Ambient Temperature Patents (Class 338/25)
  • Patent number: 10386218
    Abstract: The invention relates to a temperature measurement system for measuring a temperature of a tube, comprising a temperature sensor contained in a housing having a contact surface which is connected to an outer surface of the tube, wherein the contact surface has a concave form matching a form of the outer surface of the tube, and wherein a temperature-conductive, flexible intermediate layer is arranged between the contact surface and the outer surface of the tube. A further object is a flowmeter, particularly a Coriolis mass flowmeter, comprising the temperature measurement system.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: August 20, 2019
    Assignee: ROTA YOKOGAWA GMBH & CO. KG
    Inventors: Matthias Amann, Thomas Boelke, Jacek Kowol, Peter Reinshaus
  • Patent number: 10345156
    Abstract: A temperature sensor including a mineral-insulated supply line, a bottomed metal tube and a temperature sensing element secured in a support structure. An open end part of the bottomed metal tube is connected mechanically to the mineral-insulated supply line. A wire connection mechanically and electrically couples the temperature sensing element to the mineral-insulated supply line. The support structure is moveable in axial direction of the bottomed metal tube in a bottom end part of the bottomed metal tube.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: July 9, 2019
    Assignee: Sensata Technologies, Inc.
    Inventors: Christiaan Eugene Eduard Baerts, Valentin Grigorov, Asparuh Pavlov Borisov, Tsvetomir Latinov Zarkov
  • Patent number: 10337931
    Abstract: Systems and methods for icing resistant total air temperature probes with air jets are presented. In one embodiment, a probe comprises: a base having a forced air input port; and a body having leading and trailing edges extending from the base, the body comprising: a first interior airflow passage; a temperature sensor positioned within the first airflow passage; a notched intake port at a distal end of the body including an open channel extending into an intake aperture, and a cutaway region defining a recessed second face inset from the first face and exposes the open channel. The intake aperture opens into the first interior airflow passage, the notched intake port comprising air jet ports at a tip of the notched intake port; and a heated airflow passage through the body and isolated from the first interior airflow passage, coupling the forced air input port to the air jet ports.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 2, 2019
    Assignee: Honeywell International Inc.
    Inventors: Morris G. Anderson, Zachary Price, Doug Hollingshead
  • Patent number: 10126178
    Abstract: A fast-responding RTD assembly is provided having a housing including a cage having at least one flow through aperture, a cover disposed over at least one of the housing and the cage, a thin-walled RTD member having a first polyimide tape layer, a second polyimide tape layer sandwiching first and second lead tabs, and a conductor extending between the lead tabs, the thin-walled RTD located within the housing and held in position by a support structure first and second leads extending to the thin-walled member and corresponding to the first and second leads tabs, the thin-walled RTD member being one of curvilinear, linear, circular and spiral and minimizing contact with the housing to minimize conduction error.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: November 13, 2018
    Assignee: Unison industries, LLC
    Inventor: Jarodd Dan Goedel
  • Patent number: 10121596
    Abstract: A multilayer ceramic capacitor includes a laminated body including multiple ceramic layers. On the ceramic layers, first internal electrodes and second internal electrodes are arranged spaced away from each other, and exposed at a second principal surface of the laminated body. On the ceramic layers which are different from the ceramic layers on which the first internal electrodes are disposed, first auxiliary conductors, second auxiliary conductors, and third auxiliary conductors are disposed, and the second auxiliary conductors and the third auxiliary conductors are exposed from the first principal surface. A first external electrode connected to the first internal electrodes and the second auxiliary conductors and a second external electrode connected to the second internal electrodes and the third auxiliary conductors are disposed on the second principal surface.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: November 6, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yutaka Ota, Satoshi Kodama
  • Patent number: 10103139
    Abstract: An integrated circuit structure includes: a semiconductor substrate; a shallow trench isolation (STI) region in the semiconductor substrate; one or more active devices formed on the semiconductor substrate; and a resistor array having a plurality of resistors disposed above the STI region; wherein the resistor array comprises a portion of one or more interconnect contact layers that are for interconnection to the one or more active devices.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: October 16, 2018
    Assignee: XILINX, INC.
