With Light Detector (e.g., Photocell) Patents (Class 356/400)
  • Patent number: 11119417
    Abstract: Scatterometry overlay (SCOL) measurement methods, systems and targets are provided to enable efficient SCOL metrology with in-die targets. Methods comprise generating a signal matrix by: illuminating a SCOL target at multiple values of at least one illumination parameter, and at multiple spot locations on the target, wherein the illumination is at a NA (numerical aperture) >? yielding a spot diameter <1?, measuring interference signals of zeroth and first diffraction orders, and constructing the signal matrix from the measured signals with respect to the illumination parameters and the spot locations on the target; and deriving a target overlay by analyzing the signal matrix. The SCOL targets may be reduced to be a tenth in size with respect to prior art targets, as less and smaller target cells are required, and be easily set in-die to improve the accuracy and fidelity of the metrology measurements.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: September 14, 2021
    Inventors: Amnon Manassen, Yuri Paskover, Eran Amit
  • Patent number: 11065721
    Abstract: A method for determining a reference focal position of a laser beam for processing a plate-like member, the method comprising producing at least two incisions in the plate-like member with the laser beam set at different focal positions, irradiating the plate-like member with the laser beam, detecting edges of the incisions by measuring one or more parameters relating to the irradiation of the plate-like member, and establishing a width of the at least two incisions using the detected one or more parameters.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: July 20, 2021
    Assignee: TRUMPF Werkzeugmaschinen GmbH + Co. KG
    Inventors: Markus Blaschka, Dieter Hallasch, Markus Zimmermann
  • Patent number: 11043437
    Abstract: Embodiments of the present disclosure generally relate to an optically transparent substrate, comprising a major surface having a peripheral edge region with an orientation feature formed therein, and a texture formed on the peripheral edge region, the texture having an opacity that is greater than an opacity of the major surface.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: June 22, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Yu-tak Young, Ludovic Godet, Robert Jan Visser
  • Patent number: 10996574
    Abstract: A substrate processing apparatus is provided. The apparatus includes an imaging unit that images a mark on a substrate, and a processor that aligns the substrate based on an image of the mark obtained by the imaging unit. If the alignment has failed, the processor identifies a factor of the failure based on information including the image and executes at least one of a plurality of recovery processes based on the identified factor. The processor includes an output unit that outputs a condition for the at least one of recovery processes in accordance with an inference model, and a learning unit that learns the inference model based on an execution result of the at least one of the recovery processes under the condition output from the output unit.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: May 4, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Takahiro Takiguchi, Shinichiro Koga
  • Patent number: 10991605
    Abstract: A substrate processing device for processing a substrate, comprising an image sensor configured to detect positions of two corners on at least one diagonal of a substrate when the substrate is transferred to a predetermined position; an illuminating device that can be disposed so as to illuminate the two corners of the substrate on an opposite side of the substrate at the predetermined position relative to the image sensor; and a control device configured to determine the position of the substrate on the basis of the positions of the two corners, which are detected by the image sensor, the control device being configured to be capable of changing at least either light quantity or wavelength of output light of the illuminating device.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: April 27, 2021
    Assignee: EBARA CORPORATION
    Inventors: Junitsu Yamakawa, Takuya Tsushima
  • Patent number: 10991632
    Abstract: The invention concerns a process for the production of a circuit carrier (1) equipped with at least one surface-mount LED (SMD-LED), wherein the at least one SMD-LED (2) is positioned in oriented relationship to one or more reference points (3) of the circuit carrier (1) on the circuit carrier (1), wherein the position of a light-emitting region (4) of the at least one SMD-LED (2) is optically detected in the SMD-LED (2) and the at least one SMD-LED (2) is mounted to the circuit carrier (1) in dependence on the detected position of the light-emitting region (4) of the at least one SMD-LED (2), and such a circuit carrier (1).
