Lens Or Reflective Image Former Testing Patents (Class 356/124)
  • Patent number: 11391963
    Abstract: A method for manufacturing a spectacle lens according to at least one data set of edging data and a computer program product with instructions for performing the method are disclosed. A spectacle lens blank, semifinished spectacle lens product, or a finished spectacle lens product is inspected for defects and compared to a data set to determine if it can be manufactured into an edged finished spectacle lens that fits into a specific spectacle frame such that the defect is not present in the edged finished spectacle lens.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: July 19, 2022
    Assignee: Carl Zeiss Vision International GmbH
    Inventor: Jeremias Gromotka
  • Patent number: 11391643
    Abstract: The disclosed method involves: recording, under illumination of a diffractive measurement structure via an illumination device, a plurality of diffraction images which differ from one another in terms of the region of the measurement structure that contributes to the respective diffraction image, and ascertaining transmission properties and/or reflection properties of the diffractive measurement structure based on the plurality of diffraction images, wherein the steps of recording a plurality of diffraction images and of ascertaining transmission properties and/or reflection properties of the diffractive measurement structure in a plurality of recording sequences are carried out repeatedly in a plurality of recording sequences, wherein these recording sequences differ from one another with respect to the illumination angles that are respectively set during the illumination of the diffractive measurement structure and at which the diffractive measurement structure is illuminated.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: July 19, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventor: Michael Samaniego
  • Patent number: 11394955
    Abstract: An illustrative example embodiment of a camera testing device includes a plurality of optic components in a predetermined arrangement that places a center of each of the optic components in a position to be aligned with a line of sight of a respective, predetermined portion of a camera field of view when the plurality of optic components are between the camera and at least one target.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 19, 2022
    Assignee: APTIV TECHNOLOGIES LIMITED
    Inventors: James C. Baar, Ronald M. Taylor, Timothy D. Garner, Nathan R. Faulks, Michael D. Cervoni, Piotr Szewc, Gerald Stier, Yew Kwang Low
  • Patent number: 11378523
    Abstract: An imaging device blemish detection test enclosure and techniques for an optical imaging device includes a mounting structure for mounting an optical imaging device, a first body with a concave surface, and a second body holding the mounting structure relative to the first body. The mounting structure and the second body may orient an optical axis of a lens of the optical imaging device towards the concave surface and locate the lens relative to the concave surface where the interface between the first and second bodies is outside of a lens field of view of the lens. The system may include a light source disposed in the second body and directed towards the concave surface of the of the first body providing an evenly illuminating the concave surface. The concave surface may include a surface of a spherical sector greater than a hemisphere.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: July 5, 2022
    Assignee: Zoox, Inc.
    Inventors: Robert Nicholas Moor, Nathan Duarte
  • Patent number: 11347153
    Abstract: An information processing apparatus includes an acquisition unit configured to acquire a plurality of pieces of collected data collected in a state where lithographic processing is executed by a lithography apparatus for forming a pattern by applying a plurality of processing conditions, a classification unit configured to classify the acquired data based on the processing conditions, a judgement unit configured to judge that an abnormality has occurred in the acquired collected data by judging whether the collected data falls within an allowable range specified based on the processing conditions.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: May 31, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yosuke Takarada, Yusuke Miura
  • Patent number: 11330185
    Abstract: A lens control apparatus that controls moving of each of the first optical element and the second optical element during focusing includes a first controller that controls driving of the first optical element to move the first optical element to a first target position according to an object distance, a second controller that controls driving of the second optical element to move the second optical element to a second target position according to the object distance, and a correction value calculator that calculates a correction value for the second target position using a difference between an actual position of the first optical element and the first target position, and focus sensitivities of the first and second optical elements and calculates the correction value using a correction limit value smaller than a maximum movable amount of the second optical element from the second target position.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: May 10, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Hiromi In
  • Patent number: 11327339
    Abstract: A method of ordering an ophthalmic lens comprises the following steps: —obtaining data representative of a desired correction for a wearer's eye; —determining (S6, S8), using an electronic device, a lens power to be measured on a lensmeter based on the obtained data and on at least one parameter defining an expected position of the lens with respect to the wearer's eye, wherein the lens power corresponds to the power measured on the lensmeter for a lens adapted to provide the desired correction to the wearer's eye when placed at the expected position with respect to the wearer's eye; —ordering (S10) the ophthalmic lens specifying the determined power. A corresponding system is also provided.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: May 10, 2022
    Assignee: Essilor International
    Inventors: Gilles Le Saux, Stephane Boutinon, Cecile Pietri, Helene De Rossi
  • Patent number: 11323609
    Abstract: A method for testing an autofocus function of a camera module fixes a camera module and at least two test members sequentially spaced at different positions on an axis pointing straight away from the camera. The camera module is controlled to focus and capture images of each test member and record driving currents of the camera module to achieve those focuses at those distances. When a sharpness of image of a test member reaches a preset threshold value a correspondence table between the driving currents and object distances is generated. An autofocus testing device is further provided.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: May 3, 2022
    Assignee: TRIPLE WIN TECHNOLOGY (SHENZHEN) CO.LTD.
