Plural Magnetic Deposition Layers Patents (Class 29/603.14)
  • Patent number: 7246424
    Abstract: A magnetic device having a magnetic feature, the magnetic feature including a magnetic portion comprising a magnetic material, a region of non-magnetic material adjacent to the magnetic portion, and a stop layer disposed above the region of non-magnetic material, defining a planar upper boundary of the magnetic portion.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: July 24, 2007
    Assignee: Seagate Technology LLC
    Inventors: Picheng Huang, Paul E. Anderson, Laura C. Stearns, Song S. Xue
  • Patent number: 7246427
    Abstract: Biasing schemes used for CIP GMR devices were previously thought to be impractical for CPP devices due to current shunting by the abutted hard magnets. In the present invention the CPP stripe is a narrow conductor directly above the free layer. The resistivity of the latter is made to be relatively high so the sensing current diverges very little as it passes through it. This makes it possible to use abutted hard magnets for longitudinal bias with virtually no loss of sensing current due to shunting by the magnets.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: July 24, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Yimin Guo, Li-Yan Zhu
  • Patent number: 7243412
    Abstract: A method of manufacturing a magnetic head including a magnetic sensing portion formed of a magnetoresistive effect element, a magnetoresistive effect magnetic head manufacturing method depositing, via a film deposition process, a lamination layer having a free layer comprised of a soft magnetic material of which the magnetization is rotated in response to an external magnetic field, a fixed layer comprised of a ferromagnetic material, an antiferromagnetic layer for fixing the magnetization of said fixed layer, a magnetic flux introducing layer with a tip end of which is opposed to a surface which is brought in contact with or opposed to a magnetic recording medium, and a spacer layer interposed between said free layer and said fixed layer; patterning at least said free layer and said fixed layer with a mask such that opposing side surfaces of said free layer and said fixed layer are formed of one continuous surface; and forming hard magnetic layers having high or low resistance for maintaining a magnetic stab
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: July 17, 2007
    Assignee: Sony Corporation
    Inventors: Akio Furukawa, Yoshihiko Kakihara
  • Patent number: 7240419
    Abstract: A method of manufacturing a magnetoresistance effect element includes forming an insulating layer on a first ferromagnetic layer, forming an aperture reaching the first ferromagnetic layer by thrusting a needle from the top surface of the insulating layer, and depositing a ferromagnetic material to form a second ferromagnetic layer overlying the insulating layer which buries the aperture. The aperture can have an opening width not larger than 20 nm. A current flowing between the first ferromagnetic layer and the needle can be monitored, and thrusting of the needle can be interrupted when the current reaches a predetermined value.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: July 10, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shiho Okuno, Yuichi Ohsawa, Shigeru Haneda, Yuzo Kamiguchi, Tatsuya Kishi
  • Patent number: 7239488
    Abstract: According to an embodiment of the present invention, a slider design is presented that provides improved protection for the head/sensor of the slider. In one embodiment, the design of the slider is such that ESD protection is provided during the slider wafer process, the “back-end” processes (e.g., when the completed slider/head is incorporated into an HGA), and during operation in a disk drive or the like. In this embodiment, a conductive film is provided that surrounds the insulating-material slider substrate. The conductive film provides a grounding path during the wafer fabrication processes. This conductive layer may be further patterned during head fabrication to provide a ground path for back-end fabrication processes. A conductive stripe may be added for discharging debris in the slider-to-disk interface.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: July 3, 2007
    Assignee: SAE Magnetics (H.K.), Ltd.
