Wave Guide Type (e.g., Horn) Patents (Class 343/772)
  • Patent number: 9711860
    Abstract: A wireless electronic device includes a Substrate Integrated Waveguide (SIW), a first metal layer including one or more top wave traps, a second metal layer, a feeding structure extending through the first metal layer and into the SIW, and a reflector on the first side of the SIW. The reflector directly connects to the first metal layer and extends outward along a major plane of the first side of the first metal layer. The wireless electronic device is configured to resonate at a resonant frequency when excited by a signal transmitted or received though the feeding structure. The one or more top wave traps are configured to trap a signal radiated by the reflector based on the signal transmitted or received though the feeding structure.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: July 18, 2017
    Assignees: Sony Corporation, Sony Mobile Communications Inc.
    Inventors: Zhinong Ying, Kun Zhao
  • Patent number: 9612357
    Abstract: The present invention provides an electromagnetic wave receiving/transmitting device and the application thereof. The electromagnetic wave receiving/transmitting device of the present invention can effectively receive up to 80 to 500 GHz of terahertz electromagnetic waves. The electromagnetic wave receiving/transmitting device of the present invention further achieves the application of terahertz imaging. The physical package of the electromagnetic wave receiving/transmitting device of the present invention is capable of effectively absorbing external and internal noise of electromagnetic waves to significantly reduce noise, and thereby achieving the application of terahertz imaging.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: April 4, 2017
    Assignee: ARCHIT LENS TECHNOLOGY INC.
    Inventors: Lawrence Dah-Ching Tzuang, Yen-Ju Wu
  • Patent number: 9559403
    Abstract: A broadband signal junction with sum signal absorption for transmitted signals includes a common hollow conductor with a first predefined cross-section and four laterally-disposed side arm hollow conductors with a predefined cross-section. The cross-sections of the side arm hollow conductors can also be selected to be different. Two first opposing side arm hollow conductors of the four side arm hollow conductors extend along a first axis. Two second opposing side arm hollow conductors of the four side arm hollow conductors extend along a second axis. The first and the second axes are disposed orthogonal to one another and lie in the common plane. The broadband signal junction with sum signal absorption is characterized in that the two first side arm hollow conductors end with a hollow conductor absorber.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: January 31, 2017
    Assignee: Airbus DS GmbH
    Inventor: Philipp Kohl
  • Patent number: 9520637
    Abstract: A compact, agile polarization diversity, multiple frequency band antenna with integrated electronics for terrestrial terminal use in satellite communications systems includes an antenna feed having highly integrated microwave electronics that are mechanically and electromagnetically coupled thereto in a distributed arrangement so that diverse polarization senses having a low axial ratio and electronic switching control of the polarization senses is provided. The arrangement of the integrated distributed transceiver configuration enables the mechanical rotation of the orientation of a first transceiver for skew alignment while a second transceiver remains stationary relative to the antenna feed assembly. The first transceiver can be a high-band transmitter and receiver pair that supports linear polarization senses, and the second transceiver can be a low-band transmitter and receiver pair that supports circular polarization senses.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 13, 2016
    Assignee: KVH Industries, Inc.