    Inventors: Jin-Ke Chen, Shin-Wen Chen
  • Patent number: 11300479
    Abstract: A device for measuring the optical power of an optical test system includes an optical-object-generating assembly, a support for the optical test system, a digital image detector, and a deflector assembly. The deflector assembly is intended to generate a lateral movement in respect of the initial optical image, thereby producing a shifted optical image and a reference optical image. The digital image detector captures the shifted optical image and the reference optical image in at least one digital image containing data relating to the lateral movement. The device also includes a processing component to calculate the optical power of the optical test system from the data relating to the lateral movement.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 12, 2022
    Assignees: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, 2EYES VISION S.L.
    Inventors: Carlos Dorronsoro Díaz, Enrique Gambra Urralburu, Xoana Barcala Gosende, Victor Rodríguez López, Susana Marcos Celestino
  • Patent number: 11273794
    Abstract: A vehicle and/or a method for detecting contaminants on an optical surface are provided. The vehicle includes at least one light source adjacent the optical surface and at least one light detector at an edge of the optical surface. A controller is configured to introduce light from at least one light source into the optical surface, and to measure light at the edge of the optical surface with at least one detector. The controller compares the measured light to a threshold, and, if the measured light crosses the threshold, triggers or implements a response action.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: March 15, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: Tzvi Philipp, Igai Bilik
  • Patent number: 11252316
    Abstract: A system for optical alignment and calibration of an infrared camera lens, including: a lens support mechanism configured to adjust a position of an infrared camera lens relative to a camera body that includes: a hexapod platform and a robotic arm to manipulate the position of the infrared camera lens that extends from the hexapod platform and is coupled thereto to be continually oriented parallel to the hexapod platform and to maintain the infrared camera lens continually oriented parallel to the orientation of the hexapod platform; at least one collimator configured to output infrared rays, wherein the at least one collimator is positioned such that the output infrared rays converge on an infrared sensor within the camera body through the infrared camera lens; and at least one curing catalyst configured to cure an adhesive placed on the infrared camera lens when an ideal lens position is determined.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: February 15, 2022
    Assignee: Adasky, Ltd.
    Inventors: Vitaly Kuperman, Avi Katz, Michael Chuklanov
  • Patent number: 11243139
    Abstract: An apparatus and a method for optical measurement of an internal contour of a spectacle frame are disclosed. The apparatus contains an optical unit, which is configured to capture light reflected from an illuminated section of the inner contour of the spectacle frame. The optical unit is insertable into the inner contour of the spectacle frame and, when inserted as intended, is rotatable relative to the spectacle frame. The optical unit contains at least one light source, an objective, and at least one optical sensor, wherein the light source is configured to generate a light section, wherein at least one section of the inner contour is illuminable by the light section, wherein the objective is configured to image the illuminated section of the inner contour onto the optical sensor, and wherein the optical sensor is configured to capture the light reflected by the illuminated section of the inner contour.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: February 8, 2022
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ralf Meschenmoser, Friedrich Pauker
  • Patent number: 11194258
    Abstract: A lithographic process is one that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. During the lithographic process, the focus needs to be controlled. There is disclosed a method for determining a fingerprint of a performance parameter associated with a substrate, such as a focus value to be used during the lithographic process. A reference fingerprint of the performance parameter is determined for a reference substrate. A reference substrate parameter of the reference substrate is determined. A substrate parameter for a substrate, such as a substrate with product structures, is determined. Subsequently, the fingerprint of the performance parameter is determined based on the reference fingerprint, reference substrate parameter and the substrate parameter. The fingerprint may then be used to control the lithographic process.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: December 7, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Léon Maria Albertus Van Der Logt, Bart Peter Bert Segers, Simon Hendrik Celine Van Gorp, Carlo Cornelis Maria Luijten, Frank Staals
  • Patent number: 11169049