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: April 27, 2021
    Assignee: AB MIKROELEKTRONIK GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG
    Inventor: Andreas Karch
  • Patent number: 10985363
    Abstract: A method of manufacturing a silicon-carbon composite electrode assembly for an electrochemical cell includes forming an electrode by pyrolyzing at least a portion of a polymer in an assembly to form pyrolyzed carbon. The assembly includes an electrode precursor in electrical contact with a current collector. The electrode precursor includes a polymer and an electroactive material. The electroactive material includes silicon. The current collector includes an electrically-conductive material. The pyrolyzing includes directing an energy stream toward a surface of the electrode precursor. The surface is disposed opposite the current collector. The silicon-carbon composite electrode assembly includes the electrode and the current collector. In certain variations, the energy stream includes a laser beam or a plasma jet. In certain aspects, the electrode defines a concentration gradient between a first surface and a second surface.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: April 20, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Hongliang Wang, Mark W. Verbrugge
  • Patent number: 10971385
    Abstract: A substrate processing apparatus includes a transfer device, having a first pick configured to hold the substrate, configured to transfer a substrate; a detecting device configured to detect a position of the substrate; a susceptor configured to place the substrate thereon; an elevating device configured to move the substrate up and down; and a control device. The control device comprises an adjuster configured to perform a teaching processing; a detector configured to deliver the substrate from the first pick to the susceptor and from the susceptor to the first pick, and configured to detect a first position of the substrate, which is delivered from the susceptor to the first pick, by the detecting device; and a corrector configured to correct the position of the first pick based on a deviation amount between the first position of the substrate and a reference position.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: April 6, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiroki Oka, Hiroshi Narushima, Sho Otsuki, Takehiro Shindo
  • Patent number: 10948334
    Abstract: A non-contact displacement sensor includes a focus timing calculator that, calculates a measurement-side focus timing at which measurement light is focused on a surface of a measurable object, a first reference-side focus timing at which reference light is focused on a first reference surface, and a second reference-side focus timing at which the reference light is focused on a second reference surface; a characteristics calculator that calculates the refractive index characteristics of a liquid lens apparatus based on the first reference-side focus timing, the second reference-side focus timing, and an optical path length difference; and a position calculator that calculates a position of the measurable object based on the refractive index characteristics and a phase of the measurement-side focus timing relative to a period of a drive signal.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 16, 2021
    Assignee: MITUTOYO CORPORATION
    Inventor: Koji Kubo
  • Patent number: 10948409
    Abstract: A method of determining electromagnetic scattering properties of a finite periodic structure has the steps: 1002: Calculating a single-cell contrast current density, within a unit-cell supporting domain of a single one of a finite collection of unit cells. 1004: Calculating a scattered electric field outside the finite collection of unit cells, by integrating, over the single unit cell's supporting domain, a Green's function with the determined single-cell contrast current density. 1006: The Green's function is obtained for observation points outside the finite collection of unit cells by summation across the finite collection of unit cells. The Green's function integrated with the determined single-cell contrast current density is obtained for observation points above the supporting domain with respect to a substrate underlying the finite periodic structure.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: March 16, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Irwan Dani Setija, Petrus Maria Van Den Berg
  • Patent number: 10943343
    Abstract: The present invention provides an evaluation method of evaluating a measurement condition of a position of a mark formed on a substrate, the method comprising: obtaining a mark signal representing an intensity distribution of reflected light by detecting the reflected light from the mark under the measurement condition; generating a plurality of signals from the mark signal by changing a first signal component of a first frequency included in the mark signal obtained in the obtaining; and estimating a position of the mark from each of the plurality of signals obtained in the generating, and obtaining a variation in estimated position of the mark as an evaluation index of the measurement condition.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 9, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Genki Murayama
  • Patent number: 10914579
