With Delay Means Patents (Class 327/161)
  • Publication number: 20120119806
    Abstract: A data output circuit includes an output control signal generation unit configured to generate output control signals in response to an output enable bar signal and a delay locked clock signal and a register configured to output stored data in response to the output control signals.
    Type: Application
    Filed: August 25, 2011
    Publication date: May 17, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Dong Uk LEE
  • Patent number: 8164390
    Abstract: An integrated circuit has operational circuitry to perform an operation. An operational regulator regulates an operating condition of the operational circuitry. The operational regulator has a sample clock to generate a sample clock signal. The sample clock signal correlates to a manufacturing variation of the electronic circuitry. The operational regulator also includes a configurator to evaluate the sample clock signal and generate a configuration signal according to the evaluation. A controller is provided to receive the configuration signal and control an operating condition of the operational circuitry according to the configuration signal.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: April 24, 2012
    Assignees: Marvell International Ltd., Marvell Israel (MISL) Ltd.
    Inventors: Randall D. Briggs, Eran Maor, Walter Lee McNall, William B. Weiser, Haggai Telem
  • Patent number: 8164372
    Abstract: To include a first level shift circuit that converts a first internal clock signal having an amplitude value of a first voltage into a second internal clock signal having an amplitude value of a second voltage, a second level shift circuit that converts a first internal data signal having the amplitude value of the first voltage into a second internal data signal having the amplitude value of the second voltage, a clock dividing circuit that generates third and fourth internal clock signals, which are complementary signals, based on the second internal clock signal, and an output circuit that outputs external data signals continuously from a data output terminal in synchronization with the third and fourth internal clock signals based on the second internal data signal. According to the present invention, because a level shift of a signal is performed before it is input to the output circuit, there occurs no skew in output data.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 24, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Shingo Mitsubori, Kazutaka Miyano
  • Publication number: 20120087452
    Abstract: A first integrated circuit (IC) has an adjustable delay circuit and a first interface circuit. A first clock signal is provided to the adjustable delay circuit to produce a delayed clock signal provided to the first interface circuit. A second IC has a supply voltage sense circuit and a second interface circuit that transfers data with the first IC. The supply voltage sense circuit provides a noise signal to the first IC that is indicative of noise in a supply voltage of the second IC. The adjustable delay circuit adjusts a delay of the delayed clock signal based on the noise signal. In other embodiments, edge-colored clock signals reduce the effects of high frequency jitter in the transmission of data between integrated circuits (ICs) by making the high frequency jitter common between the ICs. In other embodiments, a supply voltage is used to generate clocks signals on multiple ICs.
    Type: Application
    Filed: May 31, 2010
    Publication date: April 12, 2012
    Applicant: RAMBUS INC.
    Inventors: Jared Zerbe, Pradeep Batra, Brian Leibowitz
  • Publication number: 20120086487
    Abstract: A semiconductor device includes a monitoring circuit including a delay circuit including a plurality of elements and a plurality of interconnects arranged in a tree shape, a data supply circuit configured to supply a determination signal to the delay circuit, and a delay evaluation circuit connected to an end point of the delay circuit and configured to evaluate a delay state of the determination signal. The monitoring circuit controls at least one of a power supply voltage, a substrate voltage, and a clock frequency of a semiconductor circuit included in the semiconductor device based on an output of the delay evaluation circuit. The circuits included in the monitoring circuit are arranged in a space in the semiconductor device using a layout tool, whereby highly accurate delay monitoring can be performed while reducing an increase in area.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 12, 2012
    Applicant: Panasonic Corporation
    Inventor: Keisuke KISHISHITA
  • Patent number: 8154330
    Abstract: A delay line calibration mechanism includes a delay line, a phase detector, and a controller. The delay line receives an input pulse, a calibration pulse, a first delay selection signal, and a second delay selection signal, delays the input pulse for a delay period according to the first delay selection signal to output a delayed pulse, and delays the calibration pulse for a calibration delay period according to the second delay selection signal to output a delayed calibration pulse. The controller is for generating the input pulse, the calibration pulse, and a reference pulse. The controller also generates the first delay selection signal, and generates the second delay selection signal according to a phase difference signal. The phase detector is for generating the phase difference signal indicating the difference between the delayed calibration pulse and the reference pulse by comparing the delayed calibration pulse and the reference pulse.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: April 10, 2012
    Assignee: Mediatek Inc.