    Abstract: Disclosed is a method for evaluating cosmetic defects of an optical device, including: a first step of acquiring a first set of cosmetic defects of the optical device; a second acquiring step during which a second set of cosmetic defects of the optical device is acquired, the second set of cosmetic defects being different from the first set of cosmetics defects and including at least one cosmetic defect corresponding to a cosmetic defect of the first set of cosmetic defects; a determining step, during which a subset of the first set of cosmetic defects of the optical device is determined based on the comparison of the cosmetic defects of the second set of cosmetic defects and the cosmetic defects of the first set of cosmetic defects; and a determining step, during which a quality factor of the optical device is determined based on the subset of cosmetic defects.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: November 9, 2021
    Assignee: Essilor International
    Inventors: Pascal Mathey, Dominique Leguy
  • Patent number: 11143855
    Abstract: According to one aspect, an instrument for scanning a specimen. The instrument includes a scanning stage for supporting the specimen, a detector having a plurality of pixels, the scanning stage and the detector movable relative to each other to move the specimen in a scan direction during a scan, and a pulsed illumination source synchronized with the motion of the specimen on the scanning stage. At least some of the pixels of the detector are operable to collect light emitted from the specimen during the scan due to the pulsed illumination source and generate corresponding image data. The instrument may further include a processor operable to perform MSIA on the image data to generate an image of the specimen.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 12, 2021
    Assignee: Huron Technologies International Inc.
    Inventors: A. E. Dixon, Savvas Damaskinos, Alfonso Ribes, Jasper Hayes
  • Patent number: 11074720
    Abstract: A method of calibrating intrinsic parameters associated with a camera includes positioning a camera to receive collimated light from a rotatable collimator, wherein the collimated light is provided to the camera via a target having a central target aperture and a plurality of peripheral target apertures located on a periphery of the target. The method further includes rotating the collimator along a first axis extending through an entrance pupil location of the camera and recording spot positions associated with collimated light provided through one or more target apertures of the target at each first axis interval and determining a distortion profile associated with the camera based on the recorded spot positions measured at the plurality of first axis intervals.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: July 27, 2021
    Inventors: Yew Kwang Low, Ronald M. Taylor
  • Patent number: 11054305
    Abstract: A method and an apparatus for beam analysis in an optical system are disclosed, wherein a plurality of beam parameters of a beam propagating along an optical axis are ascertained. The method includes: splitting the beam into a plurality of partial beams which have a focus offset in the longitudinal direction in relation to the optical axis; recording a measurement image produced by these partial beams; carrying out a forward simulation of the beam in the optical system on the basis of estimated initial values for the beam parameters in order to obtain a simulated image; and calculating a set of values for the beam parameters on the basis of the comparison between the simulated image and the measurement image.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: July 6, 2021
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Matthias Manger, Christoph Husemann, Matus Kalisky, Lars Stoppe
  • Patent number: 11009336
    Abstract: A method for wavefront measurement of optical imaging system based on grating shearing interferometry, the grating shearing interferometer comprising: a light source and illumination system, an optical imaging system to be tested, a one-dimensional diffraction grating plate, a two-dimensional diffraction grating plate, a two-dimensional photoelectric sensor and a computing unit. The one-dimensional diffraction grating plate and the two-dimensional diffraction grating plate are respectively placed on the object side and the image side of the optical imaging system to be tested.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: May 18, 2021
    Inventors: Yunjun Lu, Feng Tang, Xiangzhao Wang
  • Patent number: 11002978
    Abstract: A microscope includes a light source(s) which produce an illumination beam path comprising light in a plurality of wavelength regions. A dichroic beam splitter arrangement having a dichroic mirror surface is arranged between objective optics and a tube lens in a beam path portion to produce a reflected partial beam and a transmitted partial beam. The beam splitter arrangement changes a propagation direction of the reflected partial beam relative to the illumination beam path by a specified deflection angle. The mirror surface is arranged at an angle of 22.5±7.5°. The beam splitter arrangement includes a further mirror(s) arranged in the reflected beam path. The propagation direction of the reflected partial beam is changed by the specified deflection angle using the sum of all reflections on the mirror surface and the further mirror(s).
