Coatings (epo) Patents (Class 257/E33.06)
  • Publication number: 20130234177
    Abstract: The present invention relates to a package structure for light-emitting diodes (LEDs). The package structure includes a substrate, a heat-dissipating structure disposed on the substrate, and a plurality of LED chips uniformly disposed on the heat-dissipating structure. The heat-dissipating structure has a central portion and at least one peripheral portion surrounding thereof. The central portion is capable of dissipating more heat than the peripheral portion. Thus, the temperature difference between the LED chips disposed on the central portion and the LED chips disposed on the peripheral portion can be reduced.
    Type: Application
    Filed: June 22, 2012
    Publication date: September 12, 2013
    Applicants: LITE-ON TECHNOLOGY CORPORATION, SILITEK ELECTRONIC (GUANGZHOU) CO., LTD.
    Inventors: KUO-MING CHIU, TSUNG-CHI LEE, CHIA-HAO WU, MENG-SUNG CHOU
  • Publication number: 20130235892
    Abstract: A solid-state lasing device includes a micro-chip oscillator (MCO) affixed to a first tube, and a volume Bragg grating (VBG) plate affixed to a second tube. The second tube is configured to be telescopically coupled to the first tube with a slip fit such that the VBG plate is concentrically aligned with and is positioned at a specified distance from the MCO.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Raytheon Company
    Inventors: Michael Ushinsky, Joseph J. Ichkhan, Derek M. Hendry
  • Patent number: 8530257
    Abstract: Methods for improving the temperature performance of AlInGaP based light emitters. Nitrogen is added to the quantum wells in small quantities. Nitrogen is added in a range of about 0.5 percent to 2 percent. The addition of nitrogen increases the conduction band offset and increases the separation of the indirect conduction band. To keep the emission wavelength in a particular range, the concentration of In in the quantum wells may be decreased or the concentration of Al in the quantum wells may be increased. The net result is an increase in the conduction band offset and an increase in the separation of the indirect conduction band.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: September 10, 2013
    Assignee: Finisar Corporation
    Inventor: Ralph Herbert Johnson
  • Patent number: 8530927
    Abstract: A light-emitting device includes a semiconductor light-emitting stack; a current injected portion formed on the semiconductor light-emitting stack; an extension portion having a first branch radiating from the current injected portion and having a first width, and a first length greater than the first width, and a second branch extending from the first branch and having a second width larger than the first width, and a second length greater than the second width; and an electrical contact structure between the second branch and the semiconductor light-emitting stack.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 10, 2013
    Assignee: Epistar Corporation
    Inventors: Chien-Fu Huang, Min-Hsun Hsieh, Chih-Chiang Lu, Chia-Liang Hsu, Shih-I Chen
  • Patent number: 8530253
    Abstract: A method of fabricating a flexible display device includes: forming a plastic substrate on a carrier substrate, the plastic substrate including an active area and a non-active area surrounding the active area; forming an array element on the carrier substrate, the array element including a plurality of layers and having an average adhesion force among the plurality of layers; forming a first film on the array element, the first film having a first adhesion force; attaching a flexible printed circuit board to the plastic substrate; forming a second film on the first film, the second film having a second adhesion force greater than the first adhesion force; and detaching the plastic substrate from the carrier substrate.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: September 10, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Aram Shin, Tae-Joon Ahn
  • Publication number: 20130221367
    Abstract: According to one embodiment, a semiconductor light emitting device includes a light emitting layer, a first electrode, a first conductivity type layer, a second conductivity type layer, and a second electrode. The first electrode includes a reflection metal layer. The first conductivity type layer is provided between the light emitting layer and the first electrode. The second conductivity type layer has a first surface on the light emitting layer side and a second surface on an opposite side of the first surface. The second electrode is provided on the second surface of the second conductivity type layer. A plurarity of interfaces, provided between the first conductivity type layer and the reflection metal layer, has at least first concave-convex structures. A region of the second surface of the second conductivity type layer, where the second electrode is not provided, has second concave-convex structures.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 29, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuyoshi Furuki, Hironori Yamasaki, Yukie Nishikawa
  • Patent number: 8519511
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yoshimaro Fujii, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Publication number: 20130214310
    Abstract: A semiconductor package and a fabrication method thereof are disclosed, which is characterized in that a solder material is used to bond an LED chip and a substrate so as to provide a thick joint between the substrate and the LED chip and hence reduce stresses generated between the LED chip and the substrate due to their CTE mismatch, thereby preventing delamination from occurring between the LED chip and the substrate after a reliability test.