    Inventors: Hong-Sing Kao, Meng-Ta Yang, Tse-Hsiang Hsu
  • Patent number: 8154327
    Abstract: A phase adjusting apparatus includes a comparison code generating section, a calculating section, and a delay section. The comparison code generating section individually generates a first comparison code having a phase of a head code advanced and a second comparison code having the phase of the head code delayed, the head code being included in serial transfer data. The calculating section acquires a direction of adjustment of a phase of the serial transfer data using a comparison result of the head code and the first comparison code and a comparison result of the head code and the second comparison code. The delay section adjusts a delay amount of the serial transfer data based on the direction of adjustment of the phase.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: April 10, 2012
    Assignee: Nikon Corporation
    Inventor: Daiki Ito
  • Patent number: 8156365
    Abstract: A data reception apparatus is disclosed. The data reception apparatus includes a strobe extractor for receiving a transmission signal and extracting a strobe signal from the transmission signal, the transmission signal including the strobe signal inserted between data signals and a clock signal following the strobe signal, the strobe signal having a different magnitude from a magnitude of a data signal, and the clock signal having an equal magnitude to the magnitude of the data signal, a clock recoverer for recovering the clock signal from the transmission signal, using the extracted strobe signal, and a sampler for sampling the data signals included in the transmission signal in response to the recovered clock signal. The probability of generating a timing skew error in the time interval between a clock signal and a data signal is minimized. Even though the level of a common component might change, the clock signal can be recovered accurately and the size of the clock recovery circuit can be reduced.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 10, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Byung-Tak Jang
  • Patent number: 8149022
    Abstract: A frequency synthesizer is disclosed. The frequency synthesizer includes a period control word generator, a delta-sigma modulator, and a delay line unit. The period control word generator generates a period control word. The delta-sigma modulator receives the period control word and generates a phase selection signal. The delay line unit generates an output clock based on the phase selection signal. The delta-sigma modulator performs a carry-in operation based on a base number and the base number is adjustable and determined by a calibration process of the delay line unit.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: April 3, 2012
    Assignee: Mediatek Inc.
    Inventor: Ping-Ying Wang
  • Patent number: 8149038
    Abstract: A dynamic phase alignment circuit includes a phase generator circuit having delay-locked loop circuits that generate periodic output signals. Each of the delay-locked loop circuits generates one of the periodic output signals in response to at least two periodic input signals. A multiplexer circuit selects a selected periodic signal from among the periodic input signals and the periodic output signals based on select signals. A phase detection circuit compares a phase of the selected periodic signal to a data signal to generate a phase detection signal. A control logic circuit generates the select signals. The control logic circuit adjusts the select signals based on changes in the phase detection signal to cause the multiplexer circuit to adjust the phase of the selected periodic signal.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 3, 2012
    Assignee: Altera Corporation
    Inventors: Chiakang Sung, John Henry Bui, Khai Nguyen, Bonnie I. Wang, Xiaobao Wang
  • Patent number: 8143928
    Abstract: Duty cycle correction systems and methods of adjusting duty cycles are provided. One such duty cycle correction system includes a duty cycle adjustor and a variable delay line coupled to the output of the duty cycle adjustor. First and second phase detectors have first inputs coupled to the output of the duty cycle adjustor through an inverter and second inputs coupled to the output of the variable delay line. The phase detectors cause the delay line to align rising or falling edges of signals at the output of the delay line with rising or falling edges, respectively, of signals at the output of the inverter. The controller simultaneously causes the duty cycle adjustor to adjust the duty cycle of the output clock signal until the rising and falling edges of signals at the output of the delay line are aligned with rising and falling edges, respectively, of signals at the output of the inverter.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 27, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Yasuo Satoh, Eric Booth
  • Patent number: 8143926
    Abstract: It is an object of the present invention to provide a data signal generating apparatus which is small in size, and can output the serial data in a desired sequence without assuming an indefinite state as well as being capable of dealing with the jitter measurement.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 27, 2012
    Assignee: Anritsu Corporation
    Inventors: Kazuhiko Yamaguchi, Kazuhiro Fujinuma
  • Publication number: 20120068748
    Abstract: This invention relates to a phase detection method. An input signal (51, 91, 111) is sampled (13, 14, 15, 16) for obtaining several samples (1, 2, 3) at different points in time which are defined by a clock (C). A phase control signal (4, 5) is obtained (17, 8, 19, 20) form said several samples (1, 2, 3). The phase control signal (4, 5) may be zero, positive or negative. The phase detection method is a rising phase detection method (52; 69; 93, 94), if a zero phase control signal (4) is produced, if a falling slope is detected, or a falling phase detection method (55; 70; 96, 97), if a zero phase control signal (5) is produced, if a rising slope is detected. The invention further relates to a corresponding rising and falling phase detectors, respectively.