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: May 11, 2021
    Assignee: LEICA MICROSYSTEMS CMS GMBH
    Inventors: Peter Euteneuer, Ralf Krueger
  • Patent number: 10977514
    Abstract: A method and apparatus for template matching to find a predetermined pattern in an image is disclosed. A first visual boundary is detected in the captured image, and a second boundary concentric with the first boundary is calculated. The first and second boundaries define a portion of the captured image. The portion of the captured image is incrementally scanned about the center of the second boundary for a predetermined pattern having a predetermined orientation within the portion that match a template image. Alternatively, the portion of the captured image is unwrapped into a linear band image such that the first and second boundaries form a linear top and linear bottom of the linear band image, and the linear band image of the portion of the captured image is scanned for a predetermined pattern that matches a template image.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: April 13, 2021
    Assignee: Zebra Technologies Corporation
    Inventors: Miroslav Trajkovic, Heng Zhang
  • Patent number: 10969300
    Abstract: The present disclosure relates to a detector system for imaging an optical signal received by a graded index (GRIN) optical element to account for known variations in a graded index distribution of the GRIN optical element. The detector system incorporates a plurality of optical detector elements configured to receive optical rays received by the GRIN optical element at specific locations on a plane of the GRIN optical element. Ray tracing software is configured to receive and map the optical rays to a plurality of additional specific locations on the plane based on the known variations in the graded index distribution of the GRIN optical element. A processor uses algorithms for diagonalization of a linear system matrix to determine information on both an intensity and an angle of the received optical rays at each one of the plurality of specific locations on the plane.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 6, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jeffrey D. Bude, Eyal Feigenbaum
  • Patent number: 10942087
    Abstract: The invention relates to an apparatus (2) for detecting imaging quality of an optical system (4) with at least one lens (6) or lens group. The apparatus (2) includes an MTF measuring apparatus (10) for measuring a modulation transfer function at a plurality of field points in the field of view of the optical system (4), and a centering measuring apparatus (18) for measuring a centered state of the optical system (4). Furthermore, the invention relates to a method for detecting imaging quality of an optical system (4) having such a apparatus (2).
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: March 9, 2021
    Assignee: Trioptics GmbH
    Inventors: Eugen Dumitrescu, Patrik Langehanenberg, Iris Erichsen, Alexander Bai, Simon Zilian, Aiko Ruprecht
  • Patent number: 10939817
    Abstract: Provided is an imaging method for correcting aberration generated when imaging an object to be inspected. The imaging method includes: irradiating an imaging area with a first light beam which is scanned by a scan unit and taking an image of the object to be inspected based on return light of the first light beam; detecting a moving amount of the object to be inspected; comparing the detected moving amount with a predetermined threshold value; and adjusting the imaging area to be irradiated with the first light beam. The adjusting includes determining in accordance with a result of the comparison to change the imaging area by at least one of: using the scan unit, and using an aberration correcting unit.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 9, 2021
    Assignee: Canon Kabushiki Kaisha
    Inventors: Koji Nozato, Tomoyuki Makihira, Kazuhide Miyata
  • Patent number: 10931942
    Abstract: An evaluation system includes an input unit that inputs a test chart image acquired by imaging a test chart including a plurality of characters, an evaluation unit that evaluates performance of an imaging unit using the test chart image, an image generation unit that generates an evaluation image representing an evaluation of the evaluation unit at each position on the test chart image with a color, and a display unit that displays the evaluation image along with the test chart image or in a superimposed manner on the test chart image.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 23, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Yasunobu Kishine, Tatsuro Iwasaki
  • Patent number: 10885621
    Abstract: An inspection system and method to detect the presence or absence of ophthalmic lenses in a plastic shell just before the seal is applied comprising a high resolution imaging device suitably integrated with an optical module; a UV illumination module suitably mounted below the ophthalmic lens holder; a Visible LED based Top lighting module suitably mounted on Top of the Ophthalmic lens holder; the inspection system which captures images of the lens immersed in a saline solution in a the plastic shell; analyzing the image and determining the characteristics of the lens perimeter and the optical center; making a decision to reject the inspected item if the analyzed image indicates the presence of a flipped, multiple and folded lens or the absence of the lens; making a decision to accept the inspected item, if the analyzed image indicates the presence of a single lens positioned in the correct orientation.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 5, 2021
    Assignee: EMAGE VISION PTE. LTD.