    Inventors: Li-Yan Zhu, Kazumasa Yasuda, Cheng Yih Liu, Winston Jose
  • Patent number: 7237322
    Abstract: A method for making a tunnel valve head with a flux guide. The tunnel valve sensor is created by forming a tunnel valve at a first shield layer. The tunnel valve includes a free layer distal to the first shield layer, a first insulation layer deposited over the first shield layer and around the tunnel valve, a flux guide formed over the first insulation layer and coupling to the tunnel valve at the free layer, a second insulation layer formed over the flux guide and a second shield layer formed over the second insulation layer. The flux guide and the free layer are physically isolated by the first and second insulation layers to prevent current shunts therefrom. The structure achieves physical connection between the flux guide and the free layer and insulates the flux guide from the shields.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 3, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Hardayal Singh Gill
  • Patent number: 7231705
    Abstract: A pattern forming method includes forming a resist pattern for lift off of a first film disposed on a surface side of a base, patterning the first film by dry etching using the resist pattern as a mask, depositing a second film after patterning, removing the resist pattern to remove a portion of the second film on the resist pattern, and etching the surface side of the base after removing the resist pattern. The etching includes dry-etching the surface side of the base using etching particles with a main incident angle of the etching particles to the surface side of the base being set in a range of 60° to 90° relative to a normal direction of the one surface of the base. The dry etching is performed while rotating the base about an axis substantially parallel with the normal direction.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: June 19, 2007
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Kazuki Sato
  • Patent number: 7228617
    Abstract: The GMR read head includes a GMR read sensor and a longitudinal bias (LB) stack in a read region, and the GMR read sensor, the LB stack and a first conductor layer in two overlay regions. In its fabrication process, the GMR read sensor, the LB stack and the first conductor layer are sequentially deposited on a bottom gap layer. A monolayer photoresist is deposited, exposed and developed in order to open a read trench region for the definition of a read width, and RIE is then applied to remove the first conductor layer in the read trench region. After liftoff of the monolayer photoresist, bilayer photoresists are deposited, exposed and developed in order to mask the read and overlay regions, and a second conductor layer is deposited in two unmasked side regions. As a result, side reading is eliminated and a read width is sharply defined by RIE.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 12, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 7228618
    Abstract: A magnetic head having a spin valve sensor that is fabricated utilizing an Al2O3, NiMn0, Si seed layer upon which a PtMn spin valve sensor layer structure is subsequently fabricated. In the preferred embodiment, the Si layer has a thickness of approximately 20 ? and the PtMn layer has a thickness of approximately 120 ?. An alternative fabrication process of the Si layer includes the overdeposition of the layer to a first thickness of from 15 ? to 45 ? followed by the etching back of the seed layer of approximately 5 ? to approximately 15 ? to its desired final thickness of approximately 20 ?. The Si layer results in an improved crystal structure to the subsequently fabricated PtMn and other spin valve sensor layers, such that the fabricated spin valve is thinner and exhibits increased ?R/R and reduced coercivity.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: June 12, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Mustafa Pinarbasi, Patrick Rush Webb
  • Patent number: 7219414
    Abstract: A main pole layer of a magnetic head includes a first portion disposed at a distance from a medium facing surface, and a second portion that is smaller in thickness than the first portion and disposed between the first portion and the medium facing surface. The step of forming the main pole layer includes the steps of forming a plating layer such that one of ends of the plating layer closer to the medium facing surface is located at a position that coincides with the position of one of ends of the first portion closer to the medium facing surface; forming a first nonmagnetic layer to cover the plating layer; polishing the first nonmagnetic layer and the plating layer; forming a space by removing the plating layer; forming a magnetic layer, which will be the main pole layer, in the space and on the top surface of the first nonmagnetic layer; forming a second nonmagnetic layer to cover the magnetic layer; and polishing the second nonmagnetic layer and the magnetic layer.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: May 22, 2007
    Assignee: TDK Corporation
    Inventors: Yuichi Watabe, Susumu Aoki, Yasuyuki Notsuke, Tetsuya Roppongi
  • Patent number: 7213326
    Abstract: A horizontal combined head is provided which has both a thin film write and an MR read element located at an air bearing surface (ABS). The read element can be formed with a track width that is independent of the track width of the write element. The MR sensor or the read element is separated from one of the first and second pole pieces of the write element by an insulation layer. Accordingly, the shields for the read element remain more stable after a write operation. In one embodiment of the present invention a single stripe MR sensor is employed while in a second embodiment a dual stripe MR sensor is employed. A method of the invention includes forming the dual MR stripe in a single process step so that the dual MR stripes of the dual MR sensor are near identical for implementing near absolute common mode rejection of noise.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: May 8, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Mohamad Towfik Krounbi, Mark E. Re
  • Patent number: 7210217
    Abstract: A wire gap film is formed on a flat coplanar surface formed on a bottom pole by a bottom track pole and a thin film coil, first and second magnetic material films constituting a top pole are formed on a flat surface of the thin film coil, and the first and second magnetic material films, write gap film and bottom track pole are partially removed forming a top track pole and trim structure. The thin film coil is formed by first and second thin film coil halves having self-aligned coil windings and have a CVD formed first conductive film, and an electrolytic plating formed second conductive film. A thin insulating film is interposed between successive coil windings of the first and second thin film coil halves. Jumper wirings, formed with the top pole, connect innermost and outermost coil windings of the first and second thin film coil halves respectively.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: May 1, 2007
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.), Ltd.