    Inventors: Nui Chong, Jae-Gyung Ahn, Ping-Chin Yeh, Cheang-Whang Chang
  • Patent number: 10072988
    Abstract: A temperature-detecting device includes a thermally conductive sheet, a heat-generating body thermally connected to a first end portion of the thermally conductive sheet, and a temperature-detecting element thermally connected to a second end portion of the thermally conductive sheet. This temperature-detecting device is also provided with thermally insulating layers on the top and bottom faces of the thermally conductive sheet between the first and second end portions thereof.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: September 11, 2018
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yoshiya Sakaguchi, Kazuhiko Kubo
  • Patent number: 10041487
    Abstract: A compressor may include a shell, a compression mechanism, first and second temperature sensors, and a control module. The shell may define a lubricant sump. The compression mechanism may be disposed within the shell and may be operable to compress a working fluid. The first temperature sensor may be at least partially disposed within the shell at a first position. The second temperature sensor may be at least partially disposed within the shell at a second position that is vertically higher than the first position. The control module may be in communication with the first and second temperature sensors and the pressure sensor and may determine whether a liquid level in the lubricant sump is below a predetermined level based on data received from the first and second temperature sensors.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: August 7, 2018
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Sunil S. Kulkarni, Ronald L. Van Hoose
  • Patent number: 10012551
    Abstract: The invention relates to a downhole measurement sensor assembly for an electrical submersible pump that is housed within a rugged, insulated and durable enclosure. The downhole measurement sensor assembly can be manufactured in accordance with the method described herein. The sensor assembly is configured to be inserted into a windings area of a downhole motor of the electrical submersible pump. The sensor assembly includes insulated lead wires that are connected to a thin-film temperature sensing element for monitoring the ESP motor operating temperature. The thin-film sensing element includes thin lead wires that are electrically connected via a connection substrate to the insulated lead wires. The thin-film sensing element is mounted the connection member, and the connection member may include attachment apertures for connecting the insulated lead wires.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: July 3, 2018
    Assignee: AUTOMATION SOLUTIONS INC.
    Inventors: Alistair G. Smith, Dennis Miles, Jr.
  • Patent number: 9978484
    Abstract: Provided are a metal nitride film for a thermistor, which has an excellent bending resistance and can be directly deposited on a film or the like without firing, a method for producing the same, and a film type thermistor sensor. The metal nitride film for a thermistor, which consists of a metal nitride represented by the general formula: TixAlyNz (where 0.70?y/(x+y)?0.95, 0.4?z?0.5, and x+y+z=1), wherein the crystal structure thereof is a hexagonal wurtzite-type single phase, and the peak ratio of the diffraction peak intensity of a-axis orientation (100) relative to the diffraction peak intensity of c-axis orientation (002) (i.e., the diffraction peak intensity of a-axis orientation (100)/the diffraction peak intensity of c-axis orientation (002)) is 0.1 or lower in X-ray diffraction.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: May 22, 2018
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroshi Tanaka, Toshiaki Fujita, Noriaki Nagatomo, Kazutaka Fujiwara, Hitoshi Inaba
  • Patent number: 9964451
    Abstract: Provided is a temperature sensor which does not easily cause a crack in a Ti—Al—N-based thermistor material layer when the film is bent, can be directly deposited on a film or the like without firing, and has a high reliability with a high heat resistance. The temperature sensor includes an insulating film 2, a thin film thermistor portion 3 made of a Ti—Al—N-based thermistor material formed on the insulating film, a pair of pattern electrodes 4 formed on the insulating film with a pair of opposed electrode portions 4a being arranged so as to be opposed to each other on the thin film thermistor portion, wherein the pair of opposed electrode portions covers the entire surface of thin film thermistor portion excluding the region between the opposed electrode portions.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 8, 2018
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Hiroshi Tanaka, Hitoshi Inaba, Kazuta Takeshima, Noriaki Nagatomo
  • Patent number: 9606006
    Abstract: A high temperature sensor includes a substrate, at least two terminal contacts and at least one resistive structure, wherein the terminal contacts and the at least one resistive structure are disposed on a first side of the substrate, and at least one of the resistive structures is electrically contacted by the terminal contacts, wherein at least one electrode is disposed on each of the two terminal contacts next to the resistive structure on the first side of the substrate. The electrodes are electrically connected to the terminal contacts, respectively, or at least one electrode is disposed on at least one terminal contact next to the resistive structure on the first side of the substrate, wherein the electrode is designed in one piece with the resistive structure. The invention also relates to a high temperature sensor and a method for producing such a sensor.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 28, 2017