    Type: Application
    Filed: May 30, 2012
    Publication date: August 22, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yuen-Han Wang, Sheng-Li Lu, Jih-Fu Wang, Hsien-Wen Chen, Kuan-Yu Yang
  • Publication number: 20130209026
    Abstract: An optoelectronic integrated circuit for coupling light to or from an optical waveguide formed in an optical device layer in a near-normal angle to that layer. In an embodiment, the integrated circuit comprises a semiconductor body including a metal-dielectric stack, an optical device layer, a buried oxide layer and a semiconductor substrate arranged in series between first and second opposite sides of the semiconductor body. At least one optical waveguide is formed in the optical device layer for guiding light in a defined plane in that device layer. Diffractive coupling elements are disposed in the optical device layer to couple light from the waveguide toward the second surface of the semiconductor body at a near-normal angle to the defined plane in the optical device layer. In an embodiment, an optical fiber is positioned against the semiconductor body for receiving the light from the coupling elements.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Fuad Doany, Benjamin G. Lee, Clint L. Schow
  • Patent number: 8508056
    Abstract: A heat releasing semiconductor package, a method for manufacturing the same, and a display apparatus including the same. The heat releasing semiconductor package includes a film, an electrode pattern formed over the film, a semiconductor device mounted over the electrode pattern, and a first heat releasing layer formed over the semiconductor device including the electrode pattern, the first heat releasing layer including a first adhesive and a first heat releasing material.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: August 13, 2013
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Sung-Jin Kim, Jun-Il Kim
  • Publication number: 20130200422
    Abstract: An organic light emitting diode display includes a substrate, an organic light emitting diode provided on the substrate and including a first electrode, an organic emission layer, and a second electrode, a packed layer on the organic light emitting diode, and a protective layer on the packed layer, the protective layer including at least one of a graphene oxide and a graphene nitride.
    Type: Application
    Filed: July 18, 2012
    Publication date: August 8, 2013
    Inventors: Yun-Mo CHUNG, Jeong-Yeong Jeong, Jong-Ryuk Park, Jin-Wook Seo
  • Patent number: 8502264
    Abstract: A composite substrate (1) comprising a substrate body (2) and a utility layer (31) fixed on the substrate body (2). A planarization layer (4) is arranged between the utility layer (31) and the substrate body (2). A method for producing a composite substrate (1) applies a planarization layer (4) on a provided utility substrate (3). The utility substrate (3) is fixed on a substrate body (2) for the composite substrate (1). The utility substrate (3) is subsequently separated, wherein a utility layer (31) of the utility substrate (3) remains for the composite substrate (1) on the substrate body (2).