    Inventors: Yoshitaka Sasaki, Takehiro Kamigama
  • Patent number: 7207099
    Abstract: A thin-film magnetic head comprises a read head and a write head. The read head and the write head are placed such that a top shield layer of the read head and a bottom pole layer of the write head are opposed to each other. A magnetism intercepting layer is provided between the top shield layer and the bottom pole layer. The magnetism intercepting layer is made of a nonmagnetic metal material that is capable of being formed through plating, such as platinum. The top shield layer, the magnetism intercepting layer and the bottom pole layer are consecutively formed through plating.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 24, 2007
    Assignee: TDK Corporation
    Inventors: Atsushi Yamaguchi, Shigeru Shoji
  • Patent number: 7204013
    Abstract: In a method of forming a magnetoresistive sensor, first and second magnetic leads are formed. Next, a junction of magnetic and electrically conductive material is formed between the first and second magnetic leads. Finally, the magnetic and electrical conductivity of an outer shell portion of the junction is reduced to form a constricted junction comprising a magnetic and electrically conductive junction core that is at least partially surrounded by the outer shell portion. Another aspect of the present invention is directed to the magnetoresistive sensor that is formed using the method.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: April 17, 2007
    Assignee: Seagate Technology LLC
    Inventors: Ge Yi, Suguo Huo
  • Patent number: 7204014
    Abstract: A method for fabricating a magnetic head wherein a read head portion of the magnetic head includes a second gap insulation layer that includes a first portion that is fabricated upon the electrical leads of the read head and a second portion that is fabricated upon both a sensor portion of the read head and the first portion of the insulation layer. Both the first portion and the second portion of the insulation layer are made up of multi-layered laminations. Each said lamination is fabricated by depositing a thin film of metal, followed by the oxidation of that metallic thin film.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: April 17, 2007
    Assignee: Interntional Business Machines Corporation
    Inventors: Hardayal Singh Gill, Douglas Johnson Werner
  • Patent number: 7200919
    Abstract: A method of fabricating a magnetic transducer (head) according to the invention includes forming multilayered electrically conductive leads for the magnetic sensor which include a thin tantalum seed layer followed by a thin chromium seed layer which is followed by a thicker rhodium layer. The dual seed layer of the invention significantly improves the conductivity of the rhodium. The Ta/Cr/Rh leads can be used with hard bias structures formed on a PtMn layer without having increased resistance.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: April 10, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Mustafa Pinarbasi
  • Patent number: 7200918
    Abstract: Embodiments include a slider having a silicon body and at least one carbide pad structure embedded therein. At least one head structure for reading and/or writing data is located on the silicon body. The silicon body includes an air bearing surface on which the head is located. The air bearing surface also includes at least a portion of the carbide pad structure thereon. In one aspect, the metal carbide structure may be made from a material such as titanium carbide, zirconium carbide, vanadium carbide, tungsten carbide, or molybdenum carbide. In another aspect, the head may be located on the air bearing surface between carbide pad structures.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: April 10, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 7197813
    Abstract: The magnetoresistance is measured for a magnetoresistive layered-structure, such as a spin valve film, prior to formation of an upper shield layer as well as patterning of a lower shield layer. The magnetic influence of the upper and lower shield layers can completely be eliminated during the measurement of the magnetoresistance. The magnetoresistive layered-structure is allowed to reliably receive the magnetic field over a wider range including a lower magnetic field range. It is accordingly possible to measure the magnetoresistance properly reflecting the magnetic characteristic of the magnetoresistive layered-structure. It is possible to find deficiency of a magnetoresistive read element at an earlier stage of the method.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: April 3, 2007
    Assignee: Fujitsu Limited
    Inventors: Naoki Mukoyama, Kenichiro Yamada, Hitoshi Kanai, Manabu Watanabe, Norikazu Ozaki, Kazuaki Satoh
  • Patent number: 7199972
    Abstract: The magnetic head includes a P2 pole tip in which the P2 pole tip material is electroplated upon a sidewall of the P2 pole tip photolithographic trench. To accomplish this, a block of material is deposited upon a write gap layer, such that a generally straight, vertical sidewall of the block of material is disposed at the P2 pole tip location. Thereafter, an electroplating seed layer is deposited upon the sidewall. A P2 pole tip trench is photolithographically fabricated such that the sidewall (with its deposited seed layer) is exposed within the P2 pole tip trench. Thereafter, the P2 pole tip is formed by electroplating pole tip material upon the seed layer and outward from the sidewall within the trench, The width of the P2 pole tip is thus determined by the quantity of pole tip material that is deposited upon the sidewall.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: April 3, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Thomas Edward Dinan, Richard Hsiao