    Abstract: Aspects of the disclosure provide for a method of aligning a tracking system of a communication device. The method includes receiving an optical beam at the communication device. A first beam portion is received at the tracking system, and a second beam portion is received at an optical fiber of the communication device. Using one or more processors, an first signal and an second signal is received from the tracking system. The one or more processors are also used to determine a phase difference related to the first signal and a second phase difference related to the second signal. An offset for the first signal and an offset for the second signal are determined based on the respective phase difference. The one or more processors then track the optical beam using the tracking system and the determined offsets.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: February 9, 2021
    Assignee: X DEVELOPMENT LLC
    Inventors: Klaus Ulander, Howard Tran
  • Patent number: 10901330
    Abstract: A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 26, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Timothy Dugan Davis, Peter David Engblom, Kaustuve Bhattacharyya
  • Patent number: 10847393
    Abstract: Embodiments disclosed herein include a sensor wafer. In an embodiment, the sensor wafer comprises a substrate, wherein the substrate comprises a first surface, a second surface opposite the first surface, and an edge surface between the first surface and the second surface. In an embodiment, the sensor wafer further comprises a plurality of sensor regions formed along the edge surface, wherein each sensor region comprises a self-referencing capacitive sensor.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: November 24, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Charles G. Potter, Eli Mor
  • Patent number: 10830585
    Abstract: A non-contact type displacement sensor includes a light source that emits measurement light; a liquid lens apparatus in which a refractive index periodically changes in response to an input drive signal; an objective lens emitting, at a measurable object, the measurement light that is emitted from the light source and has passed through the liquid lens apparatus; a photodetector receiving the measurement light that is reflected by the measurable object and outputs a photodetection signal; and a signal processor (controller) that calculates focus timing with which the measurement light is in focus on a surface of the measurable object based on the photodetection signal output from the photodetector, and that obtains a position of the measurable object based on a phase of the focus timing with respect to a cycle of the drive signal.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: November 10, 2020
    Assignee: MITUTOYO CORPORATION
    Inventors: Koji Kubo, Yuko Shishido
  • Patent number: 10823637
    Abstract: A method for testing optical fibers includes using an optical testing instrument to measure a characteristic, such as clad non-circularity, of an optical fiber at a multiple angles of rotation of an optical fiber around its optical axis. From the measurements data points indicative of measured values of the characteristic at the respective angles of rotation are generated. A model is created of the optical fiber having the characteristic as a variable parameter, and from the model a functional relationship between an expected measured value of the characteristic and the angle of rotation and the variable parameter is generated. By varying the parameter a fit of the functional relationship to the data points is made according to one or more predetermined criteria, such as least-squares fit. The value of the characteristic can be found based on the fit. Instrumental parameters, such as fiber misalignment and cleave angle, can also be ascertained by the method.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: November 3, 2020
    Assignee: COMMSCOPE ASIA HOLDINGS B.V.
    Inventors: Sander Johannes Floris, Ton Bolhaar, Bastiaan Pieter De Hon
  • Patent number: 10794681
    Abstract: Embodiments disclosed herein include a sensor wafer. In an embodiment, the sensor wafer comprises a substrate, wherein the substrate comprises a first surface and a second surface opposite the first surface. In an embodiment, the sensor wafer further comprises a first conductive pad with a first surface area, wherein the first conductive pad has a surface that is substantially coplanar with the first surface of the substrate. In an embodiment, the sensor wafer further comprises a second conductive pad with a second surface area that is smaller than the first surface area, wherein the second conductive pad has a surface that is substantially coplanar with the first surface of the substrate.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: October 6, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Charles G. Potter, Eli Mor
  • Patent number: 10768378
    Abstract: A fiber alignment device includes: a fixation block; an alignment element having a first end portion fixed in the fixation block and a second end portion formed with a protrudent platform, an alignment groove being formed in the alignment element and extending to an end of the protrudent platform in a central axis of the alignment element; an alignment sleeve having a first end portion fitted on the second end portion of the alignment element; and a spring element having a first end extending into the alignment sleeve and pressed against the alignment groove in the protrudent platform. The front end of the ferrule assembly is inserted into the alignment sleeve and when the fiber is inserted into the alignment groove of the alignment element, the position accuracy of the fiber in the fiber bore of the ferrule assembly is calibrated to reach position accuracy of the fiber in the alignment groove of the alignment element. A high precision fiber optic connector may be manufactured with a low precision ferrule.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: September 8, 2020
    Assignee: CommScope Telecommunications (Shanghai) Co. Ltd.