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 6, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Volker Hârle, Uwe Strauss, Georg Brüderl, Christoph Eichler, Adrian Avramescu
  • Patent number: 8497145
    Abstract: A method for producing an optoelectronic component including providing a radiation-emitting device, heating the device and applying a liquid lens material in a beam path of the device, wherein, with crosslinking of the lens material, a lens shaped onto the device is formed.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 30, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Simon Blümel, Folke Schneider-Pungs
  • Publication number: 20130187179
    Abstract: A light emitting diode (LED) is provided that includes a host substrate formed from a first material, an n-type layer formed over the host substrate, an active region formed over the n-type layer, and a p-type layer formed over the active region. A layer is formed adjacent to the host substrate and includes a second material, the second material being different from the first material or having a refractive index different from a refractive index of the first material. Further, the second material is formed with a tapered outwards sidewall profile.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: WeiSin TAN, Michael John BROCKLEY, Valerie BERRYMAN-BOUSQUET
  • Publication number: 20130187122
    Abstract: The present disclosure involves a method of fabricating a lighting apparatus. The method includes forming a first III-V group compound layer over a substrate. The first III-V group compound layer has a first type of conductivity. A multiple quantum well (MQW) layer is formed over the first III-V group compound layer. A second III-V group compound layer is then formed over the MQW layer. The second III-V group compound layer has a second type of conductivity different from the first type of conductivity. Thereafter, a plurality of conductive components is formed over the second III-V group compound layer. A light-reflective layer is then formed over the second III-V group compound layer and over the conductive components. The conductive components each have better adhesive and electrical conduction properties than the light-reflective layer.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: TAIWAN SEMICONDUTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yea-Chen Lee, Jung-Gang Chu, Ching-Hua Chiu, Hung-Wen Huang
  • Publication number: 20130188659
    Abstract: A surface emitting semiconductor laser includes a substrate; a first semiconductor distributed bragg reflector of a first conductive type; an active region; a second semiconductor distributed bragg reflector of a second conductive type; a current confinement layer that confines current in the active region; an optical confinement layer that confines light in the active region; and an optical loss unit including center and periphery portions in a predetermined direction, and gives a larger optical loss to the periphery portion than that of the center portion. Also, Do1<Do2 and Dn<Do2 are satisfied, where Do1 is a width of an optical confinement region of the optical confinement layer in the predetermined direction, Do2 is a width of a current confinement region of the current confinement layer in the predetermined direction, and Dn is a width of the center portion of the optical loss unit in the predetermined direction.
    Type: Application
    Filed: October 17, 2012
    Publication date: July 25, 2013
    Applicant: FUJI XEROX CO., LTD.
    Inventor: Fuji Xerox Co., Ltd.
  • Patent number: 8486730
    Abstract: A method of forming a light-emitting diode (LED) device and separating the LED device from a growth substrate is provided. The LED device is formed by forming an LED structure over a growth substrate. The method includes forming and patterning a mask layer on the growth substrate. A first contact layer is formed over the patterned mask layer with an air bridge between the first contact layer and the patterned mask layer. The first contact layer may be a contact layer of the LED structure. After the formation of the LED structure, the growth substrate is detached from the LED structure along the air bridge.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 16, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Ding-Yuan Chen, Hung-Ta Lin, Chen-Hua Yu, Wen-Chih Chiou
  • Publication number: 20130168703
    Abstract: A method for depositing a layer of phosphor-containing material on a plurality of LED dies includes disposing a template with a plurality of openings on an adhesive tape and disposing each of a plurality of LED dies in one of the plurality of openings of the template. The method also includes disposing a stencil over the template and the plurality of LED dies. The stencil has a plurality of openings configured to expose a top surface of each of the LED dies. Next, a phosphor-containing material is disposed on the exposed top surface of each the LED dies. The method further includes removing the stencil and the template.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: LedEngin, Inc.
    Inventors: Zequn Mei, Xiantao Yan
  • Publication number: 20130168714
    Abstract: A light emitting diode package structure is provided, including a substrate, a seal assembly, an optical element, at least one light emitting diode chip, and a packaging material layer. The seal assembly is disposed on the substrate. The optical element is disposed on the seal assembly, and an enclosed space is formed between the optical element, the seal assembly, and the substrate. The light emitting diode chip is disposed on the substrate and located in the enclosed space. The packaging material layer is located in the enclosed space and at least disposed on an upper surface of the light emitting diode chip, wherein the packaging material layer includes a liquid with high viscosity and a plurality of solid particles, and the viscosity of the liquid with high viscosity is more than 3000 mPa·s.
    Type: Application
    Filed: October 3, 2012
    Publication date: July 4, 2013
    Inventors: Chao-Wei Li, Hung-Lieh Hu
  • Publication number: 20130169901
    Abstract: A display substrate includes a base substrate, a thin-film transistor (TFT), a color filter and a pixel electrode. The TFT is on the base substrate. The color filter is on the base substrate including the TFT and in contact with the base substrate. The pixel electrode is on the color filter and in electrical connection to a drain electrode of the TFT.