    Inventors: Thomas D. Monte, Bosui Liu
  • Patent number: 9496622
    Abstract: The photonic-crystal (PC) slab absorber includes: a two-dimensional (2D)-PC slab composed of semiconducting materials; and a lattice point periodically arranged in the 2D-PC slab, the lattice point for forming resonant-state which can capture an electromagnetic waves incident from an outside by resonating an electromagnetic wave in a band edge of a photonic band structure of the 2D-PC slab in the plane of the 2D-PC slab. The 2D-PC slab is doped with impurities and can absorb the captured electromagnetic wave in the band edge resonant frequency of the 2D-PC slab.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: November 15, 2016
    Assignees: ROHM CO., LTD., OSAKA UNIVERSITY
    Inventors: Masayuki Fujita, Tadao Nagatsuma, Ryoma Kakimi, Dai Onishi, Eiji Miyai
  • Patent number: 9466887
    Abstract: A steerable artificial impedance surface antenna steerable in phi and theta angles including a dielectric substrate, a plurality of metallic strips on a first surface of the dielectric substrate, the metallic strips spaced apart across a length of the dielectric substrate and each metallic strip extending along a width of the dielectric substrate, and surface wave feeds spaced apart along the width of the dielectric substrate near an edge of the dielectric substrate, wherein the dielectric substrate is substantially in an X-Y plane defined by an X axis and a Y axis, wherein the phi angle is an angle in the X-Y plane relative to the X axis, and wherein the theta angle is an angle relative to a Z axis orthogonal to the X-Y plane.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: October 11, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel J. Gregoire, Joseph S. Colburn
  • Patent number: 9373891
    Abstract: A device for at least one of receiving and transmitting electromagnetic radiation includes a feedhorn having a substantially smooth, electrically conducting inner surface extending from an open end to a feed end, the inner surface being substantially rotationally symmetrical about a longitudinal axis, wherein an orthogonal distance from a point on the longitudinal axis to the substantially smooth, electrically conducting inner surface increases monotonically as the point on the longitudinal axis is selected at successively greater distances from the feed end of the feedhorn towards the open end of the feedhorn such that a profile of the substantially smooth, electrically conducting inner surface of the feedhorn is monotonically increasing. The feedhorn has an operating bandwidth and the feedhorn provides a maximum of ?30 dB cross polarization response over at least 15% of the operating bandwidth.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 21, 2016
    Assignees: The Johns Hopkins University, The United States of America, As Represented by the Administration of the National Aeronautics and Space Administration
    Inventors: Charles L. Bennett, Lingzhen Zeng, Edward J. Wollack, David T. Chuss
  • Patent number: 9358067
    Abstract: According to one embodiment of the present disclosure a microwave ablation system is disclosed. The microwave ablation system includes an energy source adapted to generate microwave energy and a plurality of energy delivery devices having a first energy delivery device configured to be inserted into tissue and to generate a non-directional ablation volume and a second energy delivery device configured to be positioned relative to the tissue and to generate a directional ablation volume. The system also includes a power dividing device having an input adapted to connect to the energy source and a plurality of outputs configured to be coupled to the plurality of energy delivery devices. The power dividing device is configured to selectively divide energy provided from the energy source between the plurality of energy delivery devices.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: June 7, 2016
    Assignee: COVIDIEN LP
    Inventors: Anthony C. Lee, Joseph D. Brannan, Mani N. Prakash, Francesca Rossetto
  • Patent number: 9184482
    Abstract: In an example embodiment, an azimuth combiner comprises: a septum layer comprising a plurality of septum dividers; first and second housing layers attached to first and second sides of the septum layer; a linear array of ports on a first end of the combiner; wherein the first and second housing layers each comprise waveguide H-plane T-junctions; wherein the waveguide T-junctions can be configured to perform power dividing/combining; and wherein the septum layer evenly bisects each port of the linear array of ports. A stack of such azimuth combiners can form a two dimensional planar array of ports to which can be added a horn aperture layer, and a grid layer, to form a dual-polarized, dual-BFN, dual-band antenna array.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: November 10, 2015
    Assignee: VIASAT, INC.
    Inventors: Donald L Runyon, Dominic Q Nguyen, James W Maxwell
  • Patent number: 9166297
    Abstract: A device for at least one of receiving and transmitting electromagnetic radiation includes a feedhorn having a substantially smooth, electrically conducting inner surface extending from an open end to a feed end, the inner surface being substantially rotationally symmetrical about a longitudinal axis, wherein an orthogonal distance from a point on the longitudinal axis to the substantially smooth, electrically conducting inner surface increases monotonically as the point on the longitudinal axis is selected at successively greater distances from the feed end of the feedhorn towards the open end of the feedhorn such that a profile of the substantially smooth, electrically conducting inner surface of the feedhorn is monotonically increasing. The feedhorn has an operating bandwidth and the feedhorn provides a maximum of ?30 dB cross polarization response over at least 15% of the operating bandwidth.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 20, 2015
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Charles L. Bennett, Lingzhen Zeng, Edward J. Wollack, David T. Chuss
  • Patent number: 9041612
    Abstract: Implementations for exciting two or more modes via modal decomposition of a pulse by a wave launcher are generally disclosed.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: May 26, 2015
    Assignee: New Jersey Institute of Technology
    Inventors: Edip Niver, Mohamed A. Salem, Aladin H. Kamel
  • Patent number: 9035842
    Abstract: A miniature interrogator antenna assembly including: a housing; a first miniature horn antenna in the housing having a first aperture; a second miniature horn antenna in the housing having a second aperture. The first and second miniature horn antennas are arranged in a canted configuration and are joint at a front of the assembly to form combined apertures at the front of the assembly. The antenna assembly further includes: a splitter/combiner having a matching portion, where the matching portion is positioned in the housing in such a way that an apex of the matching portion points to the front of the assembly; a plurality of annular grooves formed around the combined apertures at the front of the assembly; a sum input port coupled to a first waveguide with an H-plane bend feeding the splitter/combiner; and a difference input port coupled to a second waveguide feeding the splitter/combiner directly.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 19, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: Theodore N. Tahmisian, Jr., Charles A. Hall
  • Patent number: 9024835
    Abstract: An integral high frequency communication apparatus comprises a case, a waveguide apparatus having an extension portion, and a circuit board having a signal transmitting unit and a signal receiving unit. The transceiver module having two waveguide openings is retained in the case. The case has an opening through which the extension portion extends outside of the case. The integral high frequency communication apparatus can receive and transmit high frequency signals by the extension portion.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: May 5, 2015
    Assignee: Microelectronics Technology, Inc.