    Assignee: Heraeus Sensor Technology GmbH
    Inventors: Karlheinz Wienand, Margit Sander
  • Patent number: 9267851
    Abstract: A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: February 23, 2016
    Assignee: UT-Battelle, LLC
    Inventor: Petro Maksymovych
  • Patent number: 9243392
    Abstract: A faucet includes a logical control, a spout, a hub, a handle, and a touch control operably coupled to at least one of the spout, the hub, and the handle.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: January 26, 2016
    Assignee: Delta Faucet Company
    Inventors: Garry R. Marty, Joel D. Sawaski, Kurt J. Thomas, Kyle R. Davidson
  • Patent number: 9228905
    Abstract: Aspects of the invention provide for a resistance temperature device (RTD) measurement device. In one embodiment, aspects of the invention include a RTD measurement device that includes: an input including a plurality of terminals from an RTD sensor; a plurality of burnout switches, each burnout switch connected to a terminal of the RTD sensor; a plurality of resources; and a switch block connecting the plurality of terminals and the plurality of resources to determine a measurement of the RTD sensor.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: January 5, 2016
    Assignee: General Electric Company
    Inventor: Daniel Milton Alley
  • Patent number: 9153366
    Abstract: A resistance element that includes a resistor made of a thin film containing VO2 as a main component and at least one of W, Nb, Mo and Ti as an additive element. The thin film has a plurality of layer regions distributed in the direction of thickness thereof, and amounts of the additive elements doped in the layer regions are different from each other between the adjacent layer regions. Terminal electrodes are disposed such that a current flows through the plural layer regions of the resistor. Preferably, an interval at which the plural layer regions are distributed is selected to be not less than 8 nm and not more than 35 nm.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: October 6, 2015
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Sakyo Hirose
  • Patent number: 8935843
    Abstract: A thermal, flow measuring device for determining and/or monitoring the flow of a measured medium through a measuring tube. The thermal, flow measuring device includes: a first pin-shaped shell and at least a second pin-shaped shell; a first resistance thermometer and at least a second resistance thermometer. At least the first resistance thermometer is embodied so as to be heatable, wherein the resistance thermometers, in each case, have a first surface, and at least a second surface, which lies opposite the first surface. The first pin-shaped shell surrounds the first resistance thermometer, and the second pin-shaped shell surrounds the second resistance thermometer. The pin-shaped shells are fillable with a fill material. In each case, at least one spacer is placeable between the pin-shaped shell and the first surface of the resistance thermometer, and the second surface of the resistance thermometer is at least partially covered with fill material.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: January 20, 2015
    Assignee: Endress + Hauser FLowtec AG
    Inventors: Dirk Boguhn, Jiri Holoubek, Axel Pfau, Oliver Popp, Jiri Polak
  • Patent number: 8896410
    Abstract: A chip thermistor has a thermistor portion including a ceramic material containing respective metal oxides of Mn, Ni, and Co as major ingredients; a pair of composite portions including a composite material of Ag—Pd, and respective metal oxides of Mn, Ni, and Co and arranged on both sides of the thermistor portion so as to sandwich in the thermistor portion between the composite portions; and external electrodes connected to the pair of composite portions, respectively. In this manner, the pair of composite portions are used as bulk electrodes and, for this reason, the resistance of the chip thermistor can be adjusted mainly with consideration to the resistance in the thermistor portion without need for much consideration to the distance between the external electrodes and other factors.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 25, 2014
    Assignee: TDK Corporation
    Inventors: Yo Saito, Kouki Yamada, Daisuke Tsuchida
  • Publication number: 20140306605
    Abstract: A PTC composition comprises crystalline polymer and conductive ceramic filler dispersed therein. The crystalline polymer has a melting point less than 90° C. and comprises 5%-30% by weight of the PTC composition. The crystalline polymer comprises ethylene, vinyl copolymer or the mixture thereof. The vinyl copolymer comprises at least one of the functional group selected from the group consisting of ester, ether, organic acid, anhydride, imide or amide. The conductive ceramic filler comprises a resistivity less than 500 ??-cm and comprises 70%-95% by weight of the PTC composition. The PTC composition has a resistivity about 0.01-5 ?-cm and its resistance at 85° C. is about 103 to 108 times that at 25° C.