    Type: Application
    Filed: August 1, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Swae-Hyun KIM, Hoon KANG, Jae-Hwa PARK, Yeo-Geon YOON, Sung-Hee HONG
  • Publication number: 20130161670
    Abstract: Light emitting, diode (LED) packages and processes with improved heat dissipation. In certain embodiments, only metal solder resides in the space between the leadframe and the circuit board, providing good heat conduction from the LED chip to the circuit board. In certain embodiments, sidewalls of the leadframe are tilted to provide improved light emission.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Inventor: Sheng-Yang Peng
  • Publication number: 20130161669
    Abstract: An LED with a current diffusion structure comprises an N-type semiconductor layer, a light emitting layer, a P-type semiconductor layer, an N-type electrode, a P-type electrode and a current blocking layer. The N-type semiconductor layer, light emitting layer and P-type semiconductor layer form a sandwich structure. The N-type and P-type electrodes are respectively arranged on the N-type and P-type semiconductor layers. The current blocking layer has the pattern of the N-type electrode and is embedded inside the N-type semiconductor layer. Thereby not only current generated by the N-type electrode detours the current blocking layer and uniformly passes through the light emitting layer, but also prevents interface effect to increase impedance. Thus is promoted lighting efficiency of LED. Further, as main light-emitting regions of the light emitting layer are far from the N-type electrode, light shielded by the N-type electrode is reduced and illumination of LED is thus enhanced.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Inventors: Fu-Bang Chen, Wei-Yu Yen, Chih-Sung Chang
  • Publication number: 20130161667
    Abstract: A light emitting diode array includes a first light emitting diode with a first electrode and a second light emitting diode with a second electrode. A first dielectric layer is positioned between the light emitting diodes. A first portion of the first dielectric layer at least partially covers the first light emitting diode and a second portion of the first dielectric layer at least partially covers the second light emitting diode. An interconnect is located at least partially on the first dielectric layer. The interconnect connects the first electrode to the second electrode. A reflective layer is formed over at least the first and second portions of the first dielectric layer. A permanent substrate is coupled to a side of the light emitting diodes having the reflective layer.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Applicant: PHOSTEK, INC.
    Inventors: Chia-Nan Chen, Yi-An Lu
  • Publication number: 20130161674
    Abstract: A semiconductor light emitting element includes a stacked body, a metal reflection layer and a metal pad portion. The stacked body is made of InxGayAl1-x-yN (0?x?1, 0?y?1, x+y?1), has a first surface and a second surface on an opposite side of the first surface and includes a light emitting layer. The metal reflection layer is provided on the first surface of the stacked body, includes silver or a silver alloy and has a mesh-like structure. The metal pad portion is provided so as to cover the first surface of the stacked body exposed at an opening provided in the mesh-like structure and a surface of the metal reflection layer. Light emitted from the light emitting layer is emitted from the second surface side of the stacked body.
    Type: Application
    Filed: August 31, 2012
    Publication date: June 27, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Shuji ITONAGA
  • Patent number: 8471277
    Abstract: A light emitting device according to one embodiment includes a light emitting element that emits light having a wavelength of 380 nm to 470 nm; a CASN first red phosphor that is disposed on the light emitting element; a sialon second red phosphor that is disposed on the light emitting element; and a sialon green phosphor that is disposed on the light emitting element.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: June 25, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Iwao Mitsuishi, Shinya Nunoue, Takahiro Sato, Yumi Fukuda, Aoi Okada, Naotoshi Matsuda, Toshiki Hikosaka, Keiko Albessard, Masahiro Kato
  • Publication number: 20130153944
    Abstract: A semiconductor package structure includes an insulating substrate, a patterned conductive layer, a light emitting diode (LED) chip and a conductive connection part. The insulating substrate has an upper surface divided into an element configuration region and an element bonding region. The patterned conductive layer includes plural circuits located in the element configuration region and at least one bonding pad located in the element bonding region. The LED chip is flip chip bonded on the patterned conductive layer and electrically connected to the circuits. The conductive connection part has a first end point electrically connected to the bonding pad and a second end point electrically connected to an external circuit. The bonding pad and a corner of the LED chip are disposed correspondingly. A horizontal distance between an apex of the corner and the first end point of the conductive connection part is greater than or equal to 30 micrometers.
