Electromechanical Resonator Patents (Class 331/154)
  • Patent number: 9667223
    Abstract: A microelectromechanical system (MEMS) resonator includes a resonant semiconductor structure, drive electrode, sense electrode and electrically conductive shielding structure. The first drive electrode generates a time-varying electrostatic force that causes the resonant semiconductor structure to resonate mechanically, and the first sense electrode generates a timing signal in response to the mechanical resonance of the resonant semiconductor structure. The electrically conductive shielding structure is disposed between the first drive electrode and the first sense electrode to shield the first sense electrode from electric field lines emanating from the first drive electrode.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 30, 2017
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 9628087
    Abstract: A radio transmission apparatus includes a radio transmission IC including a vibration element and a fractional N-PLL circuit and a power amplifier generating a radio transmission signal and a control device that controls the radio transmission IC, and a temperature detection element. The control device controls the fractional N-PLL circuit based on temperature information obtained from the temperature detection element such that a frequency of the radio transmission signal is temperature-compensated.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: April 18, 2017
    Assignee: Seiko Epson Corporation
    Inventor: Hisahiro Ito
  • Patent number: 9601267
    Abstract: A power transmitter is configured to wirelessly transfer power to at least one power receiver. The power transmitter includes at least one excitation circuit configured to generate a time-varying first magnetic field in response to a time-varying electric current flowing through the at least one excitation circuit. The time-varying first magnetic field has an excitation frequency. The power transmitter further includes a plurality of magnetic oscillators. Each magnetic oscillator of the plurality of magnetic oscillators has a mechanical resonant frequency substantially equal to the excitation frequency. The plurality of magnetic oscillators is configured to generate a time-varying second magnetic field in response to the first magnetic field.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: March 21, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Hanspeter Widmer, Nigel P. Cook, Markus Bittner
  • Patent number: 9459156
    Abstract: This temperature sensor includes an HBAR resonator, a unit for determining the difference between two distinct resonance frequencies at a temperature T, measured between two electrodes of a same pair of the HBAR resonator and a unit for determining the temperature of the resonator from the difference in frequencies and from a one-to-one function providing the match between the temperature and the frequency difference. The resonator is formed by a stack of a first electrode, a transducer, a second electrode, and acoustic substrate and the cuts of the transducer and of the substrate are selected so as to obtain high electro-acoustic couplings and a difference in frequency temperature sensitivities between two distinct vibration modes co-existing within the resonator, greater than or equal to 1 ppmĀ·K?1.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: October 4, 2016
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.), UNIVERSITE DE FRANCHE-COMTE
    Inventor: Sylvain Jean Ballandras
  • Patent number: 9344127
    Abstract: A radio frequency (RF) receiver including a baseband circuitry. The baseband circuitry can include a graphene nano-electro-mechanical (GNEMS) based system, a receiver, and a front-end mixer. The GNEMS based system can include a source, a drain, a gate and a nano-scale suspended graphene resonator. The graphene resonator can be suspended between the source and the drain. The receiver circuitry can be disposed on the baseband and configured to receive an RF signal. The front-end mixer can be disposed between the GNEMS based system and the receiver circuitry. The baseband circuitry can be configured such that an incoming signal sees frequency selective impedance at the receiver circuitry.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: May 17, 2016
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: James Hone, Alyosha Molnar, Changhyuk Lee, Sunwoo Lee
  • Patent number: 9318997
    Abstract: A resonator has a main resonator body and a secondary resonator structure. The resonator body has a desired mode of vibration of the resonator alone, and a parasitic mode of vibration, wherein the parasitic mode comprises vibration of the resonator body and the secondary resonator structure as a composite body. In this way, unwanted vibrational modes are quenched by the second suspended body.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: April 19, 2016
    Assignee: NXP, B.V.