  • Patent number: 7194797
    Abstract: Methods for use in forming a CPP read sensor for a magnetic head are disclosed. In a particular example, a plurality of read sensor layers are formed over a first shield layer and a resist without undercuts is formed over the plurality of read sensor layers in a central region. With the resist in place, read sensor materials in side regions adjacent the central region are removed by milling to thereby form a read sensor structure in the central region. Insulator materials and metallic seed materials are then deposited in the side regions. High angle ion milling is performed to reduce a thickness of the insulator materials, the metallic seed materials, or both, along sidewalls of the read sensor structure. Magnetic hard bias materials are subsequently deposited over the metallic seed materials, and a second shield layer is formed over the structure after the resist is removed.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: March 27, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Mustafa Michael Pinarbasi
  • Patent number: 7194796
    Abstract: A magnetic head and method for forming the same. Leads are added to a wafer stack having a free layer, a bias layer, and a spacer layer between the free layer and bias layer. A gap is formed between the leads. A protective layer is added to the wafer stack such that the gap is covered, as well as facing ends of the leads. Material is removed from at least one side area of the wafer stack using the protective layer as a mask. The protective layer is removed. A portion of the bias layer below the gap is processed for reducing a magnetic moment of the bias layer in the portion of the bias layer below the gap for forming a sensor in which magnetic moments of end portions of the free layer are pinned by magnetic moments of end portions of the bias layer, and preferably antiparallel thereto.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: March 27, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kim Y. Lee, Jih-Shiuan Luo
  • Patent number: 7196876
    Abstract: A method for forming an abutted junction GMR bottom spin valve sensor in which the free layer has a maximum effective length due to the elimination or minimization of bias layer and conducting lead layer overspreading onto the sensor element and the consequent reduction of current shunting. The overspreading is eliminated by forming a thin dielectric layer on the upper surface of the sensor element. When the biasing and conducting leads are formed on the abutted junction, they overspread onto this layer and the overspread can be removed by an ion-milling process during which the dielectric layer protects the sensor.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: March 27, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Mao-Min Chen, Pokang Wang
  • Patent number: 7185416
    Abstract: A slider comprises a slider section and a reproducing head section. The slider section has a first medium facing surface, an air inflow end, and a recording head. The reproducing head section has a second medium facing surface, an air outflow end, and a reproducing head. The slider section and the reproducing head section are fabricated separately, and bonded to each other so that the first medium facing surface and the second medium facing surface are continuous.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: March 6, 2007
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Takehiro Kamigama
  • Patent number: 7185415
    Abstract: A method for fabricating a magnetic head includes forming a first pole and a flux shaping layer in spaced relation to the first pole. A nonmagnetic layer is formed adjacent the flux shaping layer and positioned on an air bearing surface (ABS) side of the flux shaping layer. A tapered recess is created in the nonmagnetic layer, the taper of the recess increasing (i.e., becoming deeper) towards the flux forming layer. The recess is filled with a magnetic material. A probe layer is formed such that it is in electrical communication with the magnetic material filling the recess.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: March 6, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Gautam Khera, Sanford J. Lewis, Galina Moutchaidze, Aron Pentek, Hugo Alberto Emilio Santini, Mason Lamar Williams, III
  • Patent number: 7181827
    Abstract: Provided is a method of manufacturing a thin film magnetic head capable of achieving compatibility between preventing the occurrence of side erasing and securing overwrite characteristics. When a pole portion layer as a portion where a magnetic flux is emitted is formed, a photoresist pattern is formed so that two frame portions which determine an aperture have a different width from each other, and then the photoresist pattern is heated to deform the frame portions. Thereby, the width of the aperture is gradually reduced toward a seed layer. After that, a precursor pole portion layer is formed in the aperture of the photoresist pattern, and the precursor pole portion layer is polished so as to form an air bearing surface, thereby the pole portion layer is formed so that an exposed surface exposed to the air bearing surface has an asymmetrical inverted trapezoidal shape.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: February 27, 2007