    Type: Application
    Filed: November 6, 2012
    Publication date: June 20, 2013
    Inventors: Po-Jen Su, Chih-Ling Wu, Yi-Ru Huang, Yi-Ju Shih
  • Publication number: 20130154519
    Abstract: A device for emitting white light includes, in certain embodiments, an ultraviolet and/or a blue LED having an emission surface, a conversion coating spaced away from but enveloping the emission surface to form a first mixing cavity, at least one secondary LED emitting a color different from ultraviolet and blue and spaced away from the conversion coating, and a diffuser spaced away from but enveloping the conversion coating and the secondary LED to define a second mixing cavity that is unfilled.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Inventor: SCOTT A. RIESEBOSCH
  • Publication number: 20130153915
    Abstract: An organic light-emitting display apparatus includes a substrate including a plurality of red, green, and blue sub-pixel regions, a pixel electrode in each of the plurality of the red, green, and blue sub-pixel regions on the substrate, a Distributed Bragg Reflector (DBR) layer between the substrate and the pixel electrodes, a high-refractive index layer between the substrate and the DBR layer in the blue sub-pixel region, the high-refractive index layer having a smaller area than an area of a corresponding pixel electrode in the blue sub-pixel region, an intermediate layer including an emissive layer on the pixel electrode, and an opposite electrode on the intermediate layer.
    Type: Application
    Filed: August 22, 2012
    Publication date: June 20, 2013
    Inventors: Jong-Hyun CHOI, Dong-Hyun Lee, Dae-Woo Lee, Seong-Hyun Jin, Guang-Hai Jin
  • Publication number: 20130156057
    Abstract: The inventive concept provides semiconductor laser devices and methods of fabricating the same. According to the method, a silicon-crystalline germanium layer for emitting a laser may be formed in a selected region by a selective epitaxial growth (SEG) method. Thus, surface roughness of both ends of a Fabry Perot cavity formed of the silicon-crystalline germanium layer may be reduced or minimized, and a cutting process and a polishing process may be omitted in the method of fabricating the semiconductor laser device.
    Type: Application
    Filed: July 10, 2012
    Publication date: June 20, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: In Gyoo KIM, Gyungock KIM, Sang Hoon KIM, JiHo JOO, Ki Seok JANG
  • Publication number: 20130140593
    Abstract: A light emitting diode including a substrate, a first semiconductor layer, an active layer, and a second semiconductor layer is provided. The first semiconductor layer includes a first surface and a second surface, and the first surface is connected to the substrate. The active layer and the second semiconductor layer are stacked on the second surface in that order, and a surface of the second semiconductor layer away from the active layer is configured as the light emitting surface. A first electrode electrically is connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer. A number of three-dimensional nano-structures are located on the surface of the first surface of the first semiconductor layer and aligned side by side, and a cross section of each of the three-dimensional nano-structure is M-shaped.