    Inventors: Casper van der Avoort, Andreas Bernardus Maria Jansman, Robert James Pascoe Lander
  • Patent number: 9252740
    Abstract: A MEMS resonator system that reduces interference signals arising from undesired capacitive coupling between different system elements. The system, in one embodiment, includes a MEMS resonator, electrodes, and at least one resonator electrode shield. In certain embodiments, the resonator electrode shield ensures that the resonator electrodes interact with either one or more shunting nodes or the active elements of the MEMS resonator by preventing or reducing, among other things, capacitive coupling between the resonator electrodes and the support and auxiliary elements of the MEMS resonator structure. By reducing the deleterious effects of interfering signals using one or more resonator electrode shields, a simpler, lower interference, and more efficient system relative to prior art approaches is presented.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: February 2, 2016
    Assignee: SiTime Corporation
    Inventors: David Raymond Pedersen, Aaron Partridge, Thor Juneau
  • Patent number: 9041476
    Abstract: A crystal controlled oscillator includes a crystal package and an IC chip board that includes an IC chip integrating an oscillator circuit. The crystal package includes a first container, a crystal resonator, a lid body, and an external terminal at an outer bottom surface of the first bottom wall layer of the first container. The IC chip integrates an oscillator circuit disposed at an outer bottom surface of the first bottom wall layer of the crystal package. The oscillator circuit connects to the lower side excitation electrode of the crystal resonator from the external terminal to an input side with high impedance. The oscillator circuit connects to the upper side excitation electrode to an output side with low impedance. The upper side excitation electrode is a shielding electrode of the crystal resonator.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: NIHON DEMPA KOGYO CO., LTD.
    Inventor: Fumio Asamura
  • Publication number: 20150130548
    Abstract: A lid body includes: a first surface; a second surface having a top-bottom relation with the first surface; an outer peripheral surface connecting the first surface and the second surface; a groove provided in the first surface from the outer peripheral surface toward an interior of the first surface; and first and second marks arranged at positions that do not overlap with an outer peripheral edge of the second surface in a plan view.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Inventor: Juichiro MATSUZAWA
  • Publication number: 20150130547
    Abstract: A manufacturing method of an oscillator is a manufacturing method of an oscillator which includes a vibrator and a semiconductor circuit device including an oscillation part connected to the vibrator and a control part to switch an operation mode between a normal mode in which the oscillation part performs an oscillation operation and an inspection mode in which characteristics of the vibrator are inspected, and the manufacturing method includes preparing the semiconductor circuit device in which the operation mode is set to the inspection mode, connecting the semiconductor circuit device and the vibrator electrically, and inspecting the characteristics of the vibrator which is in a state electrically connected to the semiconductor circuit device.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Inventors: Masayuki ISHIKAWA, Yosuke ITASAKA, Takehiro YAMAMOTO, Akihiro FUKUZAWA
  • Patent number: 9024697
    Abstract: The invention relates to a method for operating control equipment (1) of a resonance circuit (2), wherein the control equipment (1) comprises at least two circuit elements (8, 9) connected in series, in particular each comprising a recovery diode (13, 14) connected in parallel, between which a connection (6) of the resonance circuit (2) is connected. According to the invention, the circuit elements (8, 9) are actuated as a function of the voltage detected at the connection (6). The invention further relates to control equipment (1) of a resonance circuit (2).