    Inventors: Zhaoyang Tong, Lin Lin, Lei Liu
  • Patent number: 10730465
    Abstract: The system and method provide for identification of dynamic objects in an enclosed space and the presence of a component in a primary location. The system uses an active electro-optical 3D sensor, such as a three-dimensional time of flight camera, to identify the presence or absence of a reflected pulse, to determine, for example, proper placement of a seat belt, or a change in characteristics of a reflected pulse to determine a change in location, and thus possible movement, of a living creature in a vehicle, for example.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: August 4, 2020
    Assignee: Joyson Safety Systems Acquisition LLC
    Inventors: Hamid Naghizadeh, Leonard Cech
  • Patent number: 10734294
    Abstract: An SEM image is acquired. The SEM image shows a metal line and a via hole disposed above the metal line. The via hole exposes a portion of the metal line vertically aligned with the via hole. A first portion and a second portion of the via hole are each vertically not aligned with the metal line and are disposed on opposite sides of the metal line. The acquired SEM image is processed to enhance a contrast between the first and second portions and their surrounding areas. A first dimension of the first portion and a second dimension of the second portion of the via hole are measured in a first direction. The first direction is different from a second direction along which the metal line extends. An overlay between the via hole and the metal line is determined based on the first dimension and the second dimension.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ming Ho, Po Shun Lin, Venkata Sripathi Sasanka Pratapa, Yi-Ju Wang
  • Patent number: 10725287
    Abstract: An image compensated multi-beam system includes a beam splitter configured to receive an input light beam and split the input light beam into a plurality of processing light beams, beam scanning optics configured to receive the plurality of processing light beams and to scan the beams at a target, and an image compensation subsystem configured to selectively adjust the rotation of an image of the plurality of processing light beams at the target. A method for compensating a multi-beam image includes splitting an input light beam into a plurality of processing light beams with a beam splitter, scanning the plurality of processing light beams across a target with beam scanning optics, and selectively adjusting the rotation of an image of the plurality of processing light beams at the target.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: July 28, 2020
    Assignee: nLIGHT, Inc.
    Inventor: Scott R. Karlsen
  • Patent number: 10712430
    Abstract: An optical system of a laser scanner comprising: a light projecting system for projecting a distance measuring light, a scanning mirror for rotatably irradiating the distance measuring light from the light projecting system around a single axis and for making a reflected distance measuring light from an object to be measured enter a light receiving system, a transmission window for accommodating the scanning mirror and through which the distance measuring light and the reflected distance measuring light are transmitted, and a correction optical component for offsetting an optical action of the transmission window, which is provided at least in a middle of an irradiating optical path of the distance measuring light.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 14, 2020
    Assignee: TOPCON Corporation
    Inventor: Taichi Yuasa
  • Patent number: 10707175
    Abstract: One illustrative example of an overlay mark disclosed herein includes four quadrants (I-IV). Each quadrant of the mark contains an inner periodic structure and an outer periodic structure. Each of the outer periodic structures includes a plurality of outer features. Each of the inner periodic structures includes a plurality of first inner groups, each of the first inner groups having a plurality of first inner features, each first inner group being oriented such that there is an end-to-end spacing relationship between each first inner group and a selected one of the outer features.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: July 7, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Wei Zhao, Minghao Tang, Rui Chen, Dongyue Yang, Haiting Wang, Erik Geiss, Scott Beasor
  • Patent number: 10705436
    Abstract: An apparatus includes an overlay mark. The overlay mark includes a first portion including a first pattern and a second portion including a second pattern. The first pattern includes a plurality of first features and a first center feature each separated by a gap along a first direction. At least two gaps are the same but are different from the other gaps, and the first centers are symmetric with respect to the first center feature. The second pattern includes a plurality of second features and a second center feature each separated by a gap along the first direction. At least two gaps are the same but are different from the other gaps, and the second features are symmetric with respect to the second center feature. The first center feature of the first pattern is aligned with the second center feature of the second pattern along a second direction.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Yu Wen, Yin-Jie Wang, Hsiao-Chun Kuo, Ming-Shane Lu