    Inventors: Bee Chuan Tan, Chern Fei Chua
  • Patent number: 10876924
    Abstract: A wavefront based characterization of surfaces based on reflections. An intraocular lens surface measurement system includes a light source configured to emit light that is reflected off an optical surface of an intraocular lens. A wavefront sensor is configured to receive the light that is reflected off the optical surface of the intraocular lens. A processor is configured to determine one or more characteristics of the optical surface of the intraocular lens based on a wavefront of the reflected light that is received by the wavefront sensor.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: December 29, 2020
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Mihai State
  • Patent number: 10876921
    Abstract: Some demonstrative embodiments include apparatuses, systems and/or methods of determining one or more optical parameters of a lens of eyeglasses. For example, a product may include one or more tangible computer-readable non-transitory storage media including computer-executable instructions operable to, when executed by at least one computer processor, enable the at least one computer processor to process at least one captured image of at least one reflection of a flash on a lens of eyeglasses; and determine one or more optical parameters of the lens based at least on the at least one captured image.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: December 29, 2020
    Inventors: Ofer Limon, Shahar Levy, Alexander Zlotnik, Maya Aviv
  • Patent number: 10794838
    Abstract: A device for detecting a defect of a laser welding cover lens includes a coaxial light source configured to emit collimating detection light, wherein the direction of the detection light is perpendicular to a preset horizontal direction; a half transparent and half reflecting mirror arranged above the coaxial light source to reflect the detection light to a preset position; a reflecting mirror configured to reflect light from the half transparent and half reflecting mirror to the cover lens; an industrial camera parallel to the half transparent and half reflecting mirror and the reflecting mirror and configured to receive incident light from the detection light to obtain a detection image, wherein the incident light is reflected by the cover lens and passes through the reflecting mirror and the half transparent and half reflecting mirror; and a processor configured to determine whether there exists a bad point on the cover lens.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: October 6, 2020
    Assignee: ISVISION (TIANJIN) TECHNOLOGY CO., LTD
    Inventors: Meng Lv, Mengyu Guo, Lei Guo, Xiaopeng Wu, Xianyong Chen
  • Patent number: 10788393
    Abstract: A system for inspecting an ophthalmic lens comprising an optical connection: an illumination source 60, wherein the light source is arranged to project the light to wards the ophthalmic lens held in the holder; an optical lens 83, wherein the lens is arranged to condition and project the light beam to illuminate the lens; a swivel glass plate 40, which is arranged to move in and out of the optical axis 110; a bright field imaging unit, wherein the bright field imaging unit is arranged to capture an image projected by the illumination source 60; a dark field imaging unit, wherein the dark field imaging unit is arranged to capture an image projected by the illumination source 60; and at least one camera sensor operatively coupled with the swivel glass plate, wherein the at least one camera sensor is arranged to capture an image of the light penetrating through the optical lens 83 contained at the bottom of the container 50 and the optical module 20 positioned in line with the optical axis 110.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: September 29, 2020
    Assignee: EMAGE VISION PTE. LTD
    Inventors: Bee Chuan Tan, Lew Siang Charles Cher
  • Patent number: 10773478
    Abstract: A testing device includes a positioning assembly and a testing assembly. The positioning assembly positions a workpiece. The testing assembly tests the workpiece. The positioning assembly includes a mounting seat defining a receiving slot for receiving and positioning the workpiece. The mounting seat includes a first positioning surface and a second positioning surface. The positioning assembly includes a side pusher configured to move toward the receiving slot. The side pusher includes a first pushing surface and a second pushing surface. When the side pusher is driven to move toward the receiving slot, the first pushing surface and the second pushing surface push two surfaces of the workpiece to make opposite two surfaces of the workpiece come in contact with the first positioning surface and the second positioning surface to position the workpiece in the receiving slot.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: September 15, 2020
    Assignee: TRIPLE WIN TECHNOLOGY (SHENZHEN) CO. LTD.
    Inventor: Ying-Quan Zhao
  • Patent number: 10756429
    Abstract: Methods and systems are provided for dynamically adjusting the beamform of an antenna array. A first beamform produced by an emission from a first antenna and an emission from a second antenna are determined, each of the first antenna and the second antenna having separate power supplies. Positions of user devices served by the cell of the antenna array are determined and compared to the first beamform. If it is determined that a second beamform would provide better coverage to any one or more of the user devices served by the cell, any one or more of the power supplies to individual antennas may be modified. Any one or more power supplies may utilize changes in the phase and/or amplitude of the power supplied to an antenna to change the emission of at least one antenna, producing a second beamform. The second beamform, in particular, may permit dynamic targeting of various vertical distributions of user devices within the cell.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 25, 2020
    Assignee: Sprint Communications Company L.P.
