With Particular Circuit Patents (Class 342/175)
  • Patent number: 7893862
    Abstract: A detection system comprises a transmitter unit, a receiver, and a processor. The transmitter unit is capable of transmitting a first collimated beam having a first frequency and a second collimated beam having a second frequency into a ground, wherein the first collimated beam and the second collimated beam overlap in the ground. The receiver is capable of monitoring for a response radio frequency signal having a frequency equal to a difference between the first frequency and the second frequency. The response radio frequency signal is generated by an object having non-linear conductive characteristics in response to receiving the first collimated beam and the second collimated beam. The processor is capable of controlling an operation of the transmitter unit and the receiver. The processor is connected to the transmitter unit and the receiver. The object is detected when the response radio frequency signal is detected by the receiver.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: February 22, 2011
    Assignee: The Boeing Company
    Inventors: Sandor Holly, Nicholas Koumvakalis, Robert Alan Smith
  • Patent number: 7889121
    Abstract: A transmit/receive module that reduces size and weight of a radar apparatus is disclosed. The transmit/receive module includes a transmit input terminal, a receive output terminal, a transmit line, a receive line, and a plurality of branch devices. During monitoring of the transmit line, the plural branch devices are configured so that a standard signal inputted to the transmitting terminal passes through the transmit line, and is outputted to the receive output terminal. During monitoring of the receive line, the plural branch devices are configured so that the standard signal inputted to the transmitting terminal passes through the receive line, and is outputted to the receive output terminal.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazuhiro Kanto
  • Patent number: 7889113
    Abstract: An inspection system that can detect contraband items concealed on, in or beneath an individual's clothing. The system employs millimeter wave radiation to detect contraband items. The system is described in connection with a check point security system that includes temperature controlled walls to enhance imaging of contraband items. Also, a millimeter wave camera is used in conjunction with a visible light camera that forms images. To address privacy concerns of displaying images of people made with millimeter wave cameras that effectively “see through” clothes, the millimeter wave images are not displayed directly. Rather, computer processing produces indications of suspicious items from the underlying raw millimeter wave images. The indications of suspicious items are overlaid on the image formed by the visible light camera.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 15, 2011
    Assignee: L-3 Communications Security and Detection Systems Inc.
    Inventors: Apostle G. Cardiasmenos, Paul J. DeLia
  • Patent number: 7889120
    Abstract: A through air level measurement instrument for use in minimizing tank rattle comprises a housing and an antenna secured to the housing. A process adaptor is associated with the antenna and the housing for securing the instrument to a closed tank with the antenna directed into an interior of the closed tank. A control in the housing generates and receives a high frequency signal using an electromagnetic radiating element proximate the antenna. The control comprises an equivalent time sampling circuit including a main oscillator driving a timing circuit controlling timing between transmitted and sample pulses. A noise generator is operatively associated with the main oscillator to randomly modulate timing of the main oscillator. The control minimizes inaccuracies caused by tank rattle.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: February 15, 2011
    Assignee: Magnetrol International, Inc.
    Inventor: Michael D. Flasza
  • Patent number: 7884757
    Abstract: In one embodiment, an ultra wide band (UWB) radar includes: a substrate; a plurality of antennas adjacent the substrate, the plurality of antennas being arranged into a plurality of sub-arrays; an RF feed network adjacent the substrate, the RF feed network coupling to a distributed plurality of amplifiers integrated with the substrate, wherein the RF feed network and the distributed plurality of amplifiers are configured to form a resonant network such that if a timing signal is injected into an input port of the RF feed network, the resonant network oscillates to provide a globally-synchronized RF signal across the network; a plurality of pulse-shaping circuits corresponding to the plurality of sub-arrays, each pulse-shaping circuit being configured to receive the globally-synchronized RF signal from the network and process the globally-synchronized RF signal into pulses for transmission through the corresponding sub-array of antennas; and an actuator for mechanically scanning the UWB radar so that the pulse
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: February 8, 2011
    Assignee: Tialinx, Inc.