    Assignee: TDK Corporation
    Inventor: Akifumi Kamijima
  • Patent number: 7181829
    Abstract: A main magnetic pole layer is formed on an insulating layer flattened into a high-flatness surface, and a yoke layer having a large film thickness is formed under the main magnetic pole layer independently of the main magnetic pole. The main magnetic pole layer has a front end surface formed in a shape with a width size gradually increasing in a direction of track width as the front end surface departs farther away from an auxiliary magnetic pole layer. A perpendicular magnetic recording head can be provided which can suppress the occurrence of fringing in a recording pattern, and can form the main magnetic pole layer with high pattern accuracy, and can satisfactorily introduce a recording magnetic field to a fore end of the main magnetic pole layer.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 27, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventors: Toru Takahashi, Hisayuki Yazawa, Hideki Gochou, Kiyoshi Kobayashi, Minoru Yamada, Kiyoshi Sato, Toshinori Watanabe
  • Patent number: 7184248
    Abstract: A patterned, synthetic, longitudinally exchange biased GMR sensor is provided which has a narrow effective trackwidth and reduced side reading. The advantageous properties of the sensor are obtained by satisfying a novel relationship between the magnetizations (M) of the ferromagnetic free layer (F1) and the ferromagnetic biasing layer (F2) which enables the optimal thicknesses of those layers to be determined for a wide range of ferromagnetic materials and exchange coupling materials. The relationship to be satisfied is MF2/MF1=(Js+Jex)/Js, where Js is the synthetic coupling energy between F1 and F2 and Jex is the exchange energy between F2 and an overlaying antiferromagnetic pinning layer. An alternative embodiment omits the overlaying antiferromagnetic pinning layer which causes the relationship to become MF2/MF1=1.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 27, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, You Feng Zheng, Simon Liao, Kochan Ju
  • Patent number: 7181826
    Abstract: A system and method are provided for manufacturing a magnetic head. Initially, a coil structure, a first pole layer, and a gap layer are formed. A second pole layer is then deposited to form a pair of flanking portions flanking a central portion of the second pole layer. Thereafter, the second pole layer is masked with a photoresist layer. During manufacture, the flanking portions of the second pole layer work in conjunction with the photoresist layer to substantially protect the coil structure from damage.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: February 27, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wenchein Hsiao, Edward Hin Pong Lee, Bradley D. Webb
  • Patent number: 7178222
    Abstract: Insulating layers are formed on both sides of a multilayer film, and bias layers are formed in contact with at least portions of both end surfaces of a free magnetic layer. The bias layers are formed so as not to extend to the upper surface of the multilayer film. In this construction, a sensing current from electrode layers appropriately flows through the multilayer film, and a bias magnetic field can be supplied to the free magnetic layer from the bias layers through both side surfaces of the free magnetic layer. Furthermore, the magnetic domain structure of the free magnetic layer can be stabilized to permit an attempt to decrease instability of the reproduced waveform and Barkhausen noise.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: February 20, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 7178221
    Abstract: In a thin-film magnetic head having a multilayered film developing a magnetoresistive effect, which is present between an upper shielding layer and a lower shielding layer both formed above an AlTiC substrate, a recess for defining the lower shielding layer is formed in an underlayer present on a surface of the AlTiC substrate, and a lower shielding layer made of NiFe is provided in the recess. A SiO2 film is interposed between the underlayer and the lower shielding layer.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: February 20, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventor: Kiyoshi Sato
  • Patent number: 7174621
    Abstract: A thin film magnetic head has coil layer formed in a space surrounded by a lower core layer, a protruding layer and a back gap layer. The top of these layers are planarized to a continuous flat surface. A lower magnetic pole layer, a gap layer, an upper magnetic pole layer and an upper core layer are formed on the flat surface and are precisely formed in a predetermined shape. The track width Tw can also be set to a predetermined dimension by the width of the upper magnetic pole layer at a surface facing the recording medium. Also, the magnetic path can be shortened to improve magnetic properties.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: February 13, 2007
    Assignee: Alps Electronic Co., Ltd.