    Inventors: Ruei Yuen Chen, Hsiang Hao Sung
  • Patent number: 9024813
    Abstract: An antenna device is provided. The antenna device includes a radiator for radiating an electromagnetic wave, and a dielectric body arranged on an electromagnetic wave radiating side of the radiator, and having a plurality of dielectric members arrayed in a longitudinal direction of the radiator, wherein boundaries between the plurality of adjacent dielectric members are asymmetric with respect to a virtual line perpendicularly passing through the center of the dielectric body in the longitudinal direction.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 5, 2015
    Assignee: Furuno Electric Co., Ltd.
    Inventors: Tetsuya Miyagawa, Koji Yano
  • Publication number: 20150109178
    Abstract: Described embodiments include an antenna system and method. The antenna system includes at least two surface scattering antenna segments. Each segment includes a respective electromagnetic waveguide structure, and a respective plurality of electromagnetic wave scattering elements. The wave scattering elements are distributed along the waveguide structure, have an inter-element spacing substantially less than a free-space wavelength of a highest operating frequency of the antenna segment, have a respective activatable electromagnetic response to a propagating guided wave, and are operable in combination to produce a controllable radiation pattern. A gain definition circuit defines a series of at least two radiation patterns selected to facilitate a convergence on an antenna radiation pattern that maximizes a radiation performance metric. An antenna controller sequentially establishes each radiation pattern. A receiver receives the desired field of view signal and the undesired field of view signal.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Inventors: Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, JR.
  • Patent number: 9007269
    Abstract: Embodiments of the invention provide a dielectric waveguide antenna including a dielectric waveguide transmitting a signal applied from a power feeder, a dielectric waveguide radiator radiating the signal transmitted from the dielectric waveguide to the air through a first aperture, and a matching unit formed in a portion of the dielectric waveguide and controlling a serial reactance and a parallel reactance to thereby perform impedance matching between the dielectric waveguide radiator and the air, in order to reduce reflection generated in the first aperture during the radiation of the signal through the first aperture. Reflection in the aperture is reduced through the matching unit having various structures, thereby making it possible to improve characteristics of the dielectric waveguide antenna.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: April 14, 2015
    Assignees: Samsung Electro-Mechanics Co., Ltd., Korea University Research and Business Foundation
    Inventors: Jung Aun Lee, Myeong Woo Han, Chul Gyun Park, Moonil Kim, Seung Ho Choi, Kook Joo Lee
  • Publication number: 20150097746
    Abstract: A method and apparatus is presented. A structure having an interior channel is formed using additive manufacturing equipment. A viscous media containing abrasive particles is sent through the interior channel using abrasive flow machining equipment to form a desired surface roughness for the interior channel.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: THE BOEING COMPANY
    Inventors: Allen Wayne Wilson, Patrick Chalit Pattamanuch, Leonard Rosenheck
  • Patent number: 8970424
    Abstract: A radar level gauge system for determining a filling level in a tank. The radar level gauge system comprises a transceiver, a horn antenna having a first opening connected to the transceiver and a second opening facing a surface of the product in the tank, and processing circuitry connected to the transceiver for determining the filling level based on an electromagnetic surface reflection signal. The horn antenna is configured in such a way that an electrical distance from the first opening to the second opening, along a path defined by an intersection between a wall of the horn antenna and a half-plane starting from and extending in parallel with a cone axis of the horn antenna, is different for different orientations of the half-plane with respect to the cone axis. Hereby, disturbance from an antenna reflection signal can be reduced, which provides for improved measurement of high filling levels.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: March 3, 2015
    Assignee: Rosemount Tank Radar AB
    Inventor: Olov Edvardsson
  • Patent number: 8970440