    Inventors: Farrokh Mohamadi, Afshin Niktash
  • Patent number: 7884755
    Abstract: A level measuring instrument has a variable transmitting power for measuring a filling level in a tank. The level measuring instrument includes a generator unit generating one of a first oscillator signal and a second oscillator signal. The generator unit generates a transmit signal from one of the first oscillator signal and the second oscillator signal. The level measuring instrument includes further a controller controlling the generator unit. The generator unit generates one of first and second transmitting powers for the transmit signal.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: February 8, 2011
    Assignee: Vega Grieshaber KG
    Inventors: Josef Fehrenbach, Daniel Schultheiss, Christoph Mueller, Bernhard Corbe
  • Publication number: 20110025553
    Abstract: A radar high frequency module having at least one distance piece mounted at the flat top wall of the shielding cover for supporting the shielding cover on the printed circuit board without mechanical contact of the downwardly extending side walls of the shielding cover with the printed circuit board to allow alignment of a rod antenna to a patch antenna arranged on the printed circuit board with greater precision. The side walls may be fixed to the printed circuit board by a conductive adhesive.
    Type: Application
    Filed: January 28, 2010
    Publication date: February 3, 2011
    Inventors: Neil COOKE, Tim Coupland, Jos Duivenvoorden, Adrian George Garrod, Katherine Moore
  • Patent number: 7880671
    Abstract: In one aspect, a system to generate radar signatures for multiple objects in real-time includes a first module including at least one processor to perform a shooting and bouncing (SBR) technique to solve for physical optics and multi-bounce characteristics of the objects. The at least one processor includes a central processing unit to perform dynamic ray tracing and a graphics processing unit (GPU) to perform far field calculations. The GPU includes a hit point database to store entries associated with rays that intersect an object.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 1, 2011
    Assignee: Raytheon Company
    Inventors: Chul J. Lee, Axel R. Villanueva
  • Patent number: 7881671
    Abstract: A system supporting data retrieval from a plurality of wireless sensor nodes is defined. The system includes the plurality of wireless sensor nodes and a data retrieval device. The plurality of wireless sensor nodes include a transceiver receiving a first signal and transmitting a second signal. The second signal includes a sensed datum or an encoded statistic based on the sensed datum identified at the plurality of wireless sensor nodes. The data retrieval device includes a plurality of antennas transmitting the first signal toward the plurality of wireless sensor nodes and receiving the second signal from the plurality of wireless sensor nodes, and a processor coupled to receive the received second signal from the plurality of antennas, the processor defining a virtual receive signal from the received second signal for the plurality of antennas and processing the defined virtual receive signal to determine the identified sensed datum.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: February 1, 2011
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Akbar M. Sayeed, Thiagarajan Sivanadyan
  • Patent number: 7880667
    Abstract: Methods and apparatus for preventing spoofing of targets, such as aircraft, in an air traffic control system. In one embodiment, first and second antennas at respective ground stations can be used to receive a signal transmitted by an aircraft from which a phase signal can be generated. A position of the aircraft generate can be generated from peaks and troughs in the phase signal due to movement of the aircraft. The determined position can be compared to a position reported by the aircraft to identify spoofing of the target.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 1, 2011
    Assignee: Raytheon Company
    Inventor: Paul J. Lanzkron
  • Patent number: 7880664
    Abstract: The invention relates to a method, an apparatus and a computer program product for correcting the weather data of radial speed, spectral width and/or differential reflectivity which have been acquired from radar echo data recorded by a ground-based, radar-based remote-sensing appliance (1) for measuring atmospheric conditions and including evaluable weather echoes and interfering ground echoes, corrected weather data being obtained by calculating out the interfering ground echoes from the acquired weather data by using a previously stored clutter map with an intensity distribution of radar echo data which include the ground echoes substantially without weather echoes.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: February 1, 2011
    Assignee: Selex Systems Integration GmbH
    Inventors: Ronald Hannesen, Axel Kammer, André Weipert
  • Patent number: 7875837
    Abstract: A method for engaging a hostile missile with an interceptor missile includes mathematically dividing an estimated target trajectory into portions, the junction of each portion with the next defining a possible intercept point. The engagement for each possible intercept point is modeled, to generate a probability of lethal object discrimination which is processed to generate a probability of intercept for each of the possible intercept points. The intercept point having the largest probability of intercept defines a selected intercept point from which intercept missile launch time is calculated, interceptor missile guidance is initialized, and the interceptor is launched at the calculated launch time and under the control of the interceptor missile guidance. Also, a method for estimating discrimination performance of a system of sensors includes generating sensor data signal-to-noise ratio and an aspect angle between the sensor and a lethal object.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: January 25, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Renee Szabo, Christian E. Pedersen, Wade E. Cooper
  • Publication number: 20110012776
    Abstract: An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.