    Inventors: Kiyoshi Sato, Toshinori Watanabe, Toshihiro Kuriyama
  • Patent number: 7174622
    Abstract: A method of fabrication of a slider includes forming a first ferromagnetic layer, a second ferromagnetic layer, and an antiferromagnetic layer and applying a layer of protective material to proximal ends of those layers that are proximal to the disk surface. The method further includes recessing a proximal end of a non-magnetic metal layer formed on the first ferromagnetic layer from the disk surface to form at least one recessed area. The method also includes filling the recessed area with protective material to a depth such that when the layer of protective material is worn from the ends of the first ferromagnetic layer, the second ferromagnetic layer, and the antiferromagnetic layer by burnishing of the ends by the disk surface, protective material still remains in the recessed area of the non-magnetic metal layer.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: February 13, 2007
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Dallas W. Meyer, Tien-Chih Lin, Michael A. Stacy
  • Patent number: 7174623
    Abstract: A method of making a magnetic head involves providing a partially constructed magnetic head which has a top surface formed by a front P2 pole tip, a back gap P2 pedestal, and insulator materials disposed between the front P2 pole tip and the back gap P2 pedestal; forming a layer of selectively etchable materials over the top surface of the partially constructed magnetic head, the layer having a front edge that is recessed away from an air bearing surface (ABS); forming additional insulator materials over the selectively etchable material layer and over a front portion of the front P2 pole tip; performing a chemical-mechanical polishing (CMP) to form a substantially coplanar top surface with the selectively etchable material layer and the additional insulator materials; etching to remove the selectively etchable material layer; and depositing yoke layer materials over the resulting structure.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: February 13, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Edward Hin Pong Lee
  • Patent number: 7171741
    Abstract: A Giant Magneto-Resistive (GMR) sensor (900) having Current Perpendicular to Plane (CPP) structure is formed providing an extended first pinned layer (914) as compared to second pinned layer (912) and free layer (910). Increased magnetoresistance changes, increased pinning strength, increased thermal stability, and decreased susceptibility to Electro-Static Discharge (ESD) events is realized by maintaining equivalent current densities through free layer (910) and second pinned layer (912), while decreasing the relative current density through first pinned layer (914).
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: February 6, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Hardayal Singh Gill
  • Patent number: 7168156
    Abstract: A thin-film magnetic head comprises first and second magnetic pole groups, magnetically connected to each other, having respective magnetic pole parts opposing each other on a side of a medium-opposing surface; a recording gap layer formed between the magnetic pole parts; and a thin-film coil insulated from the first and second magnetic pole groups and helically wound about at least one of them; which are laminated on a substrate. The thin-film coil comprises a first conductor group having a plurality of inner conductor parts disposed between the first and second magnetic pole groups, a second conductor group having a plurality of outer conductor parts disposed outside the second magnetic pole group, and a connecting part group having a plurality of connecting parts for connecting the inner conductor parts to the outer conductor parts.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: January 30, 2007
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Takehiro Kamigama
  • Patent number: 7168155
    Abstract: A method of manufacturing an integrated thin film head comprises, in order to prevent short-circuit among the lead layer, upper lead layer and shield layers, a lower shield layer formed on a substrate, a lower readgap layer formed on the lower shield layer, an MR sensor layer formed on the lower readgap layer, a lead layer jointed with the MR sensor layer, an upper lead layer formed in contact with a part of the lead layer, an upper readgap layer formed to cover the MR sensor layer, lead layer and upper lead layer and an upper shield layer formed on the upper readgap layer. The part of the lead layer in contact with the upper lead layer is formed thinner than the part not contact with the upper lead layer.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: January 30, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kiyonori Shiraki, Tadashi Imanaka, Atsushi Kato, Matahiro Komuro
  • Patent number: 7162791
    Abstract: Currently, in a process of manufacturing a top spin valve structure, the shield-to-shield separation of a spin valve head cannot be below about 800 ?, mainly due to sensor-to-lead shorting problems. This problem has now been overcome by inserting a high permeability, high resistivity, thin film shield on the top or bottom (or both) sides of the spin valve sensor. A permeability greater than about 500 is required together with a resistivity about 5 times greater than that of the free layer and an MrT value for the thin film shield that is 4 times greater than that of the free layer.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: January 16, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Kochan Ju, Cheng Horng, Youfeng Zheng, Simon Liao, Jei-Wei Chang
  • Patent number: 7159304
    Abstract: Multiple thin films of spin-valve GMR sensor are formed in a trapezoidal cross-sectional shape by laminating an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer and a nonmagnetic protective layer on a lower insulated gap layer. The amount of etching of the lower insulated gap layer produced in the process of patterning the spin-valve giant magnetoresistive layers into the multiple thin films of spin-valve GMR sensor is 10 nm or less. Further, the angle ? which the tangent line of each side face of the multiple thin films to the middle line of the free magnetic layer in its thickness direction forms with respect to the middle line of the free magnetic layer becomes 45 degrees or more. This structure makes it possible to provide such a spin-valve giant magnetoresistive head that it meets the requirements for securing constant breakdown voltage and preventing instability of MR output voltage waveform.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: January 9, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Masatoshi Arasawa, Haruko Tanaka, Makoto Morijiri, Koichi Nishioka, Shuichi Kojima, Masayasu Kagawa
  • Patent number: 7159303
    Abstract: The magnetoresistance effect element is of a multilayered structure having at least magnetic layers and an intermediate layer of an insulating material, a semiconductor or an antiferromagnetic material against the magnetic layers, and the magnetoresistance effect element has terminals formed at least on the opposite magnetic layers, respectively, so that a current flows in the intermediate layer. The film surfaces of all the magnetic layers constituting the magnetoresistance effect element are opposed substantially at right angles to the recording surface of a magnetic recording medium. Therefore, the area of the magnetic layers facing the recording surface of the magnetic recording medium can be extremely reduced, and thus the magnetic field from a very narrow region of the high-density recorded magnetic recording medium can be detected by the current which has a tunneling characteristic and passes through the intermediate layer.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: January 9, 2007
    Assignee: Hitachi Global Storage Technologies, Ltd.