    Inventors: Sreekar Marupaduga, Rajveen Narendran
  • Patent number: 10739686
    Abstract: The present invention allows more freely setting of the polarization direction of illumination light on an illumination surface of an exposure device. A beam transmission system (121) that transmits, to an exposure device (130), a linearly polarized optical beam (L) output from a free electron laser device (10) includes: an optical beam splitting unit (50) configured to split the optical beam (L) into a first optical beam (L1) and a second optical beam (L2); and a first polarization direction rotating unit (51) configured to rotate the linear polarization direction of the first optical beam (L1).
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 11, 2020
    Assignee: Gigaphoton Inc.
    Inventors: Akiyoshi Suzuki, Osamu Wakabayashi
  • Patent number: 10702891
    Abstract: By using an offset parabolic concave mirror as a concave mirror, and arranging a lens having an entrance pupil at the geometric focal point of the offset parabolic concave mirror, a group of rays incident parallel to the optical axis of the offset parabolic concave mirror become chief rays which are telecentric with respect to an object plane orthogonal to the optical axis of the offset parabolic concave mirror, and diverging light from each object point on the object plane can be detected on a quadric image plane formed by the lens at the focal point of the offset parabolic concave mirror without blind spots. An image of the target object is detected after the beams reflected by the offset parabolic concave mirror are bent by the reflecting mirrors and made incident on the lens to reduce the size and cost of the device.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 7, 2020
    Assignees: SATAKE CORPORATION, GENESIA CORPORATION
    Inventors: Yoichi Kawamura, Nobuyoshi Ikeda, Norihide Takeyama, Yoshikazu Kanai
  • Patent number: 10672362
    Abstract: A media engine includes modules to retrieve a first graphics object and a second graphics object to be displayed on a screen, and perform asynchronous pixel transfers of the first graphics object and the second graphics object such that the first graphics object and the second graphics object are shown independently in a single frame, and the asynchronous pixel transfers include batching of draw calls based on the similarity of meshes in the first graphics object and the second graphic object to generate a batch of draw calls.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: June 2, 2020
    Assignee: FFIPCO, LLC
    Inventors: Patrick McKeever, Richard Ferdinand, Cornelius Shea
  • Patent number: 10634562
    Abstract: According to a first aspect, there is provided a method of holographic wavefront sensing, the method including: receiving a light beam, which has a wavefront to be analyzed, on a transparent, flat substrate, which is provided with a lattice of opaque dots, wherein the substrate is arranged above an image sensor; detecting by the image sensor an interference pattern formed by diffracted light, being scattered by the opaque dots, and undiffracted light of the light beam received by the image sensor; processing the detected interference pattern to digitally reconstruct a representation of a displaced lattice of opaque dots, which would form the interference pattern on the image sensor upon receiving the light with a known wavefront; and comparing the representation of the displaced lattice to a known representation of the lattice of opaque dots on the substrate to determine a representation of the wavefront form of the received light beam.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: April 28, 2020
    Assignee: IMEC VZW
    Inventors: Abdulkadir Yurt, Ziduo Lin, Richard Stahl, Geert Vanmeerbeeck
  • Patent number: 10627309
    Abstract: Provided is a micro-distance lens detection device adapted to detect a tested lens with a surface from a micro distance. The micro-distance lens detection device includes a light source module, a diffuser, a pattern test card, a collimator unit and an image pickup module which are arranged sequentially. The tested lens is disposed between the pattern test card and the collimator unit. The surface of the tested lens is separated from the light-emitting side of the pattern test card by the micro distance. The micro distance is less than 25 mm. Given the micro distance between the tested lens and the pattern test card, the optical resolution modulation transfer function (MTF) of the tested lens is correctly measured. Therefore, the lens detection device takes up little space.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: April 21, 2020
    Assignee: NEWMAX TECHNOLOGY CO., LTD.
    Inventors: Wei-Chun Shih, Yi-Huan Chu, Tsung-Chien Chiang
  • Patent number: 10607335
    Abstract: A method of measuring the thickness of an ophthalmic lens includes providing an ophthalmic lens having a light absorptive component, and passing light having a wavelength through the ophthalmic lens whereupon the light absorptive component absorbs some of the light as the light passes through the ophthalmic lens. After the light has passed through the ophthalmic lens, the light is used to generate a digital image for the ophthalmic lens that has pixel intensity data that corresponds to the shape of the ophthalmic lens. Information about the light prior to passing through the ophthalmic lens, the light absorptive component of the ophthalmic lens, and the pixel intensity data is used to calculate a thickness profile for the ophthalmic lens.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: March 31, 2020
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Michael F. Widman, Peter W. Sites, Jasmin G. Laferriere, D. Scott Dewald, Bradley W. Walker
  • Patent number: 10598220
    Abstract: A bearing device and an ion implantation device are provided. The bearing device includes a bearing table configured to bear a substrate, and a plurality of supporting components configured to support the substrate, each supporting component is movably arranged on the bearing table, to support the substrate at an adjustable position.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: March 24, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Chenliang Liu, Donghua Jiang, Yongyi Fu, Chao Tan, Xuewei Wang, Rujian Li, Kang Luo, Yongzhou Ling, Yin Xie, Jianbo Yang, Fei Li
  • Patent number: 10591747
    Abstract: Disclosed is an inspection and system method and system for determining the orientation of a contact lens on a lens support, particularly in an automated contact lens manufacturing line.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: March 17, 2020
    Assignee: Alcon Inc.