    Type: Application
    Filed: May 3, 2010
    Publication date: March 22, 2012
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Nebojsa Stojanovic, Theodor Kupfer, James Whiteaway, Jurgen Hauenschild, Soeren Gehrke
  • Patent number: 8138799
    Abstract: An inter-phase skew detection circuit includes a frequency division circuit that frequency-divides N-phase clocks to be measured at predetermined timings so as to generate N+2 frequency-divided clocks; a phase comparison target clock generation circuit that generates N phase comparison target clocks by using predetermined N frequency-divided clocks among the N+2 frequency-divided clocks; a phase comparison reference clock generation circuit that generates N reference clocks by using the N+2 frequency-divided clocks, in accordance with predetermined combinations between the N+2 frequency-divided clocks and an operation criterion; and a phase comparison circuit that detects respective phase differences between the N phase comparison target clocks and the corresponding N reference clocks.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 20, 2012
    Assignee: NEC Corporation
    Inventor: Tomohiro Hayashi
  • Patent number: 8130015
    Abstract: To include a phase determining circuit that generates a first phase determination signal, a sampling circuit that samples the first phase determination signal and generates a second phase determination signal based on the sampled first phase determination signal, and a clock generating unit that generates an internal clock signal based on the second phase determination signal. The sampling circuit includes a continuity determining circuit that fixes the second phase determination signal when a logic level of the first phase determination signal changes within a sampling cycle, an initial operation circuit that fixes the second phase determination signal at a high level until when a third phase determination signal indicates a high level, and a disabling circuit that disables an operation of the continuity determining circuit after the third phase determination signal indicates a high level.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: March 6, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Kazutaka Miyano
  • Patent number: 8130017
    Abstract: A delay locked loop includes: a control voltage generator configured to generate a voltage control signal having a voltage level corresponding to a phase difference between an external clock and a feedback clock; a voltage controlled delay line configured to generate a plurality of output signals by reflecting a different delay time on the external clock in response to the voltage control signal; an internal clock multiplexer configured to output one of the plurality of output signals as an internal clock in response to a skew information signal; a delay replica model configured to output the feedback clock by reflecting a delay of an actual clock/data path on the internal clock; and a skew information signal generator configured to generate the skew information signal.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki-Won Lee
  • Patent number: 8125252
    Abstract: Multi-phase signal generators and methods for generating multi-phase signals are described. In one embodiment, the clock generator generates quadrature clock signals including those having 90, 180, 270 and 360 degrees phase difference with a first clock signal. One of the intermediate clock signals may be used as an enable signal to guide locking of all signals. For example, the 180 degree clock signal may be inverted and used as an enable signal to guide locking of the initial and 360 degree signals in a single phase adjustment procedure. The 0 and 360 degree signals may be delayed before their phase is compared to compensate for duty cycle error in the clock signals.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Yantao Ma
  • Patent number: 8125257
    Abstract: A reference circuit and method for mitigating switching jitter and delay-locked loop (DLL) using same are provided. The reference circuit and method determine a number of steps of a fine delay line (FDL) that are equivalent to a step of a coarse delay line (CDL). Switching jitter of the DLL is reduced since the delay of the step of the CDL that is switched when on an underflow or overflow condition of the FDL is detected is equivalent to the delay of the provided number of steps of the FDL.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 28, 2012
    Assignee: Mosaid Technologies Incorporated
    Inventor: William Petrie
  • Patent number: 8125256
    Abstract: An improved bias generator incorporates a reference voltage and/or a reference current into the generation of bias voltages. In some cases, the output of a biased delay element has a constant voltage swing. A delay line of such constant output voltage swing delay elements may be shown to provide reduced power consumption compared to some known self-biased delay lines. Furthermore, in other cases, providing the reference current to a novel bias generator allows a delay line of delay elements biased by such a novel bias generator to show reduced sensitivity to operating conditions, reduced sensitivity to variation in process parameters and improved signal quality, thereby providing more robust operation.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 28, 2012
    Assignee: Research In Motion Limited
    Inventor: Peter A. Vlasenko
  • Patent number: 8124884
    Abstract: A printed circuit board (PCB) includes a positive differential signal line including first and second segments, a negative differential signal line including third and fourth segments, first and second connecting elements soldered on opposite surfaces of the PCB. The first segment and the fourth segment are located in a first straight line which has a first permittivity. The third segment and the second segment are located in a second straight line which has a second permittivity different from the first permittivity. The first connecting element is connected between the first segment and the second segment. The second connecting element is connected between the third segment and the fourth segment.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: February 28, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yung-Chieh Chen, Cheng-Hsien Lee, Shou-Kuo Hsu