    Type: Application
    Filed: July 17, 2009
    Publication date: January 20, 2011
    Inventors: Donald E. BARRICK, Peter M. Lilleboe
  • Publication number: 20110013716
    Abstract: A computer-implemented method and system for generating large families of sequences with desirable properties for many applications, including communications and radar applications, applies constraints to a sequence in the Zak space, modulates the constrained sequence in the Zak space, and determines permutations of the modulated sequence in the Zak space. The constraints are associated with predetermined properties, including predetermined autocorrelation and cross-correlation properties. Other embodiments of the computer-implemented method and system transform an input sequence into a transformed sequence using the finite Zak transform and determine at least one other different sequence based on the transformed sequence. The at least one other different sequence can be determined by collecting a plurality of sequences that are finitely supported on an algebraic line in the Zak space and modulating and/or determining permutations of some or all of the sequences.
    Type: Application
    Filed: July 17, 2009
    Publication date: January 20, 2011
    Applicant: MITRE Corporation
    Inventors: Andrzej K. Brodzik, Richard Tolimieri
  • Patent number: 7872603
    Abstract: A method for determining a refractivity profile of an atmosphere of the Earth. The method may involve: generating radar signals from a radar device located above the Earth's surface toward the Earth's surface; measuring a time of flight and a reflected intensity of reflected radar signals received back at the radar device; using the measured time of flight and the reflected intensity of the reflected radar signals received by the radar device to determine a distance to a radar horizon where the radar signals are tangent to the Earth's surface; and using the distance to the radar horizon to determine a refractivity profile of the atmosphere through which the radar signals and the reflected radar signals have travelled.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: January 18, 2011
    Assignee: The Boeing Company
    Inventor: Brian J. Tillotson
  • Patent number: 7868811
    Abstract: A weather radar system includes an input for receiving lightning detection data and processing electronics for determining a presence of a convective cell or associated hazard. The processing electronics receive weather radar data and the lightning detection data. The weather radar data is related to radar returns. The processing electronics provide temporal or spatial filtering of the lightning detection data to provide filtered data and determine a position of the convective cell or associated hazard in response to the weather radar data and the filtered data.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: January 11, 2011
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Kevin M. Kronfield, Karen L. Walling
  • Patent number: 7868818
    Abstract: An antenna is provided, in combination with an associated switch array, the antenna comprising a number of antenna elements mounted above a ground plane for providing coverage over a predetermined range of angles in azimuth using a number of beams. Each of the antenna elements is connected to a switch in the switch array and the switch array is operable to connect selected pairs of the antenna elements to a signal path to thereby generate each of the different beams, at the same time connecting unselected antenna elements to ground.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: January 11, 2011
    Assignee: BAE Systems, PLC
    Inventor: Robert Ian Henderson
  • Patent number: 7868812
    Abstract: A system and method for providing entry-point, boundary-line, and presence intrusion detection by means of an intelligent controller process capable of driving both field alert/alarm systems and security station monitoring devices and for providing occupancy warnings and critical status alerts, one embodiment providing runway occupancy warnings and critical runway status alerts to both flight crew approaching an airfield and air traffic controllers managing ground traffic, the system including: a detection system, airfield output devices (including all FAROS, GAROS and CTAF Runway Occupancy Radio Signals (RORS)), an airfield communications network, a centralized data processing unit that contains all of the algorithms to drive light control, logging, and an optional administrative network layer that hosts a graphical user interface.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: January 11, 2011
    Assignee: Patriot Technologies, LLP
    Inventors: Virginia Lorraine Huthoefer, Gerald Wallace Huthoefer
  • Patent number: 7864106
    Abstract: A method and system for SNR enhancement in pulse-Doppler coherent target detection for applications in the fields of radar and ultrasound. In accordance with the method of the invention, complex signals are obtained for each of two or more sub-intervals of the time-on-target interval, allowing simultaneous range and Doppler measurements. A coherent integration is the performed on the signals to generate complex-valued folded matrices. The folded matrices are unfolded and target detection is then performed in a process involving one or more of the unfolded matrices. A pulse-Doppler coherent system is also provided configured for target detection by the method of the invention.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: January 4, 2011
    Assignee: Elta Systems Ltd.