    Inventors: Ryoichi Nakatani, Masahiro Kitada, Naoki Koyama, Isamu Yuito, Hisashi Takano, Eijin Moriwaki, Mikio Suzuki, Masaaki Futamoto, Fumio Kugiya, Yoshibumi Matsuda, Kazuo Shiiki, Yoshinori Miyamura, Kyo Akagi, Takeshi Nakao, Hirotsugu Fukuoka, Takayuki Munemoto, Tokuho Takagaki, Toshio Kobayashi, Hideo Tanabe, Noboru Shimizu
  • Patent number: 7159302
    Abstract: A method for manufacturing a write head having a small write pole tip that emits magnetic flux sufficient for effective perpendicular recording. The method creates a leading edge taper (LET) between the write pole tip and a magnetic flux guide to create a sufficient magnetic flux in the write pole. The LET is fabricated by ion milling away a sacrificial striated material whose layers have different rates of ion milling. The top layer of material thus mills away faster than lower layers, creating the required tapering of a negative mold. An endpoint material stops the milling. The LET magnetic material is then spattered into the negative mold, resulting in a well defined taper of magnetic flux shaping material extending the magnetic flux guide to the write pole tip, such that the write pole tip is able to emit sufficient magnetic flux for perpendicular recording.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: January 9, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Feldbaum, Quang Le
  • Patent number: 7155810
    Abstract: A GMR read head for a magnetic head, in which the hard bias layers are fabricated immediately next to the side edges of the free magnetic layer, and such that the midplane of the hard bias layer and the midplane of the free magnetic layer are approximately coplanar. The positioning of the hard bias layer is achieved by depositing a thick hard bias seed layer, followed by an ion milling step is to remove seed layer sidewall deposits. Thereafter, the hard bias layer is deposited on top of the thick seed layer. Alternatively, a first portion of the hard bias seed layer is deposited, followed by an ion milling step to remove sidewall deposits. A thin second portion of the seed layer is next deposited, and the hard bias layer is then deposited.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 2, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventor: Mustafa Michael Pinarbasi
  • Patent number: 7155809
    Abstract: A method of manufacturing a thin-film magnetic head comprises the steps of forming a first pole layer, forming a gap layer on a pole portion of the first pole layer, and forming a second pole layer on the gap layer. The second pole layer incorporates a first layer adjacent to the gap layer, and a second layer including a track width defining portion. The step of forming the second pole layer includes the steps of: forming a magnetic layer for forming the first layer on the gap layer; forming the second layer on the magnetic layer; and etching the magnetic layer to align with a width of the track width defining portion, so that the magnetic layer is formed into the first layer and the width of each of the first layer and the second layer taken in a medium facing surface is made equal to the track width.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 2, 2007
    Assignees: Headway Technologies, Inc, SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Takehiro Kamigama
  • Patent number: 7152304
    Abstract: Patterned, longitudinally and transversely antiferromagnetically exchange biased GMR sensors are provided which have narrow effective trackwidths and reduced side reading. The exchange biasing significantly reduces signals produced by the portion of the ferromagnetic free layer that is underneath the conducting leads while still providing a strong pinning field to maintain sensor stability. In the case of the transversely biased sensor, the magnetization of the free and biasing layers in the same direction as the pinned layer simplifies the fabrication process and permits the formation of thinner leads by eliminating the necessity for current shunting.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: December 26, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Min Li, Ru-Ying Tong, Yun-Fei Li, You Fong Zheng, Simon Liao, Kochan Ju, Cherng Chyi Han
  • Patent number: 7152305
    Abstract: A magnetoresistive (MR) read head is disclosed including a shield layer with a recessed portion and a protruding portion defined by the recessed portion. Also included is an MR sensor located in vertical alignment with the protruding portion of the shield layer. Further provided is at least one gap layer situated above and below the MR sensor. At least one of such gap layers is positioned in the recessed portion of the shield layer. By this design, a combined thickness of the gap layers is thinner adjacent to the MR sensor and the protruding portion of the shield layer, while being thicker adjacent to the recessed portion of the shield layer. As such, optimum insulation is provided while maintaining planar gap layer surfaces to avoid the detrimental ramifications of reflective notching and the swing curve effect.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: December 26, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Douglas Werner