    Type: Application
    Filed: May 22, 2012
    Publication date: June 6, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: ZHEN-DONG ZHU, QUN-QING LI, LI-HUI ZHANG, MO CHEN, SHOU-SHAN FAN
  • Patent number: 8455873
    Abstract: It is an object of the present invention to provide a high reliable EL display device and a manufacturing method thereof by shielding intruding moisture or oxygen which is a factor of deteriorating the property of an EL element without enlarging the EL display device. In the invention, application is used as a method for forming a high thermostability planarizing film 16, typically, an interlayer insulating film (a film which serves as a base film of a light emitting element later) of a TFT in which a skeletal structure is configured by the combination of silicon (Si) and oxygen (O). After the formation, an edge portion or an opening portion is formed to have a tapered shape. Afterwards, distortion is given by adding an inert element with a comparatively large atomic radius to modify or highly densify a surface (including a side surface) for preventing the intrusion of moisture or oxygen.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: June 4, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masaharu Nagai, Osamu Nakamura
  • Patent number: 8455900
    Abstract: A light-emitting device includes a light emitting structure comprising a lower layer of the first conductivity type, an active layer, an upper layer of the second conductivity type, a first electrode connected to the lower layer of the first conductivity type, a second electrode connected to the upper layer of the second conductivity type, and an optical member seeded in the light emitting structure. The optical member can include a plurality of particles substantially transparent and having a lower refractive index than the light emitting structure. A plurality of discontinuities are formed at the boundary of the optical member in the light emitting structure.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 4, 2013
    Inventor: Tien Yang Wang
  • Patent number: 8455907
    Abstract: A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, a frame located on the base board, at least one light-emitting chip mounted on the base board, the wavelength converting layer located between an optical plate and each outside surface of the chips so as to extend toward the optical plate using a meniscus control structure, and a reflective material layer disposed at least between the frame and both side surfaces of the wavelength converting layer and the optical plate. The semiconductor light-emitting device can be configured to improve light-emitting efficiency and color variability between the light-emitting chips by using the reflective material layer as each reflector, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from various small light-emitting surfaces.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: June 4, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Takeshi Waragawa, Kosaburo Ito
  • Patent number: 8455910
    Abstract: A method of manufacturing light emitting diode packaging lens and packages made by using the method are disclosed in the present invention. By using electrophoretic deposition, one or more layers of phosphors are coated onto one surface of a cup which has a curved portion. The cup is used for the packaging lens. Thickness of phosphor layer can be controlled and distribution of phosphor particles is uniform. Therefore, light emitting diode packages with the lens can be a uniform light source.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: June 4, 2013
    Assignee: Walsin Lihwa Corporation
    Inventors: Chung-I Chiang, Tsan Lu, Hung-Yi Lin, Hsien-Lung Ho
  • Publication number: 20130134459
    Abstract: Using compression molding to form lenses over LED arrays on a metal core printed circuit board leaves a flash layer of silicone covering the contact pads that are later required to connect the arrays to power. A method for removing the flash layer involves blasting particles of sodium bicarbonate at the flash layer. A nozzle is positioned within thirty millimeters of the top surface of the flash layer. The stream of air that exits from the nozzle is directed towards the top surface at an angle between five and thirty degrees away from normal to the top surface. The particles of sodium bicarbonate are added to the stream of air and then collide into the top surface of the silicone flash layer until the flash layer laterally above the contact pads is removed. The edge of silicone around the cleaned contact pad thereafter contains a trace amount of sodium bicarbonate.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Bridgelux, Inc.
    Inventors: R. Scott West, Tao Tong, Mike Kwon
  • Publication number: 20130134447
    Abstract: A low-light-emitting-angle high-luminance ultraviolet (UV) light-emitting diode (LED) nail lamp structure and an LED light source module thereof are provided. The UV LED nail lamp structure includes a housing and an LED light source module. The LED light source module is provided in the housing and has a plurality of UV LEDs, wherein the light-emitting angle of each UV LED ranges between 25° and 80°. The UV LED nail lamp structure features high luminance and enhanced lighting effect.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 30, 2013
    Applicant: Helio Optoelectronics Corporation
    Inventors: Ching-Jen PAN, Ming-Hung Chen
  • Publication number: 20130134464
    Abstract: The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 30, 2013
    Applicant: GENESIS PHOTONICS INC.
    Inventor: GENESIS PHOTONICS INC.
  • Publication number: 20130126919
    Abstract: According to an embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer, a dielectric film and an electrode. The first semiconductor layer is capable of emitting light. The second semiconductor layer has a first major surface in contact with the first semiconductor layer and a second major surface opposite to the first major surface, the second major surface including a first region having convex structures and a second region not having the convex structures. The dielectric film is provided at least at a tip portion of the convex structures, and the electrode is provided above the second region.