    Inventors: Steffen Paulekuhn, Susanne Fechner, Sarah Unterkofler, Daniel Kessler, Evgeni Schumm, Matthias Schwab
  • Patent number: 10582972
    Abstract: An intraoral 3D scanner includes a probe light source configured to generate a probe light such that the probe light is transmitted towards the dental situation; a camera including an array of sensor elements, the camera being arranged such that the probe light from the dental situation is transmitted to the array of sensor elements, wherein the camera is configured to create images of the dental situation from which a point cloud is generated, and a guiding system configured to guide relative movement of the intraoral 3D scanner towards the dental situation, wherein the camera is part of the guiding system, the camera is configured to record images from which a relative position of the intraoral 3D scanner and the dental situation is determined, such that based on the relative position, the guiding system is configured to provide a positioning signal in the form of a positioning color code.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: March 10, 2020
    Assignee: 3Shape A/S
    Inventors: Nikolaj Deichmann, Rune Fisker
  • Patent number: 10551250
    Abstract: Disclosed are display panel test device and method. The device comprises: a color analyser including a host and a measuring probe, wherein the measuring probe can obtain optical information of a positional point of a light emitting surface of display panel, the positional point being a point to which the measuring probe is aligned on the light emitting surface, and the host can determine optical characteristics of the positional point according to the optical information; and a position determination component, configured to determine a positional identifier of the positional point on the light emitting surface, the positional identifier being capable of indicating a relative position of the positional point on the light emitting surface. Since the position determination component determines the position of the to-be-tested point, it is not necessary to visually place the measuring probe over the to-be-tested point, thereby improving the determination accuracy of the to-be-tested point.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: February 4, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Lixin Zhu, Ke Dai, Chunyang Nie
  • Patent number: 10533925
    Abstract: A process is provided for determining characteristics of a lens, the process including obtaining a captured image of a pattern through a corrective lens; transforming the captured image to an ideal coordinate system; processing the captured image to determine an overall distortion from a reference pattern to the pattern of the captured image; determining a distortion of the captured pattern attributable to the corrective lens; and measuring at least one characteristic of the corrective lens. In some embodiments, the overall distortion is determined by detecting, in the captured image, at least one captured pattern landmark; determining a transformation from at least one ideal pattern landmark to the at least one captured pattern landmark; and determining for the corrective lens, from the transformation, a spherical power measurement, a cylinder power measurement, and an astigmatism angle measurement.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 14, 2020
    Assignee: JAND, INC.
    Inventors: David Howard Goldberg, Joseph Carrafa
  • Patent number: 10502967
    Abstract: The disclosure is related to a method for rendering a three-dimensional image, an imaging method and a system. The system receives three-dimensional image information regarding. A reference image with respect to the three-dimensional image can be created based on the information. According to the physical information relating to multiple optical elements of a display device, an element image corresponding to each optical element is calculated. The multiple elements images corresponding to the multiple optical elements render an integral image. The integral image is used to render the three-dimensional image through the multiple optical elements. In one embodiment, the optical element is a lens set. The integral image is inputted to a display driving unit of the display device so as to render the element image for every lens set. The display device then displays the integral image so as to from the three-dimensional image through a lens array.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: December 10, 2019
    Assignee: CHERAY CO. LTD.