    Type: Application
    Filed: September 4, 2013
    Publication date: October 16, 2014
    Applicant: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Kuo Chang LO, Wei Tsang Dai, Yi An Sha, Chun Teng Tseng
  • Publication number: 20140247106
    Abstract: The present disclosure relates to a high temperature resistance temperature detector for measuring exhaust gas temperature for example. The structure includes a resistive element disposed on an insulated carrier. The structure further includes a housing disposed over the carrier and resistive element for inhibiting oxidation of the element which would result in failure of the detector.
    Type: Application
    Filed: August 20, 2012
    Publication date: September 4, 2014
    Inventors: Dennis M. DeFrietas, John Patrick Parsons, Denis O'Flynn, Jarodd Goedel
  • Patent number: 8786396
    Abstract: A heater design for post-process trimming of thin-film transistors is described. The heater incorporates low sheet-resistance material deposited in non-active connecting regions of the heater to reduce heat generation and power consumption in areas distant from active heating members of the heater. The heating members are proximal to a thin-film resistor. The resistance of the thin-film resistor can be trimmed permanently to a desired value by applying short current pulses to the heater. Optimization of a heater design is described. Trimming currents can be as low as 20 mA.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 22, 2014
    Assignee: STMicroelectronics Pte. Ltd.
    Inventors: Calvin Leung, Olivier Le Neel
  • Publication number: 20140197156
    Abstract: The present invention provides a semiconductor ceramic composition which is represented by a composition formula of [(Bi.A)x(Ba1-yRy)1-x](Ti1-zMz)aO3 (in which A is at least one kind of Na, Li and K, R is at least one kind of rare earth elements (including Y), and M is at least one kind of Nb, Ta and Sb), in which a, x, y and z satisfy 0.90?a?1.10, 0<x?0.30, 0?y?0.050 and 0?z?0.010 and an average distance between voids, which is an average value of a space between voids being internally present, is 1.0 ?m or more and 8.0 ?m or less.
    Type: Application
    Filed: September 28, 2012
    Publication date: July 17, 2014
    Applicant: HITACHI METALS, LTD.
    Inventors: Kentaro Ino, Takeshi Shimada, Itaro Ueda, Toshiki Kida
  • Patent number: 8777484
    Abstract: A resistance temperature sensor with a first temperature sensor element and a second temperature sensor element, wherein the first temperature sensor element comprises a first measuring path and the second temperature sensor element a second measuring path, wherein the first and the second measuring paths extend on a substrate, wherein the substrate has an anisotropic thermal expansion with at least two mutually differing expansion directions (a, c), and wherein a projection of the first measuring path on the expansion directions (a) differs from a projection of the second measuring path on the expansion directions (c).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 15, 2014
    Assignee: Endress + Hauser Wetzer GmbH + Co. KG
    Inventors: Peter Seefeld, Reinhard Buchner
  • Patent number: 8730002
    Abstract: A resistance thermometer is provided having a measuring resistor in a form of a 0.1 to 10 ?m thick structured platinum layer applied to an electrically insulated surface of a substrate and an electrically insulating coating layer covering the platinum layer. The substrate or its surface contains zirconium dioxide, which is stabilized with oxides of a trivalent and a pentavalent metal. Preferably, the trivalent metal is yttrium and the pentavalent metal is tantalum or niobium. The characteristic curve of the measuring resistor preferably conforms to DIN-IEC 751. For mass production of resistance thermometers having high and reproducible measurement accuracy, a structured platinum layer having a thickness of 0.1 to 10 ?m is applied to an electrically insulating substrate having a thermal expansion coefficient in the range of 8.5 to 10.5×10?6/° K and a roughness less than 1 ?m, and the structured platinum layer is covered by an electrical insulator.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: May 20, 2014
    Assignee: Heraeus Sensor Technology GmbH
    Inventors: Karlheinz Wienand, Matsvei Zinkevich
  • Patent number: 8632245
    Abstract: A temperature sensor is provided that can easily make possible stuffing with the filler or burying of the temperature detector element so that faster temperature response can be achieved. A temperature sensor has a closed-bottom tubular shaped case, a temperature detector element inserted and accommodated in the case, and a filler filled in the case and sealing the temperature detector element. The temperature sensor is provided with a filler flowing portion formed in a relative gap between the case and the temperature detector element along an insertion direction of the temperature detector element and having a gap relative to the temperature detector element larger than that relative to the remainder portion of the gap.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 21, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Seizo Fujimoto
  • Patent number: 8617433
    Abstract: A conductive sintered oxide including: a first crystal phase represented by RE14Al2O9 and a second crystal phase having a perovskite structure represented by (RE21-cSLc)(AlxM1y)O3. RE1 is a first element group consisting of Yb and/or Lu and at least one element selected from Group IIIA elements excluding Yb, Lu and La. RE2 is a second element group consisting of at least one element selected from Group IIIA elements excluding La and including at least one of the elements constituting the first element group RE1. SL is an element group consisting of at least one of Sr, Ca and Mg and which includes Sr as a main element, and M1 is an element group consisting of at least one element selected from Groups IVA, VA, VIA, VIIA and VIII excluding Cr. The coefficient c is in the range of 0.18<c<0.50, and the coefficients x and y are in the range of 0.95?x+y?1.1.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: December 31, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hiroshi Watanabe, Yasayuki Okimura, Shinji Ban, Takeshi Mitsuoka