    Type: Application
    Filed: September 13, 2012
    Publication date: May 23, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hironori Yamasaki, Yukie Nishikawa
  • Publication number: 20130121009
    Abstract: A light emitting device is provided with a semiconductor light emitting element and a wavelength conversion portion. The wavelength conversion portion includes an outer peripheral portion between an input surface and an output surface. The outer peripheral portion includes a first inclined part at a side of the input surface and a second inclined part at a side of the output surface. The first inclined part and the second inclined part define a projecting portion that is projected on the outer peripheral portion.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 16, 2013
    Inventors: Yasuaki Tsutsumi, Masanobu Mizuno, Yasutaka Sasaki, Mitsutoshi Higashi, Akinori Shiraishi, Rie Arai
  • Publication number: 20130122619
    Abstract: An optical device wafer is divided into individual optical devices along streets. A modified layer is formed by applying a laser beam to a sapphire substrate constituting the optical device wafer along the streets from the back side of the sapphire substrate such that the focal point of the laser beam is set inside the sapphire substrate, thereby forming a modified layer inside the sapphire substrate along each street. A reflective film is formed on the back side of the sapphire substrate and the reflective film is cut by applying a laser beam along the streets from the back side of the sapphire substrate. The wafer is divided by applying an external force to the optical device wafer to thereby break the optical device wafer along each street where the modified layer is formed, so that the optical device wafer is divided into the individual optical devices.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 16, 2013
    Applicant: DISCO CORPORATION
    Inventor: Disco Corporation
  • Publication number: 20130119420
    Abstract: A light emitting device is disclosed. The light emitting device includes an electrode, which includes a reflective electrode layer disposed over a second semiconductor layer and a bonding electrode layer disposed in at least a partial region of an outer side surface of the reflective electrode layer while coming into contact with the second semiconductor layer. Thus, it may be possible to enhance bonding reliability between the electrode and the semiconductor layer.
    Type: Application
    Filed: March 6, 2012
    Publication date: May 16, 2013
    Inventors: Byungyeon CHOI, Hyunseoung Ju, Yonggyeong Lee, Giseok Hong, Jihee No
  • Publication number: 20130122621
    Abstract: A coating method for liquid crystal alignment film of TFT-LCD including: forming a layer of hydrophobic film on a TFT/CF substrate corresponding to a non-display area, the hydrophobic film separates the TFT/CF substrate into a plurality of rectangular opened areas which are separated from each other, each of the rectangular opened areas corresponds to a display area and its outer frame is formed by the hydrophobic film; and coating of a liquid of a material of an alignment film along a boundary of the rectangular opened area. Accordingly, edge waves caused by spreading of drips of the material of the alignment film can be reduced, so that a precision of printing of the alignment film can be controlled effectively.
    Type: Application
    Filed: December 8, 2011
    Publication date: May 16, 2013
    Inventors: Mei-Na Zhu, Jian-Jun Zhao, Hsiang-Yin Shih
  • Publication number: 20130119417
    Abstract: Light emitting diode (LED) packages and methods are disclosed herein. In one aspect, a light emitting package is disclosed. The light emitting package includes one or more areas of conductive material having a thickness of less than approximately 50 microns (?m). The package can further include at least one light emitting diode (LED) electrically connected to the conductive material and at least one thin gap disposed between areas of conductive material.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Inventors: Peter Scott Andrews, Jeffrey Carl Britt
  • Publication number: 20130113007
    Abstract: Disclosed is a light emitting device including a light emitting structure including a first conductive type semiconductor layer, an active layer and a second conductive type semiconductor layer, a first electrode layer, a second electrode layer disposed between the light emitting structure and the first electrode layer, and an insulating layer surrounding the edge of the second electrode layer under the second conductive type semiconductor layer, the insulating layer being disposed between the second electrode layer and the first electrode layer, wherein the first electrode layer passes through the second electrode layer, the second conductive type semiconductor layer and the active layer, and contacts the first conductive type semiconductor layer, and the second electrode layer comprises a plurality of first reflective layers that contact the second conductive type semiconductor layer and are spaced from one another by a predetermined distance.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 9, 2013