    Abstract: A waveguide/planar line converter (1) has a rectangular-tube-shaped waveguide (3) through which microwaves or millimeter waves are electrically transmitted, and a planar line substrate (7), which is attached to the opening end portion (5) of the waveguide (3) and amplifies the waves and converts the frequencies of the waves. The planar line substrate (7) has a first conductor layer (9) having the waveguide (3) connected thereto, a second conductor layer (11), and a dielectric body (13) arranged between the conductor layers. The first conductor layer (9) has an antenna pattern (15) and a first grounding conductor (17) arranged on the circumference of the antenna pattern (15) The second conductor layer (11) has a strip conductor (19) electrically connected to the antenna pattern (15), and a second grounding conductor (21) electrically connected to the first grounding conductor (17).
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: March 3, 2015
    Assignee: NEC Corporation
    Inventor: Akira Miyata
  • Patent number: 8963790
    Abstract: A universal joint comprising a pair of circular waveguide ball-joints and a slip-joint allows for simultaneous 3-axis rotation and 3-dimensional translation between an antenna and a stationary source. As such, the universal joint does not have to be physically aligned with the azimuth, and elevation, rotation axis of the antenna and mounted on the gimbal support, greatly simplifying the antenna steering mechanism. The universal joint allows the antenna to be mass-balanced in relation to the azimuth and elevation axis without adding any additional counter weights, thus reducing the size and power requirements of the azimuth and elevation rotation drive systems. Additional ball-joints may be provided to increase the allowed range of motion of the antenna.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: February 24, 2015
    Assignee: Raytheon Company
    Inventor: Kenneth W. Brown
  • Publication number: 20150048983
    Abstract: Systems and methods for a stacked waveguide circulator are described. The stacked waveguide circulator may comprise a first side and a second side. The stacked waveguide circulator may also comprise a top and a bottom opposite the top. The top and the bottom may be adjacent to the first and second sides. The stacked waveguide circulator may also comprise a a first port and a second port on the first side. The first port may be vertically above the second port on the first side. Further, the stacked waveguide circulator may comprise a third port on the second side. The stacked waveguide circulator may comprise a first magnet on the top. The first magnet may be configured to assist in directing signals between the first, second, and third ports.
    Type: Application
    Filed: September 26, 2014
    Publication date: February 19, 2015
    Inventors: Edwin Nealis, Ying Shen
  • Patent number: 8957821
    Abstract: A dual-band feed horn having a connection surface configured for connection to a waveguide and a first surface coupled to the connection surface. The first surface has a cylindrical surface with a length and a first diameter chosen to propagate TE11 modes for both a low frequency band and a high frequency band. The horn has a bandwidth ratio of the high-frequency band to the low frequency band in the range of 1.6-4.0. The horn also has a substantially conical surface coupled to the first surface at a first slope discontinuity. The conical surface includes multiple surfaces each having a respective slope and coupled to adjacent surfaces by a respective plurality of slope discontinuities each having a respective diameter. The slopes and diameters are chosen to generate primarily TM1,m modes (m=1, 2, 3, etc.) in the high-frequency band and primarily higher order TE1,n modes (n=2, 3, etc.) in the low-frequency band such that the low frequency band and the high frequency band have approximately equal beam widths.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Sudhakar K. Rao, Chih-Chien Hsu, Gerard J. Matyas
  • Patent number: 8957818
    Abstract: A circularly polarized waveguide slot array includes first and second waveguide sections, the first waveguide section extending along a longitudinal axis, and including an antenna element for transmitting or receiving a circularly polarized signal. The second waveguide slot section is coupled side-to-side with the first waveguide slot section and extends along the longitudinal axis, the second waveguide slot section including an antenna element for transmitting or receiving the circularly polarized signal at a phase which is substantially complementary to the circularly polarized signal transmitted by or received by the first waveguide slot section. Further exemplary, the antenna element disposed on the first waveguide slot section is offset from said antenna element disposed on the second waveguide slot section substantially one half of a predefined guide wavelength ?g along said longitudinal axis.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 17, 2015
    Assignee: Victory Microwave Corporation
    Inventor: Ming H. Chen
  • Patent number: 8957819