    Inventors: Ella Beilin, Jehezkel Grizim, Yacov Vagman, Alexander Lomes
  • Patent number: 7864100
    Abstract: An automatic pulse detector compares a radar video pulse to a delayed and amplified version of itself. The radar video pulse serves as an amplitude reference for a comparator. A delayed and amplified version of the same pulse serves as the pulse to be detected. Time of detection is amplitude independent and is not degraded by flat-topped pulses. Pulse detection occurs at a fixed, fractional point on the leading edge of a pulse where noise has less temporal influence than at the top of a pulse. Unlike a time-of-peak detector, the self-referencing pulse detector is well-suited to detecting wide, flat-topped pulses produced by expanded-time, pulse-echo radars operating in relatively narrow ISM bands.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: January 4, 2011
    Assignee: McEwan Technologies, LLC
    Inventor: Thomas Edward McEwan
  • Patent number: 7864103
    Abstract: A height-finding 3D avian radar comprises an azimuthally scanning radar system with means of varying the elevation pointing angle of the antenna. The elevation angle can be varied by employing either an antenna with multiple beams, or an elevation scanner, or two radars pointed at different elevations. Heights of birds are determined by analyzing the received echo returns from detected bird targets illuminated with the different elevation pointing angles.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 4, 2011
    Assignee: Accipiter Radar Technologies, Inc.
    Inventors: Peter T. Weber, Timothy J. Nohara
  • Patent number: 7864104
    Abstract: The invention relates to an apparatus (1) for ascertaining and monitoring fill level (2) of a medium (3) in a container (4) by means of a travel-time measuring method of high-frequency measurement signals (6) with a horn antenna (7) having a waveguide section (8), a flared, horn section (9) and a cavity (11) filled, at least partially, with a dielectric filling body (12). Object of the invention is to provide a simple, temperature-stable, horn antenna filled with a dielectric material.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: January 4, 2011
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Qi Chen, Klaus Feisst, Eric Bergmann
  • Patent number: 7858910
    Abstract: A method and apparatus for remotely sensing the content in a field of view are disclosed. The method includes transmitting a coherent optical signal into a field of view; receiving and detecting a reflection of the optical signal from a portion of the field of view bounded by the platform's boresight; correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the platform's boresight. The apparatus comprises a radome; an optical signal generator; an optical transmission channel; an optical receiver channel; and a plurality of electronics capable of receiving the representative signal and: correcting the first instance of the detected reflection; and resolving the content of a plurality of cells in the field of view up to the boresight from the corrected first instance of the reflection.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: December 28, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brett A Williams
  • Patent number: 7855674
    Abstract: The present invention provides a coherent radar system based on a modification of standard non-coherent radar without Moving Target Indication. Typical radars in this class are Navigation radars which are mass produced with low cost components. These radars utilize a magnetron in the transmitter which is a random phase device. In the present invention, the received signal is extracted just prior to amplitude detection process (where phase information is lost), and digitized using an analogue to digital converter providing coherent detection based on correlation between the transmitted pulse and the received signal.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: December 21, 2010
    Assignee: Telefonaktiebolaget L M Ericsson (Public)
    Inventor: Per Atle Våland
  • Patent number: 7855677
    Abstract: The code generation apparatus includes: a clock generator which generates a clock signal of a first frequency; a timing controller which generates a timing signal of a second frequency lower than the first frequency; a code table storage in which a plurality of code sequences serving as a source for a pseudo-noise code is stored; an address controller which selects, according to the timing signal, a code sequence to be read, from among a plurality of code sequences; a partial code sequence extractor which extracts, as a partial code sequence, a code of a predetermined length, from the code sequence to be read; and a parallel-series convertor which outputs the partial code sequence one bit at a time, according to the clock signal.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: December 21, 2010
    Assignee: Panasonic Corporation
    Inventors: Noboru Negoro, Takeshi Fukuda, Hiroyuki Sakai
  • Patent number: 7852256
    Abstract: A flat panel antenna used at a wall in a through-the-wall CW radar application is spaced from the wall by a half wavelength to eliminate the effects of energy reflected by the wall back to the antenna. In one embodiment, a ½-wavelength dielectric absorbing material insert is placed adjacent the flat panel antenna, which allows the flat panel antenna to be pressed against the wall for antenna stabilization, with the index of refraction of the material desirably being 3.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: December 14, 2010
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Paul D. Zemany
  • Patent number: 7847722