  • Patent number: 8617432
    Abstract: A sintered electroconductive oxide forming a thermistor element has a first crystal phase having a composition represented by RE14Al2O9 and a second crystal phase having a perovskite structure represented by (RE21-aSLa)MO3. The factor a of the second crystal phase is: 0.18<a<0.50, wherein RE1 represents at least one of Yb and Lu and at least one species selected from among group 3A elements excluding Yb, Lu, and La; RE2 represents at least one species selected from among group 3A elements excluding La and which contains at least one species selected from the group RE1; M represents Al and at least one species selected from group 4A to 7A, and 8 elements; and SL represents Sr, Ca, and Mg, with at least Sr being included at a predominant proportion by mole.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: December 31, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Yasuyuki Okimura, Shinji Ban, Hiroshi Watanbe, Takeshi Mitsuoka
  • Patent number: 8523430
    Abstract: An ultra thin temperature sensor device includes a temperature sensor element, lead frames for allowing the temperature sensor element to be interposed and fastened between the lead frames, a supporter for protecting the temperature sensor element, and a film for enclosing and insulating the temperature sensor element, the lead frames, and the supporter. The supporter is formed to be larger than the temperature sensor element.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: September 3, 2013
    Assignee: Lattron Co. Ltd.
    Inventors: Chung Kook Lee, Young Seong Wang, Cheol Jin Jeong
  • Patent number: 8525637
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation are disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots is located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 3, 2013
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 8497759
    Abstract: The RTD device of the present invention is comprised of a semiconductor substrate and a substantially thin conductive metal layer disposed upon the semiconductor substrate, wherein the conductive metal has a substantially linear temperature-resistance relationship. The conductive layer is etched into a convoluted RTD pattern, which consequently increases the overall resistance and minimizes the overall mass of the RTD assembly. A contact glass cover and a conductive metal-glass frit are placed over the RTD assembly to hermetically seal the RTD. The resultant structure can be “upside-down” mounted onto a header or a flat shim so that the bottom surface of the semiconductor substrate is exposed to the external environment, thus shielding the RTD from external forces. The resultant structure is a low mass, highly conductive, leadless, and hermetically sealed RTD that accurately measures the temperature of liquids and gases and maintains fast response time in high temperatures and harsh environments.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: July 30, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Alexander Ned, Vikram Patil, Joseph VanDeWeert, Nora Kurtz
  • Patent number: 8493171
    Abstract: A trimmable resistor for use in an integrated circuit is trimmed using a heater. The heater is selectively coupled to a voltage source. The application of voltage to the heater causes the heater temperature to increase and produce heat. The heat permeates through a thermal separator to the trimmable resistor. The resistance of the trimmable resistor is permanently increased or decreased when the temperature of the resistor is increased to a value within a particular range of temperatures.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: July 23, 2013
    Assignees: STMicroelectronics, Inc., STMicroelectronics (Grenoble) SAS
    Inventors: Olivier Le Neel, Pascale Dumont-Girard, Chengyu Niu, Fuchao Wang, Michel Arnoux
  • Patent number: 8482372
    Abstract: A piezoresistive sensor device and method for making the same are disclosed. The device comprises a silicon wafer having piezoresistive elements and contacts in electrical communication with the elements. The device further comprises a contact glass coupled to the silicon wafer and having apertures aligned with the contacts. The device also comprises a non-conductive frit for mounting the contact glass to a header glass, and a conductive non-lead glass frit disposed in the apertures and in electrical communication with the contacts. The method for making the device comprises bonding a contact glass to a silicon wafer such that apertures in the glass line up with contacts on the wafer, and filling the apertures with a non-lead glass frit such that the frit is in electrical communication with the contacts. The use of a lead free glass frit prevents catastrophic failure of the device in ultra high temperature applications.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 9, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Publication number: 20130140499
    Abstract: The present invention relates to a conductive polymer composition for a PTC element with decreased NTC characteristics, using carbon nanotubes, a PTC binder resin, and a cellulose-based or polyester-based resin for fixing the carbon nanotubes and the PTC binder, and to a PTC element, a circuit and a sheet heating element using the same.