    Abstract: A dielectric antenna includes at least one dielectric unit. Each dielectric unit is separated into a first region and a second region, and the second region could have a bending portion. A conductor covers a surface of the second region of the dielectric unit to form a waveguide structure. The waveguide structure has a first endpoint connected to the first region and a second endpoint serving as a signal feeding terminal for feeding or receiving signals.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 17, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Hung-Hsuan Lin, Ta-Chun Pu, Chun-Yih Wu
  • Patent number: 8952857
    Abstract: Designs and operations of momentum antennas are presented. In some antenna designs, the terminating discontinuities are complementary with the opposite transmission line's discontinuity. In other antenna designs, the terminating discontinuities are intrinsically self-complementary.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: February 10, 2015
    Assignee: Arizona Board of Regents, A Body Corporate of the State of Arizona Acting for and on Behalf of Arizona State University
    Inventor: Rodolfo E. Diaz
  • Patent number: 8941549
    Abstract: A compact four-way transducer (FWT) is provided for a microwave communications system. The compact FWT is a compact assembly that is configured to process microwave signals in dual-polarization antenna feeds and to provide single polarized signals for four communications channels. The compact FWT includes four terminals facing different directions at one end for receiving/sending single polarized signals, and a terminal at an opposite end for receiving/sending dual polarized signals.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 27, 2015
    Assignee: Tongyu Communication Inc.
    Inventors: Junwei Dong, Zhonglin Wu, Guohui Xiong
  • Patent number: 8933835
    Abstract: A two-channel directional antenna for use in a radar level gauge. The antenna comprises a partition wall dividing the antenna into a first partition for emitting an electromagnetic transmit signal, and a second partition for receiving an electromagnetic echo signal, the partition wall having an outer potion located downstream in a direction of radiation of the antenna. The partition wall comprises an electromagnetic de-coupling structure, which is arranged to reduce any leakage of electromagnetic energy from the transmit signal into the echo signal. The electromagnetic de-coupling structure according to the present invention ensures that the leakage of transmit signal into the received signal is reduced to a satisfactory level.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: January 13, 2015
    Assignee: Rosemount Tank Radar AB
    Inventor: Jan Westerling
  • Patent number: 8928546
    Abstract: An antenna for producing an omni-directional pattern, and using all frequencies of a frequency range simultaneously, is provided with first and second electrically conductive elements disposed coaxially relative to a central axis. The first element has a first surface of revolution about the axis, the first surface of revolution tapering radially outwardly while extending axially away from the second element to terminate at a first axial end of the first element. The second element has a second surface of revolution about the axis, the second surface of revolution tapering radially outwardly while extending axially toward the first element to terminate at a first axial end of the second element. The first and second surfaces of revolution overlap one another radially and axially, and are mutually non-conformal.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: January 6, 2015
    Assignee: Sandia Corporation
    Inventors: Travis Wayne Eubanks, Christopher Lawrence Gibson
  • Patent number: 8922425
    Abstract: A waveguide structure according to one embodiment includes an upper waveguide and a mode conversion portion. The upper waveguide internally transmits a high frequency signal in TE10 mode along a first direction. The mode conversion portion is configured to electromagnetically couple with the upper waveguide. The mode conversion portion converts the high frequency signal propagating through the upper waveguide from TE10 mode to TM11 mode. The mode conversion portion transmits the high frequency signal converted in a second direction perpendicular to the first direction. According to the waveguide structure pursuant to the embodiment, it is possible to attain excellent transmission characteristics of high frequency signals.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 30, 2014
    Assignee: Kyocera Corporation
    Inventor: Kazuki Hayata
  • Publication number: 20140347237
    Abstract: There is provided a wireless communication apparatus that includes (a) a printed circuit board, (b) a radio frequency circuit installed on the printed circuit board, and (c) an antenna element that is integrated onto the printed circuit board and electrically coupled to the radio frequency circuit via a printed conductor.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 27, 2014
    Applicant: RF elements s.r.o.