  • Patent number: 8125258
    Abstract: A sampling section (100A) includes a sampling filter (102) that converts a continuous-time signal into a discrete-time signal and applies filtering of low-pass characteristics and a one-bit quantizer (107) that outputs a quantized signal representing a time-dependent change in the discrete-time signal. A synchronization section (100B) includes a phase difference detector (110) that calculates the phase difference between an inspection signal and the quantized signal and a delay control circuit (114) that feeds back the inspection signal to the phase difference detector at the timing set in consideration of a delay amount corresponding to the phase difference. When the phase difference between the inspection signal and the current quantized signal shows the same phase, the phase of the inspection signal is detected as a reference phase.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: February 28, 2012
    Assignee: NEC Corporation
    Inventor: Haruya Ishizaki
  • Publication number: 20120044776
    Abstract: A semiconductor device comprises: a control signal generating circuit that generates and outputs a control signal that is in an active state during a period around at least one of rising edges and falling edges of a clock signal; and a data input circuit that is controlled to be in an active state, in which a data signal can be received, while the control signal is in an active state, and otherwise controlled to be in an inactive state.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 23, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Katsuhiro KITAGAWA, Shotaro KOBAYASHI
  • Publication number: 20120044004
    Abstract: To date, bandwidth mismatch within time-interleaved (TI) analog-to-digital converters (ADCs) has been largely ignored because compensation for bandwidth mismatch is performed by digital post-processing, namely finite impulse response filters. However, the lag from digital post-processing is prohibitive in high speed systems, indicating a need for blind mismatch compensation. Even with blind bandwidth mismatch estimation, though, adjustment of the filter characteristics of track-and-hold (T/H) circuits within the TI ADCs can be difficult. Here, a T/H circuit architecture is provided that uses variations of the gate voltage of a sampling switch (which varies the “on” resistance of the sampling switch) to change the bandwidth of the T/H circuits so as to precisely match the bandwidths.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 23, 2012
    Applicant: Texas Instruments Incorporated
    Inventors: Robert F. Payne, Marco Corsi
  • Patent number: 8120398
    Abstract: A delay locked loop (DLL) circuit has a first delay line that delays a received external clock signal for a fine delay time and then outputs a first internal clock signal; a duty cycle correction unit that corrects a duty cycle of the first internal clock signal and then outputs a second clock signal; a second delay line that delays the second clock signal for a coarse delay time and then outputs a second internal clock signal; and a phase detection and control unit that detects the difference between the phases of the external clock signal and the fed back second internal clock signal, and controls the fine delay time and the coarse delay time. The DLL circuit performs coarse locking and fine locking by using different type delay cells, and thus consumes a small amount of power and robustly withstands jitter and variation in PVT variables.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Jin Lee
  • Patent number: 8120397
    Abstract: A delay locked loop (DLL) apparatus includes a first delay unit converting a reference clock into a rising clock. A second delay unit converts the reference clock into a falling clock, and a replica delay unit replica-delays the rising clock. A first phase detector compares the phases of the reference clock and the delayed rising clock to output a first detection signal corresponding to the compared phases. A controller synchronizes the rising edge of the rising clock with the rising edge of the reference clock according to the first detection signal of the first phase detector. A second phase detector compares the phases of the synchronized rising clock and the synchronization clock to output a second detection signal corresponding to the compared phases. The DLL apparatus compensates for a skew between an external clock and data and between external and internal clocks by employing a single replica delay unit.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: February 21, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Won Joo Yun, Hyun Woo Lee
  • Patent number: 8120396
    Abstract: A delay locked loop circuit comprising a VCDL which outputs a feedback clock by delaying an input clock in accordance with a magnitude of a control voltage, a phase comparator which detects a phase difference between the feedback clock and a reference clock by comparing the feedback clock with the reference clock, and outputs an Up-signal for raising the control voltage and a Down-signal for lowering the control voltage in accordance with the phase difference, a control voltage generation circuit which determines the control voltage in accordance with the Up-signal and the Down-signal, and outputs the control voltage to the VCDL, and a reset circuit which resets the phase comparator based on a logical OR between the reference clock and a first intermediate clock which is a signal obtained by delaying the input clock by the VCDL and is output before the feedback clock.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 21, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Masaaki Iwane