  • Patent number: 10684118
    Abstract: An apparatus for determining an orientation of a die mounted on a tape includes an imaging device, a light source and a conveying mechanism. The die is at least partially translucent and includes at least one orientation feature indicative of the orientation of the die. In use, the conveying mechanism conveys the tape to position the die at an inspection position between the imaging device and the light source. The light source projects light to the imaging device and the imaging device captures an image. The projected light from the light source passing through the die is obstructed by the at least one orientation feature of the die to cause the captured image to include an image of the at least one orientation feature, whereby the orientation of the die may be determined.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: June 16, 2020
    Assignee: ASM TECHNOLOGY SINGAPORE PTE LTD
    Inventors: Kai Siu Lam, Chi Leung Mok, Nim Tak Wong, Ka Yee Mak
  • Patent number: 10672672
    Abstract: The invention concerns a process for the production of a circuit carrier (1) equipped with at least one surface-mount LED (SMD-LED), wherein the at least one SMD-LED (2) is positioned in oriented relationship to one or more reference points (3) of the circuit carrier (1) on the circuit carrier (1), wherein the position of a light-emitting region (4) of the at least one SMD-LED (2) is optically detected in the SMD-LED (2) and the a least one SMD-LED (2) is mounted to the circuit carrier (1) in dependence on the detected position of the light-emitting region (4) of the at least one SMD-LED (2), and such a circuit carrier (1).
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: June 2, 2020
    Assignee: AB MIKROELEKTRONIK GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG
    Inventor: Andreas Karch
  • Patent number: 10658151
    Abstract: To provide a lightweight and highly rigid stage device that can move in X and Y directions and a Z direction, and a charged particle beam device including the stage device. A stage device includes a chuck that is loaded with a sample, an XY stage that moves in X and Y directions, and a Z stage that moves in a Z direction. The Z stage includes: an inclined part that is fixed to the XY stage and includes an inclined surface inclined with respect to an XY plane; a movement part that moves on the inclined surface; and a table that is fixed to the movement part and is provided with the a plane parallel to the XY plane.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: May 19, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Motohiro Takahashi, Masaki Mizuochi, Shuichi Nakagawa, Tomotaka Shibazaki, Naruo Watanabe, Akira Nishioka, Takanori Kato, Hironori Ogawa
  • Patent number: 10658210
    Abstract: An apparatus for detecting a mark on a substrate is provided. The mark has a first stripe group and a second stripe group disposed in parallel to each other. The apparatus includes a detection module operative to move over a surface of the substrate. The detection module includes a detection unit for obtaining data from the mark and operative to perform repeated acquisition operations on the first stripe group and the second stripe group of the mark. Each of the acquisition operations acquires data associated with the first stripe group or the second stripe group of the mark. The detection module also includes a positioning unit for aligning the detection unit with the mark.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 19, 2020
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: Shifeng He, Qiang Wu
  • Patent number: 10634786
    Abstract: Decrease in a measurable distance that occurs when a distance measuring light is obliquely incident on an object is suppressed. A distance measuring device 100 includes an emitting unit 103, a detecting unit 104, a frequency-modulated component separating unit 105, a selecting unit 107, and a distance calculating unit 108. The emitting unit 103 emits distance measuring light to an object to be measured. The distance measuring light is modulated by multiple modulation frequencies. The detecting unit 104 receives and detects light of the distance measuring light that is reflected from the object. The separating unit 105 separates components of the received reflected light into multiple frequency-modulated components. The selecting unit 107 selects a frequency-modulated component that has a received-light intensity exceeding a threshold value from among the separated multiple modulation frequencies.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: April 28, 2020
    Assignee: TOPCON CORPORATION
    Inventors: Katsuyuki Nagai, Takahiro Maehara, Jun Abe
  • Patent number: 10633117
