Abstract: A method comprises: a step of disposing a coil end connection portion of a first stator coil end and a solid connection at mutually adjacent positions after the solid connection and the cooling water pipe are brazed together; a step of disposing a heating coil around the solid connection and the first stator coil end in such a way as to bypass the cooling water pipe connection portion; and a step of supplying the heating coil with alternating current, so that the solid connection and the first stator coil end are induce-heated and then connected.
Abstract: Actuation systems and lithographic apparatus which address the issue of uncontrolled return of common mode currents are provided. In an embodiment such systems aim to prevent the occurrence of corona and discharge between high voltage electric cables in low pressure environments. An exemplary actuation system includes comprises an actuator module, a power source and power transmission cables. The actuator module includes an electrical motor and a first plurality of shielded cables configured to connect to the electrical motor at one end. The actuator module is located in a low pressure environment and each shield of the first plurality of cables is grounded. The transmission cables electrically connect the first plurality of cables with power supply, and include an extra cable configured to connect each shield of the first plurality of cables with the first extra cable, via a choke so as to provide a return path for common-mode currents.
Type:
Grant
Filed:
November 18, 2011
Date of Patent:
February 3, 2015
Assignee:
ASML Netherlands B.V.
Inventors:
Johannes Wilhelmus Damen, Martinus Jacobus Coenen, Hermannus Antonius Langeler
Abstract: A stepping motor for a meter to rotate a pointer of a meter, the stepping motor for a meter includes: a rotor part having: a cylindrical magnet; and a rotational shaft, which is hollow and made of a resin, and which is molded on an inner periphery of the cylindrical magnet and is coaxial with the cylindrical magnet; a stator part that contains the rotor part therein and has an excitation coil; a front plate made of a resin, and an end plate made of a resin, wherein a fixing part to fix the cylindrical magnet is molded when molding the rotational shaft, and wherein the cylindrical magnet is fixed by the fixing part so that the cylindrical magnet and the rotational shaft are integrated.
Abstract: The invention refers to a Rotary Solenoid comprising a stator and rotor that can rotate around a rotational axis. The rotor has a rotor shaft on which a rotor disc is arranged. The rotor disc is, seen in the direction of the circumference, polarized alternating magnetically. The stator carries at least one coil. On the coil windings of electrically conducting wire are provided. For guiding the magnetic flow of the magnetic field generated by the coil a pole face consisting of several partial pole faces is provided.
Abstract: An electrical, rotary machine may include a first stator core section being substantially circular and including a plurality of teeth, a second stator core section being substantially circular and including a plurality of teeth, a coil arranged between the first and second circular stator core sections, and a rotor including a plurality of permanent magnets. The first stator core section, the second stator core section, the coil and the rotor are encircling a common geometric axis, and the plurality of teeth of the first stator core section and the second stator core section are arranged to protrude towards the rotor. Additionally the teeth of the second stator core section are circumferentially displaced in relation to the teeth of the first stator core section, and the permanent magnets in the rotor are separated in the circumferential direction from each other by axially extending pole sections made from soft magnetic material.
Abstract: Wireless power transfer is received using a magneto mechanical system. A magneto mechanical system may include an array of magneto-mechanical oscillators, wherein each oscillator may comprise a magnetic symmetrical part and a suspension engaged to the magnetic part. The system may further include a coil formed around the array and electromagnetically coupled to the oscillators to produce an electric current caused by electromagnetic coupling with the oscillators.
Type:
Grant
Filed:
October 13, 2008
Date of Patent:
February 12, 2013
Assignee:
QUALCOMM Incorporated
Inventors:
Nigel P. Cook, Stephen Dominiak, Hanspeter Widmer
Abstract: A motor may include a stator formed with a rotor arrangement hole, a rotor disposed in the rotor arrangement hole, and a plate-like member disposed on at least one end side in an axial direction of the stator. The plate-like member is joined with an end face of the stator structured such that a peripheral edge part of the plate-like member is melted. In this case, it is preferable that the peripheral edge part of the plate-like member is joined with the end face of the stator structured such that an edge part on an opposite side to a face contacting with the end face of the stator is melted by irradiation of a laser beam.
Abstract: A PM stepping motor includes: a stator assembly composed of two stator units which are axially coupled to each other with a molding resin material, and each of which includes: inner and outer yokes each having a plurality of pole teeth; a bobbin including inner and outer flanges; and a coil wound around the bobbin, thus providing two such inner yokes, outer yokes, bobbins and coils in total; a rotor assembly which includes a shaft and a magnet, and which is rotatably disposed in the hollow of the stator assembly; and two bearings to rotatably support the shaft of the rotor assembly, wherein the two bobbins are formed of the molding resin material to be consolidated with the two inner yokes, and wherein a plurality of protrusions are formed of the molding resin material to extend integrally from the outer flange of each of the two bobbins.
Abstract: A method and device for wire termination on stators (1) wherein the wire (15) is wound about poles (6) distributed by a flyer (10), guided by shrouds (16) that move radially with respect to the stator (1) overlapping the respective pole (6). Wire termination operations are provided on the wire ends (15) into the terminals (4) with the aid of the flyer (10), carried out by an apparatus equipped with a termination device (20), comprising a first deflector (21), a second deflector (22), a blade (23), and a clamp formed by a movable gripper (24) and a fixed gripper (25). The movable gripper is suitable for closing onto the fixed gripper for gripping the wire (15). The device (20) can carry out the steps of catching, moving, introducing and cutting the wire (15) with movements parallel to its own axis (27), or to the axis (7) of the stator (1).
Abstract: A stepping motor for a meter to rotate a pointer of a meter, the stepping motor for a meter includes: a rotor part having: a cylindrical magnet; and a rotational shaft, which is hollow and made of a resin, and which is molded on an inner periphery of the cylindrical magnet and is coaxial with the cylindrical magnet; a stator part that contains the rotor part therein and has an excitation coil; a front plate made of a resin, and an end plate made of a resin, wherein a fixing part to fix the cylindrical magnet is molded when molding the rotational shaft, and wherein the cylindrical magnet is fixed by the fixing part so that the cylindrical magnet and the rotational shaft are integrated.
Type:
Application
Filed:
December 6, 2011
Publication date:
June 28, 2012
Applicant:
MINEBEA MOTOR MANUFACTURING CORPORATION
Abstract: A stepper motor device has a stator and a rotor. The rotor comprises: a shaft; a rotor core associated with the shaft; and a magnet fixed to the rotor core. The stator comprises: a stator shell; a yoke disposed within the shell; a coil wound about the yoke and an end plate magnetically connecting the yoke to the stator shell. The coil is located beside the magnet in the axial direction of the motor. The stator has a number of salient poles, and the salient poles are arranged to face the magnet across a small air gap. The coil creates magnetic poles in the salient poles with a common polarity.
Abstract: A stepping motor is disclosed which is capable of obtaining desired driving torque without sacrificing magnetic properties of a magnet with respect to a stator, reducing inertia mass of a rotor by decreasing a use amount of a magnet material, and thereby, can enhance driving performance including control responsiveness.