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Robert Bosch GmbH
    Inventor: Jochen Kuehner
  • Patent number: 9013241
    Abstract: The present disclosure relates to nanoresonator oscillators or NEMS (nanoelectromechanical system) oscillators. A circuit for measuring the oscillation frequency of a resonator is provided, comprising a first phase-locked feedback loop locking the frequency of a controlled oscillator at the resonant frequency of the resonator, this first loop comprising a first phase comparator. Furthermore, a second feedback loop is provided which searches for and stores the loop phase shift introduced by the resonator and its amplification circuit when they are locked at resonance by the first loop. The first and the second loops operate during a calibration phase. A third self-oscillation loop is set up during an operation phase. It directly links the output of the controllable phase shifter to the input of the resonator. The phase shifter receives the phase-shift control stored by the second loop.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventor: Patrick Villard
  • Patent number: 9013243
    Abstract: A resonator element includes a substrate vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on one principal surface of the substrate, and has a shape obtained by cutting out four corners of a quadrangle, and a second excitation electrode disposed on the other principal surface of the substrate, and a ratio (S2/S1) between the area S1 of the quadrangle and the area S2 of the first excitation electrode fulfills 87.7%?(S2/S1)<95.0%.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 21, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Osamu Ishii, Takao Morita
  • Patent number: 9013242
    Abstract: A resonator element includes a substrate including a first principal surface and a second principal surface respectively forming an obverse surface and a reverse surface of the substrate, and vibrating in a thickness-shear vibration mode, a first excitation electrode disposed on the first principal surface, and a second excitation electrode disposed on the second principal surface, and being larger than the first excitation electrode in a plan view, the first excitation electrode is disposed so as to fit into an outer edge of the second excitation electrode in the plan view, and the energy trap confficient M fulfills 15.5?M?36.7.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Osamu Ishii
  • Patent number: 9000853
    Abstract: Integrated circuit devices include a packaged MEMS-based oscillator circuit, which is configured to support bidirectional frequency margining of a periodic output signal. This bidirectional frequency margining is achieved using a first signal to synchronize changes in a frequency of the periodic output signal and a second signal to control whether the changes in the frequency of the periodic output signal are incremental or decremental. In particular, the oscillator circuit may be configured so that each change in the frequency of the periodic output signal is synchronized to a corresponding first voltage transition of the first signal and a voltage level of the second signal may be used to control whether the changes in the frequency of the periodic output signal are incremental or decremental.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 7, 2015
    Assignee: Integrated Device Technology, Inc.
    Inventors: Nelson Arata, Harmeet Bhugra
  • Patent number: 9000852
    Abstract: Aspects of the disclosure provide a circuit. The circuit includes a signal amplifying circuit coupled with a crystal component of a natural frequency to form a crystal oscillator, and a signal generator circuit configured to generate a signal with an energy distribution about the natural frequency, and to provide the signal to the crystal oscillator to assist the crystal oscillator to begin oscillating.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: April 7, 2015
    Assignee: Marvell International Ltd.
    Inventors: Dennis Sinitsky, Junshi Qiao, Pei Wang, Song Chen, Haiqing Zhang, Tao Shui
  • Patent number: 9000854
    Abstract: Oscillators including mechanical resonators are described, as are methods of operating the oscillators such that the mechanical resonator exhibits non-linear behavior. The non-linear behavior may include multiple stable states, for instance being bi-stable. The non-linear behavior may exhibit hysteresis. The mechanical resonator may be driven to operate in a desired portion of the non-linear operating regime.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Sand 9, Inc.
    Inventor: Pritiraj Mohanty
  • Patent number: 8994464
    Abstract: An amplifier and oscillator system includes a MEMS resonator and a two stage amplifier topology. The MEMS resonator is configured to generate a resonator signal. The two-stage amplifier topology is configured to amplify the resonator signal with a selected trans-impedance gain. Additionally, the two stage amplifier topology yields a feedback resistance that provides the selected trans-impedance gain.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: March 31, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang
  • Patent number: 8988155