  • Patent number: 8120409
    Abstract: A programmable delay circuit capable of providing a delay with integer and fractional time resolution is described. In one exemplary design, an apparatus includes first and second delay circuits. The first delay circuit provides a first delay of an integer number of time units. The second delay circuit couples to the first delay circuit and provides a second delay of a fraction of one time unit. The first delay circuit may include multiple unit delay cells coupled in series. Each unit delay cell may provide a delay of one time unit when enabled. The second delay circuit may have first and second paths. The first path may provide a shorter delay when selected, and the second path may provide a longer delay when selected. The second path may be coupled to at least one dummy logic gate that provides extra loading to obtain the longer delay for the second path.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 21, 2012
    Assignee: QUALCOMM, Incorporated
    Inventors: Mustafa Keskin, Marzio Pedrali-Noy
  • Patent number: 8115512
    Abstract: A method and apparatus for dynamically aligning high-speed signals in an integrated circuit are disclosed. For example, an integrated circuit according to one embodiment includes a logic fabric and at least one input/output interface coupled to the logic fabric. The input/output interface includes a plurality of input/output sites and an edge detector coupled to the plurality of input/output sites for detecting an edge in an input signal received by the integrated circuit. A plurality of delay lines are used to determine whether the input signal arrives too early or too late compared to a clock signal in the integrated circuit, and delays in the delay lines are adjusted to align the input signal with the clock signal in the integrated circuit.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: February 14, 2012
    Assignee: Xilinx, Inc.
    Inventor: John G. O'Dwyer
  • Patent number: 8108710
    Abstract: A system and method is presented for reducing skew between the positive and negative components of a differential signal in a high speed communications link. The communications link includes a signal generator producing and transmitting complementary positive and negative signals over separate transmission lines and a receiver receiving the complementary signals. The communication link further includes a skew compensation circuit having a skew detector, a controller, and separate delay and buffer elements for both the positive and negative component of the differential signal. The controller separately controls each of the delay or buffer elements in response to the detected skew between differential signal components.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: January 31, 2012
    Assignee: Mayo Foundation for Medical Education and Research
    Inventor: Patrick J. Zabinski
  • Patent number: 8107577
    Abstract: The present invention is a noise tolerant communication protocol device and method where a clock signal input triggers an internal delay clock in an integrated circuit. Data is presented to an input pin and sampled prior to the next external clock pulse based on the internal delay clock. A data pulse value is distinguished by input signal voltage level and not by pulse length. Sampling of data bits is deferred until a signal level is most likely stable, thereby avoiding sampling during periods around edges of changing data values. Therefore, error detection and correction circuitry is not required. A time reference pulse, produced by a bus master, is measured by the protocol device to determine a data transmission rate by the master. The timing of sampling of input signaling from the master is determined by the protocol device from measurement of the time reference pulse magnitude.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: January 31, 2012
    Assignee: Atmel Corporation
    Inventor: Philip S Ng
  • Patent number: 8098086
    Abstract: Integrated circuit and programmable delay. One embodiment provides an integrated circuit including a programmable delay element having a plurality of single delay cells. The delay cells include a first input and a second input and a first output. The delay cells are arranged to form a chain such that the first output of a preceding delay cell is coupled to the second input of a successive delay cell. The first inputs of any delay cells are configured to receive an input signal to be delayed. The delay cells out of the plurality of delay cells is configured to constitute a starting point of a signal path including any of the delay cells arranged downstream of the starting point. The first output of the last delay cell in the chain forms an output of the programmable delay element.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: January 17, 2012
    Assignee: Qimonda AG
    Inventor: Kazimierz Szczypinski
  • Patent number: 8098535
    Abstract: An invention is provided for gate training in memory interfaces. The invention includes adding a coarse delay to a gate assert time, where the coarse delay is a predefined period of time and the gate assert time is a time when a data strobe gate signal is asserted. Next, the a data strobe signal is repeatedly sampled at the gate assert time until a rising edge of the data strobe signal is found, wherein a fine delay is added to the gate assert time between sampling of the data strobe signal. The fine delay is a period of time shorter than the coarse delay. Once the rising edge is found, the coarse delay is removed from the gate assert time, thus setting the gate assert time centrally within the preamble of the data strobe signal.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 17, 2012
    Assignee: Cadence Design Systems, Inc.