    Abstract: Provided is a secondary surveillance radar with an improved capability of eliminating an unnecessary Mode A/C target report, which includes a transmission unit transmitting interrogations, a reception unit receiving replies, from a transponder, corresponding respectively to the interrogations, and a signal processing unit generating a Mode S target report and a Mode A/C target report from the replies. The radar also includes a combiner generating a Mode S track and a Mode A/C track respectively from the Mode S and the Mode A/C reports, and then judging whether the Mode S report and the Mode A/C report are of the same target on the basis of the Mode S and the Mode A/C tracks. When the Mode S and the Mode A/C reports are of the same target, the combiner rejects the Mode A/C report.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masami Ino
  • Patent number: 7847723
    Abstract: The invention generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the invention is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of any number of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour, a Jam Assessment Strobe (JAS) and text for display on a number of flexibly configurable display formats posted on display units. The JAR and JAS graphics and text will aid the EA aircrew in rapidly assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: December 7, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Patent number: 7843383
    Abstract: Improved microwave imaging using a reflector. By providing a reflective surface in the range of the imaging system, additional information is available for imaging objects. The relative surface provides silhouette information on the object, and increases the effective thickness of the object to aid analysis.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: November 30, 2010
    Assignee: Agilent Technologies, Inc.
    Inventors: William Weems, Robert C. Taber
  • Patent number: 7843380
    Abstract: A system and method for sensing elevation terrain using an airborne weather radar. Method techniques include sampling first and second radar returns from a weather radar at two portions of an antenna. First radar returns are removed from second radar returns to generate third radar returns for a third portion of the antenna. The third portion of the antenna is included in the second portion but not the first portion. Changes in the third radar return are analyzed to sense elevation of the terrain.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 30, 2010
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 7843382
    Abstract: The present solution provides methods and systems for realizing hardware efficient mismatched filters for pulse compression codes. For pulse compression codes with sufficiently small sidelobe structures, such as in the cases of odd length Barker codes, the proposed filters require a small number of adders and multipliers per output. This translates to significantly reduced chip-area and lower power consumption when implemented on a chip. In one aspect, the present application features a method for suppressing an undesired part of a waveform. The method includes filtering a signal via a filter. In one embodiment, the signal includes an expected waveform that can be represented as a sum of the desired part and the undesired part. The impulse response of the filter can be represented a sum of the desired part and a negative of the undesired part.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 30, 2010
    Inventors: Adly T. Fam, Indranil Sarkar
  • Publication number: 20100295724
    Abstract: A system for detecting the amplitude of radio frequency energy includes: an antenna for receiving the radio frequency energy; a modulator, responsive to a reference frequency signal, for pulse modulating the received radio frequency energy at the reference frequency; a detector for converting such pulse modulated signal to a detector output signal having a low frequency component representative of the amplitude of the received radio frequency energy, in summation with DC bias current, and a high frequency component at the reference signal; and a high pass or band pass filter fed for the detector output signal for passing the high frequency components and for removing the low frequency component. A phase detector, with or without a subsequent IF amplifier, is fed by the reference frequency and the high frequency components for producing an output representative of the high frequency components.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 25, 2010
    Applicant: Raytheon Company
    Inventor: MICHAEL G. ADLERSTEIN
  • Patent number: 7839322
    Abstract: A method of detecting obstacles on board an aircraft while in the vicinity (44) of a touchdown point (27, 42), includes the following operations: selecting/determining a path (41) to be followed by the aircraft overflying the touchdown point; the aircraft overflying the touchdown point following the overflight path, and during the overflight recording signals/data delivered by an on-board rangefinder observing a portion of space extending below the aircraft; analyzing the rangefinder data to detect the presence of obstacles and to determine their positions in a terrestrial frame of reference, where appropriate to determine their dimensions; and recording the detected obstacle position data, and dimensions, if any, in a memory.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 23, 2010
    Assignee: Eurocopter
    Inventors: François-Xavier Filias, Jean Sequeira
  • Publication number: 20100289693
    Abstract: Systems and methods of error handling in interferometric signal processing for a ground based slope monitoring system are described. Uncorrected movement data is extracted from interferometric radar measurements of a relatively stable reference. The movement data is corrected for changes in atmospheric conditions as a function of changes in a refractive index of the air and an offset induced at zero range.