    Abstract: An oscillator device includes: a structural layer extending over a first side of a semiconductor substrate; a semiconductor cap set on the structural layer; a coupling region extending between and hermetically sealing the structural layer and the cap and forming a cavity within the oscillator device; first and second conductive paths extending between the substrate and the structural layer; first and second conductive pads housed in the cavity and electrically coupled to first terminal portions of the first and second conductive paths by first and second connection regions, respectively, which extend through and are insulated from the structural layer; a piezoelectric resonator having first and second ends electrically coupled, respectively, to the first and second conductive pads, and extending in the cavity; and third and fourth conductive pads positioned outside the cavity and electrically coupled to second terminal portions of the first and second conductive paths.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: March 24, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giorgio Allegato, Paolo Ferrari, Laura Maria Castoldi, Benedetto Vigna
  • Patent number: 8981875
    Abstract: Tunable MEMS resonators having adjustable resonance frequency and capable of handling large signals are described. In one exemplary design, a tunable MEMS resonator includes (i) a first part having a cavity and a post and (ii) a second part mated to the first part and including a movable layer located under the post. Each part may be covered with a metal layer on the surface facing the other part. The movable plate may be mechanically moved by a DC voltage to vary the resonance frequency of the MEMS resonator. The cavity may have a rectangular or circular shape and may be empty or filled with a dielectric material. The post may be positioned in the middle of the cavity. The movable plate may be attached to the second part (i) via an anchor and operated as a cantilever or (ii) via two anchors and operated as a bridge.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 17, 2015
    Assignee: QUALCOMM Incorporated
    Inventor: Sang-June Park
  • Patent number: 8981859
    Abstract: An oscillator includes a resonator section structured such that a dielectric is interposed between first and second conductors and such that the first and second conductors are electrically connected to a resonant tunneling diode, a capacitor section structured such that the dielectric is interposed between the first and second conductors, a line section configured to electrically connect the resonator section and the capacitor section in parallel to each other, and a resistor section configured to electrically connect the first and second conductors to each other. A first position of the resonator section and a second position of the capacitor section are connected to each other by the line section so that the first position and the second position are substantially electrically equivalent to each other in a wavelength range larger than a wavelength of an electromagnetic wave that resonates in the resonator section.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: March 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Koyama, Ryota Sekiguchi
  • Patent number: 8981860
    Abstract: An apparatus includes a microelectromechanical system (MEMS) device configured as part of an oscillator. The MEMS device includes a mass suspended from a substrate of the MEMS, a first electrode configured to provide a first signal based on a displacement of the mass, and a second electrode configured to receive a second signal based on the first signal. The apparatus includes an amplifier coupled to the first electrode and a first node. The amplifier is configured to generate an output signal, the output signal being based on the first signal and a first gain. The apparatus includes an attenuator configured to attenuate the output signal based on a second gain and provide as the second signal an attenuated version of the output signal.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: March 17, 2015
    Assignee: Silicon Laboratories Inc.
    Inventors: Aaron Caffee, Manu Seth, Brian Drost
  • Patent number: 8963651
    Abstract: One embodiment relates to a method of compensating for crystal frequency variation over temperature. An example method includes obtaining an indication of temperature, computing a temperature compensation value based on the indication of temperature and a piecewise linear temperature compensation approximation, and compensating for a temperature offset in a crystal reference signal by adjusting a division ratio of a fractional divider in a phase-locked loop. The piecewise linear temperature compensation approximation can represent an approximation of frequency error in a crystal reference signal originating from a crystal over temperature. The piecewise linear temperature compensation approximation can be, for example, a linear approximation, a quadratic approximation, or a cubic approximation.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: February 24, 2015
    Assignee: Analog Devices, Inc.
    Inventors: Robert Timothy Edwards, Stephen Mark Beccue
  • Publication number: 20150048895
    Abstract: A micro electro mechanical system (MEMS) oscillator supplies an oscillator output signal having a first frequency that differs from a predetermined frequency of the output signal. An error determination circuit determines frequency error from the predetermined frequency based on initial frequency offset and/or temperature and provides the error information indicating a difference between the first frequency and the predetermined frequency. The error information is used by a receiving system in frequency translation logic that utilizes the oscillator output signal as a frequency reference.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: Silicon Laboratories Inc.
    Inventor: Yunteng Huang
  • Patent number: 8928419