    Inventors: John MacLaren, Anne Espinoza
  • Patent number: 8094766
    Abstract: A digital data signal capture circuit for synchronization of received digital data signals includes a transition detector for determining a state transition of the received digital data signal. The transition detector samples the received digital data signal at a first time, a second time and a third time and determines whether the transition occurs between the first time and the second time and whether it occurs between the first time and third time and generates an increment/decrement signal indicating a position for the transition. A strobe adjust circuit generates a strobe signal based on the increment/decrement signal. A capture circuit captures the received digital data signal using the strobe signal.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: January 10, 2012
    Assignee: Teradyne, Inc.
    Inventor: George W. Conner
  • Publication number: 20110316602
    Abstract: Various systems and methods are provided for integrated circuit clocking. In one embodiment, an integrated circuit system includes a plurality of combinational logic groups, each combinational logic group having a propagation time; and means for delaying a synchronizing clock signal supplied to at least one of the plurality of combinational logic groups based upon a period of the synchronizing clock signal and the propagation time of the at least one combinational logic group. In another embodiment, a method includes delaying a clock signal to produce a delayed clock signal and communicating the clock signal and the delayed clock signal to separate groups of the combinational logic circuit during a clock cycle that results in a reduction in power consumption by the combinational logic circuit.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: EAST-WEST INNOVATION CORPORATION
    Inventors: Deanne Tran Vo, Thomas Jeffrey Bingel
  • Publication number: 20110316600
    Abstract: A method and apparatus of clock recovery is disclosed. The apparatus comprising: a first delay circuit for receiving an input data signal and outputting a delayed data signal; an edge extraction circuit for outputting an edge signal by detecting a transition in the input data signal; an clock generator for generating a first clock signal based on an injection of the edge signal, wherein the first clock signal comprises a plurality of phase signals; a second delay buffer for outputting a second clock signal according to the first clock signal; a sampler for outputting a plurality of samples based on sampling the delayed data signal in accordance with the phase signals; and a decision circuit for generating a decision in accordance with the second clock signal based on the three samples and a previous decision.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: REALTEK SEMICONDUCTOR CORP.
    Inventor: Chia-Liang LIN
  • Publication number: 20110316601
    Abstract: A delay method for determining an activation moment of an output device in a circuit system is disclosed. The delay method includes determining resistance of an over-current flag pull-high resistor of the circuit system, generating a current according to the resistance of the over-current flag pull-high resistor and a voltage drop across the resistor, duplicating the current to generate a first mirror current, delaying an enable signal of the circuit system according to the first mirror current to generate a charging activation signal, providing a charging current according to the charging activation signal, and determining the activation moment of the output device according to the activation current.
    Type: Application
    Filed: October 27, 2010
    Publication date: December 29, 2011
    Inventors: Hsiang-Chung Chang, Dong-Yi Liu
  • Patent number: 8085817
    Abstract: A clock synchronization buffer for a counter clock flow pipelined circuit including a cascade of processing modules that receive data from a previous module and provide output results to a following module. The clock synchronization buffer receives a clock input signal and provides clock signals to a local processing module and to the next pipeline stage. The clock synchronization buffer includes a selectable delay stage that receives a clock input signal and a delay select signal and outputs a clock signal having a selected delay. An amplifier connected to the selectable delay stage provides the delayed clock signal to a local processing module that corresponds to the clock synchronization buffer circuit. An inverting amplifier connected to the selectable delay stage provides the delayed clock signal to the next pipeline stage. A clock synchronization controller synchronizes the phases of reference clock input and synchronized clock input signals.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: December 27, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Douglas Jai Fouts, Brian Lee Luke
  • Patent number: 8081021
    Abstract: A semiconductor memory device includes a delay locked loop for achieving a delay locked state by correcting a phase difference between a reference clock and an internal delayed clock and for indicating the state that a larger delay amount than a maximum delay amount of a delay line is required, or a smaller delay amount than a minimum delay amount of delay line is required. A control unit resets the delay locked loop according to the state of the delay line.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: December 20, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Jun Ku
  • Publication number: 20110304369
    Abstract: A source synchronous signal synchronization system includes a differential signal receiver; a tunable input delay element coupled to the receiver; an input serializer/deserializer (ISerDes) coupled to the tunable input delay; an alignment unit coupled to the ISerDes; and a delay control unit coupled to the tunable input delay, the ISerDes, and the alignment unit.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: NEC LABORATORIES AMERICA, INC.
