provided. Devices incorporating and lighted by the light strips are also provided. The light strips include a light emitting layer made from a plurality of semiconductor nanoparticles disposed between and in electrical communication with an anode and a cathode. The semiconductor nanoparticles may be made from Group IV semiconductors, such as silicon. Devices that may be lit with the light strips include displays and keypad, such as those found in cellular phones and personal digital assistants.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: July 6, 2010
    Assignee: Pinion Technologies, Inc.
    Inventor: Paul Thurk
  • Patent number: 7700936
    Abstract: In one embodiment, a method of producing an optoelectronic nanostructure includes preparing a substrate; providing a quantum well layer on the substrate; etching a volume of the substrate to produce a photonic crystal. The quantum dots are produced at multiple intersections of the quantum well layer within the photonic crystal. Multiple quantum well layers may also be provided so as to form multiple vertically aligned quantum dots. In another embodiment, an optoelectronic nanostructure includes a photonic crystal having a plurality of voids and interconnecting veins; a plurality of quantum dots arranged between the plurality of voids, wherein an electrical connection is provided to one or more of the plurality of quantum dots through an associated interconnecting vein.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 20, 2010
    Assignee: University of Delaware
    Inventors: Janusz Murakowski, Garrett Schneider, Dennis W. Prather
  • Publication number: 20100059763
    Abstract: Disclosed is a light emitting element comprising a first array having a plurality of vertical light emitting cells connected in series on a single substrate; and a second array that has another plurality of vertical light emitting cells connected in series on the single substrate and is connected to the first array in reverse parallel. In the light emitting element, each of the vertical light emitting cells in the first and second arrays has a first electrode pad on a bottom surface thereof and a second electrode pad on a top surface thereof, and a connection portion is provided to electrically connect the first electrode pad of the vertical light emitting cell in the first array to the first electrode pad of the vertical light emitting cell in the second array.
    Type: Application
    Filed: December 7, 2007
    Publication date: March 11, 2010
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Dae Won Kim, Dae Sung Kal
  • Patent number: 7675079
    Abstract: In silicon-carbide based light emitting diodes (LEDs) and other similar applications, diamond crystals are used to provide an intermediate refractive index that permits more of the ultraviolet light generated in the diode to reach the phosphors, producing a brighter light with greater efficiency.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 9, 2010
    Inventor: Victor B. Kley
  • Publication number: 20100001292
    Abstract: Provided is a light emitting device formed of an indirect transition semiconductor configured from a semiconductor material having high exciton binding energy, wherein an active layer of the indirect transition semiconductor or an active region by a pn junction is formed, the light emitting device has an electrode for injecting current into the active layer or the active region, and the internal quantum efficiency is 10% or more.
    Type: Application
    Filed: August 13, 2007
    Publication date: January 7, 2010
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE
    Inventors: Satoshi Yamasaki, Toshiharu Makino, Hideyo Ookushi, Norio Tokuda, Hiromitsu Kato, Masahiko Ogura, Hideyuki Watanabe, Sung-Gi Ri, Daisuke Takeuchi
  • Publication number: 20090294797
    Abstract: A semiconductor light-emitting device according to the present invention includes: a GaN substrate 1 containing an n-type impurity and being made of silicon carbide or a nitride semiconductor; a multilayer structure 10 provided on a main surface of the GaN substrate 1; a p-electrode 17 formed on the multilayer structure 10; a first n-electrode 18 substantially covering the entire rear surface of the GaN substrate 1; and a second n-electrode 20 provided on the first n-electrode 18 so as to expose at least a portion of the periphery of the first n-electrode 18.