    Inventors: Juraj TAPTIC, Martin MARCINCAK
  • Patent number: 8872714
    Abstract: A wide beam radio frequency (RF) antenna includes a waveguide and one or more electrically conductive protrusions. The waveguide has at least one electrically conductive interior wall surface, a boresight defined by a longitudinal axis, and an aperture plane, transverse to the longitudinal axis, disposed at a distal end of the waveguide. A first proximal portion of each protrusion is electrically coupled to the electrically conductive interior wall surface, a distal portion of the protrusion being outside the aperture plane.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: October 28, 2014
    Assignee: Space Systems/Loral, LLC
    Inventor: Behzad Tavassoli Hozouri
  • Publication number: 20140302807
    Abstract: An antenna array includes a plurality of radiating elements disposed on a layer that is situated above an egg crate structure that is formed of interconnected dielectric panels. In some embodiments, balun circuitry is disposed on at least some of the dielectric panels of the egg crate structure for use in feeding corresponding radiating elements of the array in a balanced manner. Ground plane blocks may also be coupled to some or all of the dielectric panels to provide circuit shielding and/or to form a ground plane for the array antenna.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 9, 2014
    Applicant: Raytheon Company
    Inventors: Jar J. Lee, Stan W. Livingston
  • Publication number: 20140292604
    Abstract: At least one example embodiment discloses an antenna system. The antenna system includes a single printed circuit board (PCB) substrate and an antenna integrated with the single PCB substrate, the antenna being a broadside low-profile microstrip antenna.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: Alcatel-Lucent USA Inc.
    Inventors: Noriaki KANEDA, Shahriar SHAHRAMIAN, Yves BAEYENS, Young-Kai CHEN
  • Publication number: 20140266947
    Abstract: The semiconductor package includes a first substrate having a first surface and a second surface opposite to the first surface. A circuit portion is formed on the first surface of the substrate, wherein the circuit portion includes a wave guiding slot and a microstrip line overlapping the wave guiding slot. A chip is disposed on the circuit portion. An antenna is formed on the second surface of the substrate, wherein the antenna overlaps the wave guiding slot.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Chi-Han Chen, Chi-Tsung Chiu
  • Publication number: 20140240186
    Abstract: A system includes an antenna array and a transceiver configured to communicate wirelessly via the antenna array. The antenna array includes a substrate having first and second ground plates. The antenna array also includes multiple substrate integrated waveguide (SIW) antenna elements located along an edge of the substrate. The antenna array further includes feed lines configured to provide signals to the antenna elements and receive signals from the antenna elements. Each antenna element includes a waveguide between the first and second ground plates and enclosed by vias through the substrate, where the waveguide has one open edge along the edge of the substrate. The system could include multiple antenna arrays, where each antenna array includes multiple SIW antenna elements and the antenna arrays are located along different edges of the substrate.