    Abstract: A resonating element includes a resonator element that includes a vibrating portion and an excitation electrode provided on both main surfaces of the vibrating portion, an intermediate substrate in which the resonator element is mounted so as to be spaced from the excitation electrode, and a spiral electrode pattern that is provided on at least one main surface of the intermediate substrate, in which the electrode pattern is electrically connected to the excitation electrode.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: January 6, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Osamu Ishii, Masataka Nomura
  • Patent number: 8922286
    Abstract: A resonator element includes a base section, a pair of vibrating arms projecting toward the same side from the base section, and disposed side by side in a predetermined direction, a support arm projecting from the base section toward the same side as the pair of vibrating arms, disposed between the pair of vibrating arms, and having a recessed portion disposed on one principal surface, and a first electrically-conductive pad and a second electrically-conductive pad disposed side by side across the recessed portion.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: December 30, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Akinori Yamada, Masaru Mikami
  • Patent number: 8917147
    Abstract: A calibrated crystal warm-up method that can include determining the number of clock cycles of a crystal clock reference signal from a crystal oscillator occur during a single clock cycle of a low-power oscillator. Further, the determination can occur when the crystal oscillator is warmed up. The method can also include comparing a number of clock cycles of the crystal clock reference signal with a previously determined number of clock cycles of the crystal clock reference signal to indicate whether the crystal oscillator is warmed up. Further, the method can include counting the number of clock cycles of a low-power clock reference signal have occurred up until the time it has been determined that the crystal oscillator has been warmed up.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 23, 2014
    Assignee: Broadcom Corporation
    Inventors: Praveen Vasishtha, Satyaprasad Srinivas
  • Patent number: 8912856
    Abstract: The invention relates to a controller, and more particularly, to systems, devices and methods of controlling a sensor having a resonating mass. The controller includes: an analog-to-digital converter (ADC) unit for extracting a digitized sensor signal from the sensor signal; a phase controller for generating, based on the digitized sensor signal, a phase-controlled signal that is locked in phase with the digitized sensor signal; an amplitude controller for applying a gain to the digitized sensor signal to thereby generate an amplitude-adjusted signal; a modulator for modulating the amplitude-adjusted signal to thereby generate a modulated signal; and a phase shifter for shifting the phase of the modulated signal by 90 degrees. The output signal from the phase shifter is amplified and input to the drive for exciting the resonating mass, to thereby form a closed resonance loop for controlling the oscillation amplitude of the resonating mass.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: December 16, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Gabriele Cazzaniga, Federico Forte, Luciano Prandi
  • Publication number: 20140361844
    Abstract: A technique decouples a MEMS device from sources of strain by forming a MEMS structure with suspended electrodes that are mechanically anchored in a manner that reduces or eliminates transfer of strain from the substrate into the structure, or transfers strain to electrodes and body so that a transducer is strain-tolerant. The technique includes using an electrically insulating material embedded in a conductive structural material for mechanical coupling and electrical isolation. An apparatus includes a MEMS device including a first electrode and a second electrode, and a body suspended from a substrate of the MEMS device. The body and the first electrode form a first electrostatic transducer. The body and the second electrode form a second electrostatic transducer. The apparatus includes a suspended passive element mechanically coupled to the body and electrically isolated from the body.
    Type: Application
    Filed: September 18, 2013
    Publication date: December 11, 2014
    Applicant: Silicon Laboratories Inc.
    Inventors: Emmanuel P. Quevy, Daniel N. Koury, JR.
  • Publication number: 20140361843
    Abstract: A technique decouples a MEMS device from sources of strain by forming a MEMS structure with suspended electrodes that are mechanically anchored in a manner that reduces or eliminates transfer of strain from the substrate into the structure, or transfers strain to electrodes and body so that a transducer is strain-tolerant. The technique includes using an electrically insulating material embedded in a conductive structural material for mechanical coupling and electrical isolation.
    Type: Application
    Filed: July 12, 2013
    Publication date: December 11, 2014
    Inventors: Emmanuel P. Quevy, Daniel N. Koury, Jr.
  • Patent number: 8907731
    Abstract: A digitally-controlled oscillator circuit receives a digital value and generates a driving signal for driving an oscillator at a frequency according to the received digital value. A time-to-digital converter circuit receives a detection signal of oscillation of the oscillator, receives the driving signal, and detects a phase difference between the detection signal and the driving signal. A control circuit receives the detected phase difference and controls the frequency of the driving signal generated by the digitally-controlled oscillator circuit, such that the detected phase difference coincides with a predetermined resonant phase difference to resonate the oscillator.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: December 9, 2014
    Assignee: Denso Corporation