    Inventors: Junqiang Hu, Tyrone Kwok, Ting Wang
  • Patent number: 8076961
    Abstract: A monitoring apparatus monitors a system including an oscillator with a variable oscillation frequency. The monitoring apparatus has a transmitting unit to transmit an information collecting instruction for collecting state information of the system to the system at an arbitrary monitoring timing, and a control unit to perform a control operation that includes transmitting to the system control information for controlling the oscillation frequency to become a reference value or less if the oscillation frequency exceeds the reference value, and computing a changing amount of the oscillation frequency at least due to aging and a next monitoring timing.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 13, 2011
    Assignee: Fujitsu Limited
    Inventor: Masakazu Kishi
  • Publication number: 20110298510
    Abstract: A delay-locked loop circuit includes a voltage-controlled delay line configured to generate a plurality of delayed clock signals based on an input clock signal, a lock signal and a voltage control signal, the plurality of delayed clock signals being sequentially delayed from one another to produce an earliest delayed clock signal to a latest delayed clock signal, the voltage-controlled delay line including an anti-jitter delay circuit and a plurality of delay circuits, the anti-jitter delay circuit configured to output the earliest delayed clock signal, and the plurality of delay circuits coupled in series and configured to output a remainder of the plurality of delayed clock signals, a phase frequency detection circuit configured to generate an up signal and a down signal based on the earliest delayed clock signal and the latest delayed clock signal, a filter configured to generate the voltage control signal in response to the up signal and the down signal, and a lock detection circuit configured to generate
    Type: Application
    Filed: June 8, 2011
    Publication date: December 8, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-pil Lim, Jae-youl Lee
  • Publication number: 20110298512
    Abstract: A read latency control circuit is described having a clock synchronization circuit and a read latency control circuit. The clock synchronization circuit includes an adjustable delay line to generate an output clock signal whose phase is synchronized with the phase of the input clock signal. The read latency control circuit captures a read command signal relative to the timing of the input clock signal and outputs the read command signal relative to the timing of the output clock signal such that the read command signal is outputted indicative of a specified read latency.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Jongtae Kwak
  • Patent number: 8072275
    Abstract: A digital ring oscillator outputting a toggled clock signal. The clock signal is generated by a plurality of electronic cells that are arranged in series. At least one of the plurality of electronic cells receives a feedback of the clock signal. Control signals are received at an input for the plurality of electronic cells. Each electronic cell includes a first logic gate, a second logic gate, and an inverted logic gate coupled between the first logic gate and the second logic gate. For each electronic cell, a respective control signal controls whether an output signal received from the first logic gate of a preceding electronic cell is transferred through the first logic gate to the first logic gate in a succeeding electronic cell, or is inverted and transferred through the second logic gate to the second logic gate in a preceding electronic cell, based on the control signal.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 6, 2011
    Assignee: Marvell International Ltd.
    Inventor: Nir Paz
  • Publication number: 20110291722
    Abstract: A phase correction circuit includes a skew detection unit configured to generate first skew detection signals and second skew detection signals by comparing multi-phase signals with one another, a phase control signal generation unit configured to generate a plurality of phase control signals by combining the first skew detection signals with the second skew detection signals, and a phase adjustment unit configured to delay the multi-phase signals by delay time corresponding to the plurality of the phase control signals.