    Type: Application
    Filed: September 19, 2011
    Publication date: June 6, 2013
    Applicant: LG HAUSYS, LTD.
    Inventors: Seong-Hoon Yue, Yong-Bae Jung, Min-Hee Lee, Won-Kook Kim, Dong-Joo Kwon
  • Patent number: 8434941
    Abstract: A method of producing a temperature measuring sensor including an insulating substrate having a top surface and a bottom surface, the top surface including a first area and a second area, and a first contact and a second contact being formed in the first area, the above contacts having a structured measuring film located therebetween: creating a conductive connection between the first contact on the top surface of the insulating substrate and the bottom surface of the insulating substrate, and a first conductive layer as a first terminal area of the temperature measuring sensor on the bottom surface such that the first conductive layer is electrically connected to the conductive connection, as well as a second conductive layer on the second area of the top surface as a second terminal area of the temperature measuring sensor such that the second conductive layer is in contact with the second contact.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 7, 2013
    Inventors: Georg Bernitz, Heinrich Zitzmann
  • Publication number: 20130088319
    Abstract: A chip thermistor has a thermistor portion including a ceramic material containing respective metal oxides of Mn, Ni, and Co as major ingredients; a pair of composite portions including a composite material of Ag—Pd, and respective metal oxides of Mn, Ni, and Co and arranged on both sides of the thermistor portion so as to sandwich in the thermistor portion between the composite portions; and external electrodes connected to the pair of composite portions, respectively. In this manner, the pair of composite portions are used as bulk electrodes and, for this reason, the resistance of the chip thermistor can be adjusted mainly with consideration to the resistance in the thermistor portion without need for much consideration to the distance between the external electrodes and other factors.
    Type: Application
    Filed: June 21, 2011
    Publication date: April 11, 2013
    Applicant: TDK CORPORATION
    Inventors: Yo Saito, Kouki Yamada, Daisuke Tsuchida
  • Publication number: 20130002395
    Abstract: The present invention is related to a polymer fibre-based PTC resistor comprising a co-continuous polymer phase blend, said blend comprising a first and a second continuous polymer phase, wherein the first polymer phase comprises a dispersion of carbon nanotubes at a concentration above the percolation threshold, said first polymer phase presenting a softening temperature lower than the softening temperature of the second polymer phase.
    Type: Application
    Filed: October 26, 2010
    Publication date: January 3, 2013
    Applicants: UNIVERSITE DE BRETAGNE SUD, NANOCYL S.A.