    Inventors: Shigenori Yamauchi, Takamoto Watanabe, Tomohito Terazawa
  • Patent number: 8907734
    Abstract: An oscillator system having: an UHF oscillator, such as a SAW oscillator, for producing a signal having a controllable frequency; a passive vibration, suppressor mechanically coupled to the UHF oscillator for suppressing vibrations above a predetermined bandwidth BW1 on the UHF oscillator; and an active vibration suppressor. The active vibration suppressor includes an accelerometer for sensing vibrations within a predetermined bandwidth BW2 on the UHF oscillator; and an HF or VHF oscillator, such as a crystal oscillator, producing a signal having a frequency controlled by the accelerometer. A control loop having a bandwidth changeable with sensed vibration level is fed the oscillator and the UHF oscillator for controlling the frequency of the signal produced by the SAW oscillator in accordance with a difference between the signal produced the HF or VHF oscillator and the signal produced by the UHF oscillator, the control loop having a bandwidth BW3; where BW1<BW3<BW2.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 9, 2014
    Assignee: Raytheon Company
    Inventors: Roger L. Clark, Ernest P. Caramanis
  • Patent number: 8902010
    Abstract: A tunable resonator is provided that has a high Q for each resonate frequency. The tunable resonator is a MEMs tunable resonator wherein the tuner is affected by moving a moveable mass, associated with the resonating portion of the resonator, form a first position to a second position such that the moveable mass is held in the first position or second position by a detent rather than a constant electromagnet magnetic or electrostatic force applied thereon.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 2, 2014
    Assignee: Motorola Mobility LLC
    Inventors: William P. Alberth, Jr., Gregory R. Black, Richard E. Mach
  • Patent number: 8890631
    Abstract: A crystal oscillator and manufacturing method thereof are provided.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 18, 2014
    Assignee: Lexvu Opto Microelectronics Technology (Shanghai) Ltd
    Inventor: Jianhong Mao
  • Patent number: 8884712
    Abstract: There are disposed a sealing member, a pair of electrode pads to electrically couple a piezoelectric resonator, a plurality of connection pads to electrically couple an integrated circuit element and the piezoelectric resonator, and wiring patterns to establish electrical continuity between the pair of electrode pads and the plurality of connection pads, and the piezoelectric resonator and the integrated circuit element are disposed side by side in plan view. An output wiring pattern establishes electrical continuity between one of the connection pads and an alternating current output terminal of an oscillation circuit, and a power source wiring pattern establishs electrical continuity between one of the connection pads and a direct current power source terminal of the oscillation circuit. The electrode pads are disposed closer to the power source wiring pattern than the output wiring pattern.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: November 11, 2014
    Assignee: Daishinku Corporation
    Inventors: Takuya Kojo, Kenji Moriguchi, Ryuji Matsuo, Tetsuya Hanaki
  • Patent number: 8884710
    Abstract: A system and method in accordance with the present invention provides a gyroscope incorporating an improved PLL technique. The improved PLL auto-corrects its own reference low-frequency noise, thereby eliminating this source of noise, improving the noise performance of the gyroscope and allowing a compact implementation. The net result is a gyroscope with improved bias stability that can meet noise requirements with a smaller footprint.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Invensense, Inc.
    Inventors: Derek Shaeffer, Ahingsa Soukhaphanith
  • Patent number: 8884711
    Abstract: A MEMS device and method for amplitude regulation of a MEMS device are disclosed. In a first aspect, the MEMS device comprises a MEMS resonator, a limiter coupled to the MEMS resonator, and a regulator coupled to the limiter. The MEMS device includes an amplitude control circuit coupled to the MEMS resonator. The amplitude control circuit controls a supply of the limiter via the regulator to regulate oscillation loop amplitude of the MEMS device. In a second aspect, the method includes coupling a regulator to the limiter, coupling an amplitude control circuit to the MEMS resonator, and controlling a supply of the limiter via the regulator to regulate oscillation loop amplitude of the MEMS device.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: November 11, 2014
    Assignee: InvenSense, Inc.
    Inventor: Vadim Tsinker
  • Patent number: 8878619
    Abstract: A variable phase amplifier circuit is disclosed and its method of use in tuning devices having resonators. The variable phase amplifier receives an input differential signal pair. The input differential signal pair can be generated by a resonator device. The variable phase amplifier generates a modified differential signal pair in response to receiving the input differential signal pair. The variable phase amplifier provides a means to vary the phase of the modified differential signal pair with respect to the input differential signal pair, in an accurate and stable manner. If the modified differential signal pair with a phase shift introduced in it is fed back to the resonator device, the resonator will change its frequency of oscillation, where the new frequency of oscillation is a function of the phase of the modified differential signal pair.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 4, 2014
    Assignee: Sand 9, Inc.