    Type: Application
    Filed: December 29, 2010
    Publication date: December 1, 2011
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Kwan Dong KIM
  • Publication number: 20110291723
    Abstract: Provided is a stream signal transmission device that can eliminate transmission delay fluctuation with a fast change such as network jitter with high accuracy and synchronize a plurality of streams. The stream signal transmission device includes at least one reception unit that receives a stream signal to which a time code is attached from a network, at least one extraction unit that extracts the time code from the stream signal received by the reception unit, and at least one delay control unit that determines an output time by adding a predetermined fixed delay to a time indicated by the time code extracted by the extraction unit, and outputs the stream signal received by the reception unit after holding the stream signal up to the output time.
    Type: Application
    Filed: January 20, 2010
    Publication date: December 1, 2011
    Inventor: Kiyoshi Hashimoto
  • Patent number: 8067966
    Abstract: A voltage controlled delay loop and method are disclosed for clock and data recovery applications. The voltage controlled delay loop generates clock signals having similar frequency and different phases. The voltage controlled delay loop comprises a plurality of delay elements; and an input that selectively injects a reference clock into any one of the plurality of delay elements. The plurality of delay elements are connected in series, such as in a loop. In one exemplary implementation, each delay element has an associated multiplexer that selects one of the reference clock and a signal from a previous delay element.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: November 29, 2011
    Assignee: Agere Systems Inc.
    Inventors: Ronald L. Freyman, Vladimir Sindalovsky, Lane A. Smith
  • Patent number: 8063675
    Abstract: Provided is a delay circuit that has a delay time period independent of a power supply voltage and has the equal delay time period between a case of a change in input signal from Low to High and a case of a change in input signal from High to Low. The delay time period is determined as a time period necessary for a voltage of a capacitor (17) (internal voltage (Va)) to increase from a ground voltage (VSS) to a voltage equal to or higher than an inverting threshold voltage of a constant current inverter (19) (threshold voltage (Vtn) of an NMOS transistor (16)). Therefore, the delay time period is determined with reference to the ground voltage (VSS). Note that the same holds true for an internal delay circuit (20). If the input signal (Vin) becomes High, the delay circuit utilizes the delay time period caused by an internal delay circuit (10). On the other hand, if the input signal (Vin) becomes Low, the delay circuit utilizes the delay time period caused by the internal delay circuit (20).
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: November 22, 2011
    Assignee: Seiko Instruments Inc.
    Inventors: Atsushi Igarashi, Masakazu Sugiura
  • Patent number: 8063682
    Abstract: A first signal processor performs predetermined signal processing on an input signal to provide a change to at least one of the characteristic values thereof. A second signal processor is provided in the subsequent stage of the first signal processor and performs predetermined signal processing on an output signal from the first signal processor to provide a change to a characteristic value thereof. An amount of change provided to the characteristic value of the signal by the second signal processor is dependent on a power supply voltage. An amount of change provided to the characteristic value of the signal by the first signal processor is configured to be adjustable. A control circuit monitors a power supply voltage supplied to the second signal processor and adjusts in accordance with the power supply voltage the amount of change provided to the characteristic value of the signal by the first signal processor.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 22, 2011
    Assignee: Advantest Corporation
    Inventors: Shoji Kojima, Toshiyuki Okayasu
  • Publication number: 20110267117
    Abstract: A semiconductor memory device includes: a strobe signal reception unit configured to receive a strobe signal and generate a tracking clock signal; a clock reception unit configured to receive a clock signal and generate an internal clock signal; a plurality of data reception units configured to receive parallel data in accordance with the internal clock signal and generate internal data; and a phase control unit configured to control the phase of the internal clock signal to track the tracking clock signal and to compensate for a variation in the phase of the internal clock signal while the data is received.
    Type: Application
    Filed: July 8, 2010
    Publication date: November 3, 2011
    Inventors: Hae-Rang CHOI, Yong-Ju Kim, Jae-Min Jang
  • Patent number: RE43201
    Abstract: A DLL circuit which can prevent transition to a pseudo lock state is provided. The DLL circuit includes a delay stage to which a reference clock is input and in which variable delay elements D able to change an amount of delay are connected in a plurality of stages, a phase comparator (PH Comp) which compares the phase of the reference clock to the phase of one delay signal extracted from the delay stage, a delay control circuit which performs delay control of the delay element in the delay stage on the basis of the comparison result by the phase-comparison means, and a DFF which detects a phase relationship of at least two delay signals extracted from the delay stage to discriminate a state which is not a normal lock state and controls the delay control circuit to perform state transition to the normal lock state.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: February 21, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasushi Matsuno