    Type: Application
    Filed: June 18, 2010
    Publication date: November 18, 2010
    Applicant: GroundProbe Pty. Ltd.
    Inventors: Glen Stickley, Bryan Reeves
  • Patent number: 7834805
    Abstract: A radar apparatus in which an interpolated sweep between adjacent real sweeps is formed irrespective of an interval between the real sweeps, and image data corresponding to one cycle of sweeping can be certainly updated. A sweep azimuth generator (12) generates and outputs an azimuth of sweep interpolated between a current and previous real sweep azimuth based on the current and previous real sweep azimuths, to a draw address generator (7). A sweep data generator (11) performs linear interpolation based on solitariness removed data of current real sweep data read from a sweep memory (4), and the previous solitariness removed real sweep data stored therein to generate and output interpolated sweep data to an image memory (8). The image memory (8) stores the solitariness removed real sweep data or the interpolated sweep data based on the real and interpolated sweep azimuths from the draw address generator (7), and outputs them to a display (9).
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: November 16, 2010
    Assignee: Furuno Electric Company Limited
    Inventors: Takumi Fujikawa, Takehiro Yamashita, Sae Takemoto (Shibata)
  • Publication number: 20100283666
    Abstract: Disclosed is a radar signal clustering method using frequency modulation characteristics and combination characteristics of signals including: a first step of assigning pulses of received radar signals to cells consisting of parameters including radio frequency (RF) and angle of arrival (AOA) of the pulses; a second step of calculating a pulse density distribution of each cell using a kernel density estimator; a third step of extracting a corresponding cell as a frequency fixed cluster if the calculated pulse density distribution is greater than a threshold of the frequency fixed cluster; a fourth step of making cell groups by merging remaining cells that are not extracted as the frequency fixed clusters; a fifth step of calculating a pulse density distribution of each cell group by using the kernel density estimator for each cell group; and a sixth step of comparing the calculated pulse density distribution for each cell group with each threshold according to a signal combination type of frequency agile clus
    Type: Application
    Filed: January 20, 2010
    Publication date: November 11, 2010
    Applicant: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Dong-Weon Lee, Jin-Woo Han, Kyu-Ha Song, Young-Jin Ryoo
  • Patent number: 7830301
    Abstract: The automotive radar includes a printed circuit board having a top surface and a bottom surface, and a processor mounted on the bottom surface of the printed circuit board. The automotive radar also includes a second liquid crystal polymer layer formed on the top surface of the printed circuit board, a second microstrip array printed on the second liquid crystal polymer layer, the second microstrip array having a patch, a first liquid crystal polymer layer formed on the second liquid crystal polymer layer, a first microstrip array printed on the first liquid crystal polymer layer, the first microstrip array having a perforated patch, and a transmit/receive module connected to a bottom surface of the second liquid crystal polymer layer and configured to transmit a first frequency signal to the first microstrip array and a second frequency signal to the second microstrip array.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 9, 2010
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Alexandros Margomenos
  • Patent number: 7830296
    Abstract: A communications module includes an interior configuration designed to intercept, disrupt, and scatter EMI produced by the module during operation. The interior configuration may include an anechoic structure that includes a plurality of anechoic elements positioned proximate EMI-producing components within the module. The anechoic elements may form truncated pyramids, columns having rounded tops, cones, or other shapes. The anechoic elements may be uniform or non-uniform in size, length, or shape and can be arranged in a periodic, non-periodic, or random pattern. In some embodiments, the anechoic elements may include cast zinc metal, Nickel, and/or radiation absorbent material, such as a mixture of iron and carbon. In operation, EMI impinging on the anechoic elements is scattered by their surfaces until absorbed by the elements or other structures of the module, thereby preventing the EMI from exiting the module.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 9, 2010