    Inventors: Dean A. Badillo, Klaus Juergen Schoepf, Reimund Rebel
  • Publication number: 20140320224
    Abstract: An apparatus for determining and/or monitoring at least one process variable of a medium, comprising: an oscillatable unit, which has a membrane and at least one oscillatable element, wherein the oscillatable element is secured to the membrane at least in a first securement region and in a second securement region. At least one driving/receiving unit, which excites the oscillatable unit to execute mechanical oscillations and which produces a received signal dependent on the oscillations of the oscillatable unit; and a control/evaluation unit, which evaluates the received signal with reference to the process variable. The apparatus is distinguished by features including that the driving/receiving unit is embodied in such a manner and arranged on a rear face of the membrane facing away from the oscillatable element that the oscillatable element executes torsional oscillations.
    Type: Application
    Filed: November 22, 2012
    Publication date: October 30, 2014
    Applicant: Endress + Hauser GmbH + Co. KG
    Inventors: Helmut Pfeiffer, Benjamin Mack
  • Publication number: 20140315498
    Abstract: An oscillator has an oscillation portion that generates oscillatory electric signals due to a magnetization motion; and a first electric circuit that is connected in parallel to the oscillation portion. A current whose magnitude oscillates flows to the first electric circuit, and the first electric circuit is arranged such that a magnetic field generated by the current is applied to the oscillation portion.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicant: TDK CORPORATION
    Inventors: Eiji SUZUKI, Tsuyoshi SUZUKI
  • Patent number: 8860514
    Abstract: A fractional-N divider supplies a divided clock signal. An adjusted divided clock signal is generated in a digital-to-time converter circuit having a delay linearly proportional to digital quantization errors of the fractional-N divider. The adjusted divided clock signal is generated based on first and second capacitors charging to a predetermined level. The charging of the first and second capacitors is interleaved in alternate periods of the divided clock. The charging of each capacitor with a current corresponding to respective digital quantization errors is interleaved with charging with a fixed current. A first edge of a first pulse of the adjusted divided clock signal is generated in response to the first capacitor charging to a predetermined voltage and a first edge of a next pulse of the adjusted divided clock signal is generated in response to the second capacitor charging to the predetermined voltage.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Colin Weltin-Wu, Yunteng Huang, Manu Seth
  • Publication number: 20140300425
    Abstract: The invention relates to a controller, and more particularly, to systems, devices and methods of controlling a sensor having a resonating mass. The controller includes: an analog-to-digital converter (ADC) unit for extracting a digitized sensor signal from the sensor signal; a phase controller for generating, based on the digitized sensor signal, a phase-controlled signal that is locked in phase with the digitized sensor signal; an amplitude controller for applying a gain to the digitized sensor signal to thereby generate an amplitude-adjusted signal; a modulator for modulating the amplitude-adjusted signal to thereby generate a modulated signal; and a phase shifter for shifting the phase of the modulated signal by 90 degrees. The output signal from the phase shifter is amplified and input to the drive for exciting the resonating mass, to thereby form a closed resonance loop for controlling the oscillation amplitude of the resonating mass.
    Type: Application
    Filed: January 8, 2013
    Publication date: October 9, 2014
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventor: Maxim Integrated Products, INC.
  • Patent number: 8854149
    Abstract: A capacitively-driven Micro-Electro-Mechanical System (MEMS) resonator is provided, in which a piezoresistively differential measurement is used to enable the MEMS resonator to transfer a signal. The MEMS resonator uses a Complementary Metal-Oxide-Semiconductor (CMOS) manufacturing process to make its oscillator and piezoresistor to achieve electrical insulation, thereby lowering the level of feedthrough signal.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 7, 2014
    Assignee: National Tsing Hua University
    Inventors: Sheng-Shian Li, Cheng-Syun Li
  • Patent number: 8847693
    Abstract: A system and method is disclosed that provides a technique for generating an accurate time base for MEMS sensors and actuators which has a vibrating MEMS structure. The accurate clock is generated from the MEMS oscillations and converted to the usable range by means of a frequency translation circuit.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 30, 2014
    Assignee: Invensense, Inc.