    Inventors: Frederic Luizi, Luca Mezzo, Jean-François Feller, Mickaël Castro
  • Patent number: 8344845
    Abstract: A thermistor structure includes a multilayer structure of at least one quantum layer surrounded by barrier layers in a multilayer structure. The quantum layer includes Ge and may be in the form of either a quantum well or quantum dots. The barrier layer is a carbon-doped Si layer, and the thermistor is intended to provide a way to compensate for the strain in a multilayer IR-detector structure through carbon doping of the quantum layer and barrier layers.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 1, 2013
    Inventor: Henry H. Radamson
  • Patent number: 8333506
    Abstract: A temperature sensor is formed from three initially unfired (or green) ceramic substrates. The first substrate has a temperature sensitive means printed on a first surface. Additionally first and second conducting elements are also printed thereon. The third substrate has a temperature sensitive means in the form of a resistor printed on a first surface. Additionally first and second conducting elements and are also printed thereon. The second substrate is provided with a conducting via in the form of a hole extending through the substrate, the hole being filled with conductive material. The via is adapted to be aligned with the ends of conducting elements. To construct the sensor the first surfaces of substrates are aligned with substrate such that via is aligned with conducting elements. The substrates are then pressed together. Subsequently the substrates are fired to provide the completed sensor.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 18, 2012
    Assignee: MELEXIS NV Microelectronic Integrated Systems
    Inventors: Chavdar Kamenov, Petar Mitsev, Peter Tilmans, Jos Rennies
  • Patent number: 8334187
    Abstract: Methods of fabricating an integrated circuit device, such as a thin film resistor, are disclosed. An exemplary method includes providing a semiconductor substrate; forming a resistive layer over the semiconductor substrate; forming a hard mask layer over the resistive layer, wherein the hard mask layer includes a barrier layer over the resistive layer and a dielectric layer over the barrier layer; and forming an opening in the hard mask layer that exposes a portion of the resistive layer.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Wen Chang, Der-Chyang Yeh, Chung-Yi Yu, Hsun-Chung Kuang, Hua-Chou Tseng, Chih-Ping Chao, Ming Chyi Liu, Yuan-Tai Tseng
  • Patent number: 8305185
    Abstract: A highly-reliable thermistor element even when used at a relatively high temperature comprising; element body incorporating two or more internal electrode layers arranging thermistor layer in-between, a pair of terminal electrodes each connected to the mutually faced internal electrode layers and formed on exterior surface of the element body, and lead terminal connected to the terminal electrode, characterized in that the thermistor layer comprises oxide expressed by a composition formula YaCabCrcAldM1eO3 and the thermistor layer substantially does not include Sr or Mn.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: November 6, 2012
    Assignee: TDK Corporation
    Inventors: Hirokazu Kobayashi, Masao Kabuto, Masahiro Kobayashi
  • Patent number: 8305186
    Abstract: A resistive temperature detector assembly characterized by improved calibration means is generally provided. The assembly includes a primary resistive element, characterized by a temperature coefficient of resistance TCR1, for detecting temperature, and a calibration component characterized by first and second resistive elements, each operatively united with each other, and with the primary resistive element. The first resistive element is configured and/or adapted so as to permit selective passage of current through at least a portion thereof, with the first and second resistive elements characterized by temperature coefficients of resistance TCR1 and TCR2, TCR1 having a value intermediate the value of TCR1 and TCR2.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 6, 2012
    Assignee: Minco Products, Inc.
    Inventor: Bryan Jacob Myers
  • Patent number: 8242876
    Abstract: A trimmable resistor for use in an integrated circuit is trimmed using a heater. The heater is selectively coupled to a voltage source. The application of voltage to the heater causes the heater temperature to increase and produce heat. The heat permeates through a thermal separator to the trimmable resistor. The resistance of the trimmable resistor is permanently increased or decreased when the temperature of the resistor is increased to a value within a particular range of temperatures.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 14, 2012
    Assignees: STMicroelectronics, Inc., STMicroelectronics (Grenoble) SAS
    Inventors: Olivier Le Neel, Pascale Dumont-Girard, Chengyu Niu, Fuchao Wang, Michel Arnoux
  • Patent number: 8198976
    Abstract: A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: June 12, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Donald Laurence Thomsen
  • Patent number: 8198977
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation is disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots are located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals. The fine TCR calibration slot has a depth selected to obtain a TCR value observed at the voltage sense terminals that approaches zero. The resistor can also have a resistance calibration slot located between the pair of main terminals. The resistance calibration slot has a depth selected to calibrate a resistance value of the resistor.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: June 12, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 8183974
    Abstract: For production of a high-temperature sensor, in which a platinum resistance film is applied on a metal-oxide substrate, in particular sapphire or a ceramic plate, and a ceramic intermediate layer is laid on the resistance film, a self-supporting cover, in particular a ceramic or glass-ceramic cover, is bonded on the ceramic intermediate layer or a glass ceramic is mounted on the intermediate layer over its entire surface. Advantageously, the glass ceramic is electrically conductive or an ion conductor above 750° C. and is laid on up to the cathode of the resistance film up to beyond the intermediate layer. In particular, the cover is bonded with a metal-doped glass ceramic, which is laid on the cathode of the resistance film up to beyond the intermediate layer. Preferably, the electrically insulating intermediate layer is coated with a glass ceramic or a glass ceramic doped with metal, which coating has a resistance of at most one megaohm per square at 850° C. or above.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: May 22, 2012
    Assignee: Heracus Sensor Technology GmbH
    Inventors: Karlheinz Wienand, Thomas Loose, Margit Sander
  • Publication number: 20120119872
    Abstract: A heater design for post-process trimming of thin-film transistors is described. The heater incorporates low sheet-resistance material deposited in non-active connecting regions of the heater to reduce heat generation and power consumption in areas distant from active heating members of the heater. The heating members are proximal to a thin-film resistor. The resistance of the thin-film resistor can be trimmed permanently to a desired value by applying short current pulses to the heater. Optimization of a heater design is described. Trimming currents can be as low as 20 mA.