    Inventors: Chun-Hsiang Yang, Yi-Pai Huang, Kai-Chieh Chang, Chih-Hung Ting, Jui-Yi Wu
  • Patent number: 10502545
    Abstract: A measurement arrangement and a method for measuring a wavefront aberration of an imaging optical system (10) of a microlithographic projection exposure apparatus. The method includes separate measurement of respective wavefront aberrations of different partial arrangements (M1; M2; M3; M1, M3) of the optical elements.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: December 10, 2019
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Ulrich Wegmann, Hans-Michael Stiepan, Jochen Hetzler
  • Patent number: 10495865
    Abstract: A method for single plane illumination microscopy (SPIM) analysis of a sample includes simultaneously illuminating multiple sample layers by a single sheet of light. Detection light emanating from the individual sample layers is detected at different times and/or at different positions in a detection beam path. The detection beam path is branched using beam splitters and an effective refractive power of the individual beam splitters is zero.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: December 3, 2019
    Assignee: LEICA MICROSYSTEMS CMS GMBH
    Inventors: Werner Knebel, Frank Sieckmann, Florian Fahrbach
  • Patent number: 10455169
    Abstract: The disclosure addresses the vignetting effect caused on an image captured by lightfield camera. A method to compensate for the vignetting effect for a lightfield camera comprising an image sensor array including plurality of photosites. The method includes the operations of obtaining luminance values from the each photosite; obtaining a set of weight values for compensating the vignetting effect for the each photosite being associated with a present setting of the lightfield camera; and changing the luminance values of the each photosite based on the obtained a set of the weight values.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: October 22, 2019
    Assignee: INTERDIGITAL CE PATENT HOLDINGS
    Inventors: Mozhdeh Seifi, Valter Drazic, Paul Kerbiriou
  • Patent number: 10444512
    Abstract: An optical characterization system tests optical elements of head-mounted displays (HMD) such as lenses. The system emits a test pattern of light through an aperture of a hollow truncated cone. The hollow truncated cone may be rotated to different angles of test positions, for example, to mimic rotation of a human eye of a user wearing an HMD. The emitted light is refracted by a test lens and captured by a detector assembly. Using images captured by the detector assembly, the system determines one or more quality metrics of the test lens. Quality metrics may describe various types of optical aberrations, which may be determined as a function of the test positions (e.g., angle and/or position of the hollow truncated cone relative to the test lens). In addition, the system may generate an optical profile of the test lens using the quality metrics.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: October 15, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Daozhi Wang, Ning Yeung Chan, Youngshik Yoon, Shizhe Shen, Torin Ross Herndon
  • Patent number: 10444112
    Abstract: A wavefront measurement apparatus includes a light source unit, a holding unit, a light reception optical system, a wavefront measurement unit, and a wavefront data generation unit. The light source unit is configured to apply light beams toward the subject optical system. The wavefront measurement unit is configured to measure light beams transmitted through the subject optical system. The wavefront data generation unit is configured to generate wavefront aberration data from results of the measurement by the wavefront measurement unit. A neighborhood of the opening portion and a neighborhood of the wavefront measurement unit are made to be optically conjugate with each other by the light reception optical system. The measurement of the light beams includes at least measurement of the light beams in a state in which a center of the opening portion is separated away from the measurement axis by a predetermined distance.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 15, 2019
    Assignee: OLYMPUS CORPORATION
    Inventor: Yosuke Sato
  • Patent number: 10408705
    Abstract: The present disclosure relates to a method for imaging an optical signal received by a graded index (GRIN) optical element to account for known variations in a graded index distribution of the GRIN optical element. The method may involve using a plurality of optical detector elements to receive optical rays received by the GRIN optical element at a plane, where the plane forms a part of the GRIN optical element or is downstream of the GRIN optical element relative to a direction of propagation of the optical rays. The optical rays are then traced to a plurality of additional specific locations on the plane based on the known variations in the graded index distribution of the GRIN optical element. A processor may be used to determine information on both an intensity and an angle of the received optical rays at each one of the plurality of specific locations on the plane of the GRIN optical element.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 10, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Eyal Feigenbaum, Jeffrey D. Bude
  • Patent number: 10401145
    Abstract: A method for calibrating an optical arrangement for determining dimensional properties of a measurement object and a coordinate measuring machine implementing the method are disclosed. The optical arrangement has a camera and a projector for projecting a first periodic pattern onto a projection area. The optical arrangement is moveable relative to a workpiece table along a first axis. A matte surface is arranged on the workpiece table at a first position relative to the optical arrangement. A second periodic pattern, which is separate from the first periodic pattern, is provided and shifted on the matte surface. Images of the second pattern are recorded using the camera and at least one distortion aberration of the camera is determined using the second periodic pattern.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 3, 2019
    Assignee: CARL ZEISS INDUSTRIELLE MESSTECHNIK GMBH
    Inventors: Frank Hoeller, Oliver Paul, Frank Widulle