    Type: Application
    Filed: December 16, 2013
    Publication date: August 28, 2014
    Applicant: Samsung Electronics Co., Ltd
    Inventors: Hongyu Zhou, Farshid Aryanfar
  • Patent number: 8816304
    Abstract: A standard EM wave field generator, includes a first tapered region configured to have a first port formed on its one side and be supplied with a source to generate EM field through the first port; and a first untapered region configured to have at least one or more slits in the form of a hole. Further, the standard EM wave field generator includes a second tapered region configured to have a third port formed on its one side and output the EM field generated from the first port through the third port.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: August 26, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Woong Choi, Seung Keun Park
  • Patent number: 8797207
    Abstract: A filling level measuring device antenna cover includes a base body and a plurality of circular fins concentrically arranged on the base body, wherein the fins and the base body consist of a plastic material. The fins and the base body are one piece and injection-moulded.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: August 5, 2014
    Assignee: Vega Grieshaber KG
    Inventors: Klaus Kienzle, Christian Sum, Thomas Kopp
  • Patent number: 8766864
    Abstract: Methods and systems for a smart antenna utilizing leaky wave antennas (LWAs) are disclosed and may include a programmable polarization antenna including one or more pairs of LWAs configured along different axes. One or more pairs of leaky wave antennas may be configured to adjust polarization and/or polarity of one or more RF signals communicated by the programmable polarization antenna. RF signals may be communicated via the configured programmable polarization antenna utilizing the configured one or more pairs of the leaky wave antennas. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The polarization and/or polarity may be configured utilizing switched phase modules. The LWAs may include microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on spacing between conductive lines in the waveguides. The LWAs may be integrated in one or more integrated circuits, packages, and/or printed circuit boards.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: July 1, 2014
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8766863
    Abstract: Provided is an antenna simply manufactured according to a frequency characteristic. The disk-shaped antenna having a screw tap structure includes a center post having a screw tap, a ground plane, and a disk radiator, so that a distance between a ground plane and a disk radiator can be finely tuned, and manufacturing and assembly error can be reduced to minimize differences in electrical characteristics between devices.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: July 1, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: So-Hyeun Yun
  • Publication number: 20140152520
    Abstract: An antenna includes a first conductive plane, a second conductive plane disposed in parallel with the first conductive plane, a power-supply unit applying a high frequency signal between the first conductive plane and the second conductive plane, and at least one shunt which is aligned in the second conductive plane and includes a transmission line including an open end aligned in a plane above or below the second conductive plane and a conductive via electrically connecting another end of the transmission line to the first conductive plane. A distance between a bottom surface of the transmission line and the second conductive plane is less than a distance between the bottom surface of the transmission line and the first conductive plane. The transmission line is formed on a plane positioned to face the second conductive plane outside a region circumscribed between the first conductive plane and the second conductive plane.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 5, 2014
    Applicant: NEC CORPORATION
    Inventors: Hiroshi Toyao, Noriaki Ando
  • Patent number: 8743002
    Abstract: Methods and systems for a 60 GHz leaky wave high gain antenna are disclosed and may include communicating RF signals using one or more or more leaky wave antennas (LWAs) in a wireless device. The LWAs may be integrated in metal traces on a chip, a package, and/or a printed circuit board (PCB). The metal traces may supply voltage signals to one or more circuits on the chip, package, and/or PCB. The voltage signals may include DC bias voltages, and/or signals at a frequency that is lower than a resonant frequency of the LWAs. The LWAs may include microstrip or coplanar lines where a cavity height of the LWAs is dependent on a spacing between the lines. An angle of the wireless signals with a surface of the chip, package, and/or PCB may be dynamically configured. The LWAs may be configured via switches in the chip, package, and/or PCB.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: June 3, 2014
    Assignee: Broadcom Corporation
    Inventor: Ahmadreza Rofougaran
  • Patent number: 8743004
    Abstract: A feed assembly for a parabolic dish reflector is described. The feed assembly includes a waveguide cavity locatable at the focal point, or any other desired off-boresight location corresponding point, of the parabolic dish, at least one first radiating element optimized for operation at a first frequency band and provided on a top surface of the waveguide cavity, and a plurality of second radiating elements each optimized for operation at a second band of frequencies and provided on the top surface of the waveguide cavity.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: June 3, 2014
    Inventor: Dedi David Haziza
  • Patent number: 8730119
    Abstract: A feed horn and systems and methods of making and using the feed horn are presented. Exemplary feed horns include a first portion comprising a dual mode geometry and a second portion comprising an axial corrugation geometry. The feed horn may operate simultaneously in a plurality of separate frequency bands (e.g., from about 18.3 GHz to about 20.2 GHz and from about 29.1 GHz to about 30.0 GHz) and a plurality of separate waveguide modes (e.g., TE11, TM11 or HE11 modes); simultaneously operating over two bandwidth segments of at least 1900 MHz that are separated by at least 5000 MHz. The feed horn may have a short axial length (e.g. less than 4 wavelengths at 18.3 GHz), and it may be configured to operate in a prime fed offset reflector antenna system. In addition, the feed horn may be formed as a single piece via a single casting pull.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: May 20, 2014
    Assignee: ViaSat, Inc.