    Inventors: Joseph Seeger, Goksen G. Yaralioglu, Baris Cagdaser
  • Publication number: 20140266482
    Abstract: A resonance circuit includes a first resonator, a second resonator, a capacitance element and an inverting amplifier, and a negative capacitance circuit. The second resonator is connected to the first resonator in series. The capacitance element and the inverting amplifier are connected to one another in series. The capacitance element and the inverting amplifier are connected to the first resonator in parallel. The negative capacitance circuit is connected between a node and ground. The node is disposed between the first resonator and the second resonator.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: NIHON DEMPA KOGYO CO., LTD.
    Inventor: TAKEHITO ISHII
  • Publication number: 20140266483
    Abstract: A SAW device includes a SAW chip formed of a piezoelectric substrate and an IDT formed thereon, a base substrate that supports the SAW chip, and a fixing member that fixes the SAW chip to the base substrate. The SAW chip that forms a cantilever is supported by the base substrate via the fixing member in a position where the IDT does not overlap with the fixing member in a plan view of the SAW chip. The length W of the SAW chip in a y-axis direction and the length D of the fixing member in the y-axis direction satisfy 1<D/W?1.6. The fixing member bonds the lower surface and side surfaces of the fixed end of the SAW chip to the base substrate.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: Seiko Epson Corporation
    Inventors: Kunihito YAMANAKA, Naohisa OBATA
  • Patent number: 8836441
    Abstract: A surface mount piezoelectric oscillator includes a piezoelectric resonator with a container main body, a plurality of external terminals, a mounting board with an IC chip, a plurality of connecting terminals, and a solder ball. The solder ball bonds the plurality of external terminals and the plurality of connecting terminals by melting and hardening. The solder bonding portion has approximately a circular shape with approximately a same size as a size of the connecting terminal of the mounting board. The solder ball placed on the connecting terminal of the mounting board is melted, self-aligned, and hardened so as to form a solder fillet of nearly axial symmetry. The solder fillet bridges between the both electrodes and bonds the connecting terminal of the mounting board and the solder bonding portion of the external terminal of the piezoelectric resonator.
    Type: Grant
    Filed: December 23, 2012
    Date of Patent: September 16, 2014
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventor: Hidenori Harima
  • Patent number: 8836440
    Abstract: Doubly-clamped nanowire electromechanical resonators that can be used to generate parametric oscillations and feedback self-sustained oscillations. The nanowire electromechanical resonators can be made using conventional NEMS and CMOS fabrication methods. In very thin nanowire structures (sub-micron-meter in width), additive piezoresistance patterning and fabrication can be highly difficult and thus need to be avoided. This invention shows that, in piezoresistive nanowires with homogeneous material composition and symmetric structures, no conventional and additive piezoresistance loops are needed. Using AC and DC drive signals, and bias signals of controlled frequency and amplitude, output signals having a variety of frequencies can be obtained. Various examples of such resonators and their theory of operation are described.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 16, 2014
    Assignee: California Institute of Technology
    Inventors: Philip X.-L. Feng, Luis Guillermo Villanueva, Michael L. Roukes
  • Patent number: 8823465
    Abstract: A clock generator is disclosed for use with an oscillator device. The clock generator may include a signal conditioning pre-filter and a comparator. The signal conditioner may have an input for a signal from the oscillator device, and may include a high pass filter component and a low pass filter component. The high pass filter component may pass amplitude and frequency components of the input oscillator signal but reject a common mode component of the oscillator signal. Instead, the high pass filter component further may generate its own common mode component locally over which the high frequency components are superimposed. The low pass filter component may generate a second output signal that represents the locally-generated common mode component of the first output signal. The clock generator may have a comparator as an input stage which is coupled to first and second outputs of the filter structure.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 2, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Donal Bourke, Dermot O'Keeffe
  • Patent number: 8821009
    Abstract: Methods and apparatuses for Micro-Electro-Mechanical Systems (MEMS) resonator to monitor the platform temperature. Fabricating the resonator on a relatively low cost flexible polymer substrate rather than silicon provides mechanical flexibility as well as design flexibility with respect to sensor placement. Sensor readout and control circuits can be on silicon if desired, for example, a positive feedback amplifier to form an oscillator in conjunction with the resonator and a counter to count oscillator frequency.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 2, 2014
    Assignee: Intel Corporation
    Inventors: Mohamed A. Abdelmoneum, David A. Kaysen