    Assignee: Finisar Corporation
    Inventor: Joshua John Edward Moore
  • Patent number: 7825853
    Abstract: The present invention is a man-portable counter-mortar radar (MCMR) radar system that detects and tracks enemy mortar projectiles in flight and calculates their point of origin (launch point) to enable and direct countermeasures against the mortar and its personnel. In addition, MCMR may also perform air defense surveillance by detecting and tracking aircraft, helicopters, and ground vehicles. MCMR is a man-portable radar system that can be disassembled for transport, then quickly assembled in the field, and provides 360-degree coverage against an enemy mortar attack.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: November 2, 2010
    Assignee: Syracuse Research Corporation
    Inventors: Steven E. Bruce, Thomas A. Wilson
  • Patent number: 7825850
    Abstract: It is proposed to use the gun barrel or launcher tube or the muzzle brake as a waveguide, which, however, is operated at a frequency that is below the cutoff frequency of the relevant waveguide mode. The transmit coupler excites the relevant waveguide mode. An oscillator generates the signal, which is then sent to the transmit coupler. The waveguide and the projectile form a system in which the electromagnetic field at the receive coupler is influenced by the position of the projectile. The characteristic change over time of the strength of the electromagnetic field at the location of the receive coupler that results from the change in the distance between the projectile and the receive coupler is measured and used to determine the muzzle velocity.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: November 2, 2010
    Assignee: Oerlikon Contraves AG
    Inventor: Henry Frick
  • Patent number: 7821447
    Abstract: Disclosed is a method of bias adjustment for a millimeter wave radar apparatus that can efficiently and highly accurately adjust the bias of an MMIC used in a radio frequency circuit in the millimeter wave radar apparatus.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: October 26, 2010
    Assignee: Fujitsu Ten Limited
    Inventors: Kenji Oka, Hiroshi Ito, Jun Ito
  • Patent number: 7821870
    Abstract: An acoustic tone at a predetermined frequency is detected after being reflected and modulated by an unknown moving object. Acoustic features are extracted from the reflected acoustic tone using acoustic spectral analysis. A dimensionality of the acoustic features is reduced, and the reduced dimensionality features are statistically classified to identify the object.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 26, 2010
    Assignee: Mitsubishi Electric Research Laboratories Inc.
    Inventor: Bhiksha Ramakrishnan
  • Patent number: 7821446
    Abstract: An ultra low power, long range, robust radar system, for applications such as ionospheric sounding. The HF transmit signal and the received (reflected) signal are both unswitched and high frequency and share a path to a common loop antenna. The transmit signal originates at a local oscillator (LO), and is sufficiently low power to not saturate the receive signal path. A balun divides the local oscillator signal between the transmit path forward to the antenna and a mixer path, and also divides the received signal between the mixer path and the LO path. A mixer converts the mixed LO and received signal to baseband.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: October 26, 2010
    Assignee: Southwest Research Institute
    Inventors: Rodney V. Landreth, William D. Davis, Robert W. Robison
  • Publication number: 20100265123
    Abstract: A radar system is disclosed for forming a scanning receive beam from signals received by a phased array having a plurality of sub arrays. An exemplary radar system includes a plurality of phase units each configured to receive a signal from one or more sub arrays. Each phase unit includes a waveform generator configured to generate an analog waveform having a frequency corresponding to a time-varying phase shift. Each waveform generator is arranged to digitally generate the analog waveform, and output a comparison of the received signal with the waveform, incorporating the time-varying phase shift. The system further includes a combining unit configured to combine the outputs from the plurality of phase units to form a scanning receive beam.