    Inventor: Woon Kyung CHOI
  • Patent number: 8436379
    Abstract: A semiconductor light emitting device includes a light emitting portion, and an electrode formed on the light emitting portion. The electrode includes: a light reflecting layer configured to reflect light emitted from the light emitting portion and including a first metal; a first seed layer formed directly on the light reflecting layer and including a second metal; a second seed layer coating at least side surfaces of the light reflecting layer and the first seed layer, the second seed layer including a third metal; and a plating layer coating at least top and side surfaces of the second seed layer, the plating layer including a fourth metal.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 7, 2013
    Assignee: Sony Corporation
    Inventors: Naoki Hirao, Toshihiko Watanabe
  • Publication number: 20130105847
    Abstract: Provided are a light emitting device package, a lighting device, and an image display device. The light emitting device package comprises an electrode layer comprising first and second electrode layers spaced from each other, a recess part in a portion of the first electrode layer, a light emitting device on the recess part of the first electrode layer, a reflective layer on the electrode layer, a resin layer on the light emitting device of the recess part of the first electrode layer, a lens on the resin layer and the reflective layer, an interface coupling layer at least partially contacting the lens, the interface coupling layer being disposed on one surface of the electrode layer, and an insulation layer pattern on the other surface of the electrode layer.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 2, 2013
    Inventors: Sun Mi MOON, Gun Kyo LEE, Nak Hun KIM
  • Publication number: 20130105823
    Abstract: Objects are to provide a small imaging device that can take an image of a thick book without distortion of an image of a gutter and to improve the portability of an imaging device by downsizing the imaging device. The imaging device has imaging planes on both surfaces. All elements included in the imaging device are preferably provided over one substrate. In other words, the imaging device has a first imaging plane and a second imaging plane facing opposite to the first imaging plane.
    Type: Application
    Filed: October 5, 2012
    Publication date: May 2, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: SEMICONDUCTOR ENERGY LABORATORY CO.
  • Publication number: 20130099263
    Abstract: A LED light source has a red, blue and green LED triad for generating a full spectrum of colored light that appears to be emanating from a point source. The LED triad is mounted in a CPC that is surrounded by a cylindrical reflector.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Inventors: Gregory Lee Heacock, Wes A. Williams
  • Publication number: 20130089938
    Abstract: A method for making light emitting diode is provided. The method includes following steps. A light emitting diode chip is provided, wherein the light emitting diode chip comprises a first semiconductor layer, an active layer and a second semiconductor layers stacked together in that order. A patterned mask layer is located on a surface of the first semiconductor layer, wherein the patterned mask layer includes a number of bar-shaped protruding structures aligned side by side, and a slot is defined between each two adjacent protruding structures to expose a portion of the first semiconductor layer. The exposed portion of the first semiconductor layer is etched to form a protruding pair. A number of M-shaped three-dimensional nano-structures are formed by removing the mask layer. A first electrode is electrically connected with the first semiconductor layer. A second electrode is electrically connected with the second semiconductor layer.
    Type: Application
    Filed: December 29, 2011
    Publication date: April 11, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: ZHEN-DONG ZHU, QUN-QING LI, SHOU-SHAN FAN
  • Publication number: 20130087814
    Abstract: A light emitting device is disclosed. The disclosed light emitting device includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer, a second electrode layer disposed beneath the light emitting structure and electrically connected to the second-conductivity-type semiconductor layer, a first electrode layer including a main electrode disposed beneath the second electrode layer, and at least one contact electrode branching from the main electrode and extending through the second electrode layer, the second-conductivity-type semiconductor layer and the active layer, to contact the first-conductivity-type semiconductor layer, and an insulating layer interposed between the first electrode layer and the second electrode layer and between the first electrode layer and the light emitting structure.
    Type: Application
    Filed: February 10, 2012
    Publication date: April 11, 2013
    Inventors: Ji Hyung MOON, Sang Youl LEE, Young kyu JEONG