  • Patent number: 7150092
    Abstract: A method of manufacturing a spin-valve thin-film magnetic element is provided. The spin-valve thin-film magnetic element includes a free magnetic layer and laminates of pinned magnetic layers and antiferromagnetic layers formed on two surfaces of the free magnetic layer.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: December 19, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 7150093
    Abstract: A method of initializing a magnetic sensor and storage system implementing such a magnetic sensor. The method includes heating and cooling dual antiferromagnetic layers in the presence of a magnetic field.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: December 19, 2006
    Assignee: International Business Machines Corporation
    Inventor: Robert S. Beach
  • Patent number: 7146711
    Abstract: A method for forming a planar GMR read-head having a narrow read gap, a narrow track-width and being well insulated from its lower shield. The method requires the formation of a planarized bottom magnetic shield in which concave regions, symmetrically disposed about a track-width region, are filled with a layer of dielectric to provide added insulation. The dielectric filled shield is planarized and an additional planar dielectric layer, a thin planar GMR sensor layer and a planar PMGI layer of uniform thickness is formed on it. A layer of photoresist is deposited on the PMGI layer and a bi-layer lift-off stencil of uniform height above the GMR layer and symmetric overhang regions is formed. The uniformity of the lift-off stencil, which is a result of the planarity of the layers on which it is formed, allows the deposition of conductive lead and biasing layers with controlled overspread.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: December 12, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng Chyi Han, Mao-Min Chen, Jiun-Ting Lee
  • Patent number: 7143505
    Abstract: A thin film magnetic head is capable of reducing inductance by shortening a magnetic path, and also preventing a cavity from being formed in a coil insulating layer. The coil insulating layer is deposited on a lower core layer and at the rear of a recording portion, and a coil forming groove is formed in the coil insulating layer. Then, a coil layer is embedded in the coil forming groove. With this arrangement, bulges of the layers from an upper surface of the recording portion can be decreased so as to shorten a magnetic path.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: December 5, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventor: Kiyoshi Sato
  • Patent number: 7140095
    Abstract: The present invention provides a method of manufacturing a thin film magnetic head, capable of easily manufacturing a thin film magnetic head with high precision, in which a magnetic shield layer is disposed so as to surround a magnetic pole layer from three directions of a medium outflow direction and two side directions. In a magnetic pole formation region surrounded by a first gap layer portion, a magnetic pole layer and a second gap layer portion are formed and the magnetic pole layer is covered with the first and second gap layer portions. After that, a write shield layer is formed on the first and second gap layer portions so as to surround the magnetic pole layer from three directions (a trailing direction and two side directions).
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: November 28, 2006
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventor: Naoto Matono
  • Patent number: 7140093
    Abstract: A magneto-resistive (MR) sensor is provided including a pinned layer, and a free layer disposed above the pinned layer. Also included is a pair of leads disposed over portions of the free layer. Further, a pinning layer is disposed below the pinned layer. Disposed below the pinning layer is an underlayer. For enhanced operation, first portions of the pinned layer disposed below the leads have a first pinned layer magnetization parallel with a free layer magnetization associated with the free layer in the absence of an external field. Further, a second portion of the pinned layer has a second pinned layer magnetization perpendicular with the free layer magnetization in the absence of the external field.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: November 28, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey G. McCord