    Inventors: Donald Lawson Runyon, David Mark Kokotoff
  • Patent number: 8723749
    Abstract: The present invention discloses an RF device for a wireless communication device, including a grounding element, an antenna, including a radiating element, a feed-in element, a coupling element, a switch, coupled between the coupling element and the grounding element, for connecting or disconnecting the grounding element to the coupling element, such that the antenna respectively operates in a first frequency band and a second frequency band, and a grounding terminal, for coupling the grounding element, a capacitive sensing element, for sensing an environment capacitance within a specific range through the radiating element, at least one capacitor, for blocking a DC route from the grounding terminal to the grounding element.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: May 13, 2014
    Assignee: Wistron NeWeb Corporation
    Inventors: Hsiao-Yi Lin, Jhih-Yuan Ke, Chih-Ming Wang
  • Publication number: 20140111394
    Abstract: An apparatus is provided. In the apparatus, there is an antenna package and an integrated circuit (IC). A circuit trace assembly is secured to the IC. A coupler (with an antenna assembly and a high impedance surface (HIS)) is secured to the circuit trace assembly. An antenna assembly has a window region, a conductive region that substantially surrounds the window region, a circular patch antenna that is in communication with the IC, and an elliptical patch antenna that is located within the window region, that is extends over at least a portion of the circular patch antenna, and that is in communication with the circular patch antenna. The HIS substantially surrounds the antenna assembly.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Eunyoung Seok, Srinath Ramaswamy, Brian B. Ginsburg, Vijay B. Rentala, Baher Haroun
  • Patent number: 8704718
    Abstract: A radiating element having a transition from a waveguide to a dipole radiator. The radiating element utilizes the electric field of electromagnetic waves propagating in the waveguide to excite a section of a microstrip transmission line that is collinear with the waveguide's propagation direction. A waveguide septum guides the electric field of the electromagnetic waves into the transmission line and provides impedance matching. The transmission line can be formed on a first side of a dielectric substrate having a ground plane on a second side of the substrate. A first dipole leg is formed by making a ninety degree turn in the transmission line. A second dipole leg is extended from the ground plane and turned opposite from the first dipole leg. The transmission line includes a transformer having stepped or gradual changes in width of the transmission line leading to the dipole to provide additional impedance matching.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Honeywell International Inc.
    Inventor: Michael G. Guler
  • Patent number: 8692731
    Abstract: Disclosed herein is a dielectric waveguide antenna including: a dielectric waveguide transmitting a signal applied from a power feeder; a dielectric waveguide radiator radiating the signal transmitted from the dielectric waveguide to the air through a first aperture; and a matching unit formed in a portion of the dielectric waveguide and controlling a serial reactance and a parallel reactance to thereby perform impedance matching between the dielectric waveguide radiator and the air, in order to reduce reflection generated in the first aperture during the radiation of the signal through the first aperture. Reflection in the aperture is reduced through the matching unit having various structures, thereby making it possible to improve characteristics of the dielectric waveguide antenna.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Aun Lee, Myeong Woo Han, Chul Gyun Park, Moonil Kim, Seung Ho Choi, Kook Joo Lee
  • Patent number: 8686910
    Abstract: A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 1, 2014
    Assignee: Calabazas Creek Research, Inc.
    Inventors: R. Lawrence Ives, Yosuke M. Mizuhara
  • Patent number: 8686911
    Abstract: The present invention relates to an aperture antenna capable of controlling a shape of a radiated beam without changing a structure of an aperture antenna by connecting a beam controller with a single aperture antenna. the aperture antenna including a beam controller according to the present invention includes: a waveguide; an aperture horn of which one end is connected to the waveguide and the other end is provided with an opening; and a beam controller including a feeding unit connected to the opening and provided with a plurality of slits, a dielectric layer connected to the feeding unit, and a plurality of patches connected to the dielectric layer to control a beam shape of a signal introduced into the feeding unit and radiated through the patches.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 1, 2014
    Assignee: Lig Nexi Co., Ltd.
    Inventor: Young Wan Kim
  • Patent number: 8681066
    Abstract: A microwave antenna feed arrangement provided with a unitary body with a feed bore between a launch end and a back end of the body. A plurality of coaxial annular grooves are located on the launch end of the body. An OMT bore in the body extends from a side of the body to the feed bore. The body may be further configured with an end cap to close the back end of the feed bore or a feed elbow for dual polarization operation. The body may be manufactured for example, by machining or metal injection molding.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: March 25, 2014
    Assignee: Andrew LLC
    Inventors: Ronald J Brandau, Haidong Chen, Li Zhang