    Type: Application
    Filed: July 17, 2009
    Publication date: October 21, 2010
    Applicant: ASTRIUM LIMITED
    Inventor: David Charles LANCASHIRE
  • Patent number: 7817080
    Abstract: A ranging and communication multifunction system including a transmission unit and a receiving unit, and integrates two functions of ranging and communication in which the transmission unit includes a transmission circuit, a carrier wave modification device, and a transmission antenna. The receiving unit includes a receiving circuit, a wave detector, a low noise amplifier, and a receiving antenna, and a data modulation performed in the transmission circuit uses a PPM system. Thus, the receiving circuit provides a ranging circuit and a communication separately, so that the demodulation processing of ranging and communication can be performed in parallel.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: October 19, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yasushi Aoyagi, Kazutaka Kamimura
  • Patent number: 7817082
    Abstract: Techniques to image life forms through obstructions and at long standoff ranges employ a radar system that simultaneously transmits a plurality of RF pulse trains having different transmission frequencies and receives returns of the RF pulse trains reflected from a life form target. The returns are processed to generate digital radar data associated with the transmission frequency of each RF pulse train. The digital radar data is segmented and averaged to generate a Doppler spectrum response associated with the transmission frequency of each RF pulse train. Target classification is performed using the Doppler spectrum responses to extract biometric data describing the life form target.
    Type: Grant
    Filed: March 11, 2007
    Date of Patent: October 19, 2010
    Assignee: VAWD Applied Science and Technology Corporation
    Inventors: Wesley Howard Dwelly, Vinh Nguyen Adams
  • Publication number: 20100259440
    Abstract: An apparatus and method for receiving electromagnetic waves using photonics includes a transmission unit transmitting electromagnetic waves in intervals; a time delay unit coupled to the transmission unit and controlling the transmission unit to transmit the electromagnetic waves in the intervals; an antenna receiving the electromagnetic waves reflected from the target; an interferoceiver coupled to the antenna and receiving the electromagnetic waves from the antenna, the interferoceiver comprising an optical recirculation loop to produce replica electromagnetic waves; and a computer identifying the target from the reflected electromagnetic waves.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 14, 2010
    Inventors: Ming-Chiang Li, Weimin Zhou
  • Patent number: 7812760
    Abstract: A transmitting unit of a short-range radar includes a first pulse generating unit, a second pulse generating unit, an oscillator and a switch, and while complying with the spectrum mask specified for a UWB short-range radar, emits a predetermined short pulse wave not interfering with the RR prohibited band or the SRD band into the space. The first pulse generating unit outputs a first pulse having the width larger than the width of the short pulse wave in a predetermined period. The second pulse generating unit outputs a second pulse having the width corresponding to the width of the short pulse wave during the period when the first pulse generating unit outputs the first pulse.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 12, 2010
    Assignees: Anritsu Corporation, Matsushita Electric Industrial Co., Ltd.
    Inventors: Tasuku Teshirogi, Masanori Ejima
  • Publication number: 20100253568
    Abstract: A method for exchanging radar signals, in which it is provided that for a system having a number of radar transceiver chips, a detection range for radar signals is set for each chip so that a plurality of detection ranges for radar signals is covered for the entire system simultaneously.
    Type: Application
    Filed: September 19, 2008
    Publication date: October 7, 2010
    Applicant: ROBERT BOSCH GMBH
    Inventor: Thomas Focke
  • Patent number: 7808422
    Abstract: A method of detecting weather on an aircraft uses a weather radar system. The method includes determining a location of a reflective radar target, accessing a database having stored information relating to ground clutter of a reflective radar target, retrieving weather radar information associated with the location, and automatically adjusting the weather radar return threshold in response to the information. The method can adjust a threshold for a weather radar display, adjust a weather radar signal gain, adjust a tilt angle of the weather radar, or adjust a ground clutter suppression threshold. The method can be implemented by hardware and/or software.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: October 5, 2010
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Roy E. Robertson, Peter A. Olander, Jeffery A. Finley