    Type: Application
    Filed: July 13, 2007
    Publication date: December 3, 2009
    Inventors: Naomi Anzue, Gaku Sugahara, Yoshiaki Hasegawa, Akihiko Ishibashi, Toshiya Yokogawa
  • Publication number: 20080197362
    Abstract: A light emitting diode demonstrating high luminescence efficiency and comprising a Group IV semiconductor such as silicon or germanium equivalent thereto as a basic component formed on a silicon substrate by a prior art silicon process, and a fabricating method of waveguide thereof are provided. The light emitting diode of the invention comprises a first electrode for implanting electrons, a second electrode for implanting holes, and a light emitting section electrically connected to the first and the second electrode, wherein the light emitting section is made out of single crystalline silicon and has a first surface and a second surface facing the first surface, wherein with respect to plane orientation (100) of the first and second surfaces, the light emitting section crossing at right angles to the first and second surfaces is made thinner, and wherein a material having a high refractive index is arranged around the thin film section.
    Type: Application
    Filed: November 6, 2007
    Publication date: August 21, 2008
    Inventors: Digh HISAMOTO, Shinichi Saito, Shinichiro Kimura
  • Publication number: 20080128713
    Abstract: A light-emitting device according to the present invention includes a first electrode unit 9 for injecting an electron, a second electrode unit 10 for injecting a hole, and light-emitting units 11 and 12 electrically connected to the first electrode unit 9 and the second electrode unit 10 respectively, wherein the light-emitting units 11 and 12 are formed of single-crystal silicon, the light-emitting units 11 and 12 having a first surface (topside surface) and a second surface (underside surface) opposed to the first surface, plane orientation of the first and second surfaces being set to a (100) plane, thicknesses of the light-emitting units 11 and 12 in a direction orthogonal to the first and second surfaces being made extremely thin.
    Type: Application
    Filed: April 24, 2007
    Publication date: June 5, 2008
    Inventors: Shinichi Saito, Digh Hisamoto, Tadashi Arai, Takahiro Onai
  • Publication number: 20070263690
    Abstract: An electronic or optoelectronic device fabricated from a crystalline material in which a parameter of a bandgap characteristic of said crystalline material has been modified locally by introducing distortions on an atomic scale in the lattice structure of said crystalline material and the electronic and/or optoelectronic parameters of said device are dependent on the modification of said bandgap is exemplified by a radiation emissive optoelectronic semiconductor device which comprises a junction (10) formed from a p-type layer (11) and an n-type layer (12), both formed from indirect bandgap semiconductor material. The p-type layer (11) contains a array of dislocation loops which create a strain field to confine spatially and promote radiative recombination of the charge carriers.
    Type: Application
    Filed: June 29, 2007
    Publication date: November 15, 2007
    Applicant: University of Surrey
    Inventors: Kevin Homewood, Russell Gwilliam, Guosheng Shao
  • Patent number: 7247885
    Abstract: In one aspect, a first region that includes a first Group IV semiconductor that has a bandgap and is doped with a first dopant of a first electrical conductivity type is formed. A pattern is created. The pattern controls formation of local crystal modifications in the first Group IV semiconductor in an array. An array of local crystal modifications is formed in the first Group IV semiconductor in accordance with the pattern. The local crystal modifications induce overlapping strain fields that increase the bandgap of the first Group IV semiconductor, create an energy band barrier against transport of minority carriers across the first region. A second region that includes a second Group IV semiconductor that has a bandgap and is doped with a second dopant of a second electrical conductivity type opposite the first conductivity type is formed. Semiconductor devices formed in accordance with this method also are described.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 24, 2007
    Assignee: Avago Technologies General IP (Singapore) Ltd. Pte.
    Inventors: Glenn H. Rankin, Sandeep R. Bahl
  • Patent number: 7148514
    Abstract: The invention relates to a nitride semiconductor LED and a fabrication method thereof. In the LED, a first nitride semiconductor layer, an active region a second nitride semiconductor layer of a light emitting structure are formed in their order on a transparent substrate. A dielectric mirror layer is formed on the underside of the substrate, and has at least a pair of alternating first dielectric film of a first refractivity and a second dielectric film of a second refractivity larger than the first refractivity. A lateral insulation layer is formed on the side of the substrate and the light emitting structure. The LED of the invention effectively collimate undesirably-directed light rays, which may be otherwise extinguished, to maximize luminous efficiency, and are protected by the dielectric mirror layer formed on the side thereof to remarkably improve ESD characteristics.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: December 12, 2006
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jun Ho Seo, Jong Ho Jang