    Type: Application
    Filed: December 29, 2011
    Publication date: May 17, 2012
    Applicant: STMicroelectronics Pte Ptd.
    Inventors: Calvin Leung, Olivier Le Neel
  • Publication number: 20120112873
    Abstract: A process is described for integrating two closely spaced thin films without deposition of the films through deep vias. The films may be integrated on a wafer and patterned to form a microscale heat-trimmable resistor. A thin-film heating element may be formed proximal to a thin-film resistive element, and heat generated by the thin-film heater can be used to permanently trim a resistance value of the thin-film resistive element. Deposition of the thin films over steep or abrupt topography is minimized by using a process in which the thin films are deposited in a sequence that falls between depositions of thick metal contacts to the thin films.
    Type: Application
    Filed: December 29, 2011
    Publication date: May 10, 2012
    Applicants: STMicroelectronics (Grenoble 2) SAS, STMicroelectronics Pte Ltd., STMicroelectronics S.r.I.
    Inventors: Olivier Le Neel, Stefania Maria Serena Privitera, Pascale Dumont-Girard, Maurizio Gabriele Castorina, Calvin Leung
  • Patent number: 8162536
    Abstract: A method of manufacturing an exhaust temperature sensor is disclosed. It includes forming a green ceramic substrate; and printing an electrical circuit on the green ceramic substrate. The method then contemplates trimming the electrical circuit to a predetermined resistance prior to firing the green ceramic. Finally, the method contemplates firing the green ceramic substrate with the electrical circuit thereon.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: April 24, 2012
    Assignee: Delphi Technologies, Inc.
    Inventors: Charles S. Nelson, Raymond L. Bloink
  • Patent number: 8138881
    Abstract: A coated wire is solderable with soft solder while maintaining separate phases of the core and the coating. A 100 ?m to 400 ?m thick nickel wire may be coated galvanically with silver. For a film resistor with coated wires as connection wires, including a platinum measurement resistor on an electrically insulating substrate and connection wires connected to the measurement resistor, the connection wires have a coated nickel core. The coating may be made of silver or glass or ceramic or a mixture of these materials, or on its outside may be made of glass or ceramic or a mixture of these materials. For producing film resistors a thin metal or glass component is deposited on a connection wire connected to a track conductor arranged on an electrically insulating substrate, and a thick glass paste is deposited and fired on this metal or glass component. For mass production of film, several film resistors encased together in glass may be partitioned by fracturing.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: March 20, 2012
    Assignee: Heraeus Sensor Technology GmbH
    Inventor: Matsvei Zinkevich
  • Patent number: RE44224
    Abstract: A surface-mounted over-current protection device with positive temperature coefficient (PTC) behavior is disclosed. The surface-mounted over-current protection device comprises a first metal foil, a second metal foil corresponding to the first metal foil, a PTC material layer stacked between the first metal foil and the second metal foil, a first metal electrode, a first metal conductor electrically connecting the first metal foil to the first metal electrode, a second metal electrode corresponding to the first metal electrode, a second metal conductor electrically connecting the second metal foil to the second metal electrode, and at least one insulated layer to electrically insulate the first metal electrode from the second metal electrode. The surface-mounted over-current protection device, at 25° C., indicates that a hold current thereof divided by the product of a covered area thereof and the number of the conductive composite module is at least 0.16 A/mm2.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: May 21, 2013
    Assignee: Polytronics Technology Corp.
    Inventors: Shau Chew Wang, Fu Hua Chu