    Abstract: A system for moving first and second fuselage structures into assembly alignment, the system including a first transmitter indexed to a first seat track of the first fuselage structure, a first reflector target indexed to a first seat track of the second fuselage structure, a second transmitter indexed to a second seat track of the first fuselage structure, a second reflector target indexed to a second seat track of the second fuselage structure, wherein the first and second transmitters and the first and second reflector targets cooperate to provide first and second measurements indicative of position of the first fuselage structure relative to the second fuselage structure, and a manipulator system including at least one assembly actuator coupled to the first fuselage structure to move the first fuselage structure into assembly alignment with the second fuselage structure based upon the first and second measurements.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: April 28, 2020
    Assignee: The Boeing Company
    Inventors: Jake A. Wilson, Craig A. Charlton, Andrew M. Huckey, Mark E. Nestleroad
  • Patent number: 10634667
    Abstract: The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: April 28, 2020
    Assignee: Theranos IP Company, LLC
    Inventors: Tammy Burd, Ian Gibbons, Elizabeth A. Holmes, Gary Frenzel, Anthony Joseph Nugent
  • Patent number: 10620549
    Abstract: A lithographic technique that involves obtaining values of parameters of a substrate deformation model, wherein the values are based on positional data obtained from an alignment system for a lithographic apparatus; modifying the values using a mapping operation, wherein the mapping operation is based on a correlation found between the parameters and overlay data for a previous set of substrates; and generating, based on the modified values, electronic data adapted to configure the lithographic apparatus.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 14, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Edo Maria Hulsebos, Patricius Aloysius Jacobus Tinnemans, Ralph Brinkhof, Pieter Jacob Heres, Jorn Kjeld Lucas, Loek Johannes Petrus Verhees, Ingrid Margaretha Ardina Van Donkelaar, Franciscus Godefridus Casper Bijnen
  • Patent number: 10545160
    Abstract: A sample identification system for an automated sampling device is described. A system embodiment includes, but is not limited to, a sample holder having a plurality of apertures configured to receive a plurality of sample vessels therein, the sample holder having one or more corresponding sample holder identifiers positioned proximate to the sample holder; and an identifier capture device configured to detect the one or more sample holder identifiers positioned proximate to the sample holder and generate a data signal in response thereto, the data signal corresponding to at least an orientation of the sample holder relative to a surface on which the sample holder is positioned.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: January 28, 2020
    Assignee: ELEMENTAL SCIENTIFIC, INC.
    Inventors: Daniel R. Wiederin, Kevin Hahn, Connor Doolan, Karl Hauke, Guangwei Ji, Tyler Yost
  • Patent number: 10529604
    Abstract: The method includes a step of executing a rotation treatment in a rotation treatment apparatus; a step of imaging a substrate on which the rotation treatment has been executed, in an inspection apparatus; a step of acquiring change amount information stored in advance, being information on an amount of change in orientation of the substrate while the substrate is moved from the rotation treatment apparatus to the inspection apparatus; a step of acquiring, as an execution result information, information on an execution result of the rotation treatment along a circumferential direction of the substrate, based on an imaging result in the inspection apparatus; and a step of correcting a position of the substrate at a time of the rotation treatment, based on the change amount information and the execution result information.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: January 7, 2020
    Assignee: Tokyo Electron Limited
    Inventor: Makoto Hayakawa
  • Patent number: 10524401
    Abstract: A component mounting machine moves a mounting head from a supply position P1 to each of mounting positions P3 and P4 of a circuit board CB via an imaging position P2. Further, the component mounting machine performs control such that the mounting head moves in a direction of movement at the time of imaging that is either of an X-axis direction or a Y-axis direction when passing through the imaging position P2. The component mounting machine determines the direction of movement at the time of imaging, according to a first X-axis distance Lx and a first Y-axis distance Ly from the imaging position P2 to each of the mounting positions P3 and P4.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: December 31, 2019
    Assignee: FUJI CORPORATION
    Inventors: Jun Iisaka, Hidetoshi Ito, Hidetoshi Kawai, Shigeto Oyama, Naohiro Kato, Kuniyasu Nakane, Ryo Nagata, Keisuke Nagiri
  • Patent number: 10514247
    Abstract: A wafer alignment apparatus includes a light source, a light detection device, and a rotation device configured to rotate a wafer. The light source is configured to provide a light directed to the wafer. The light detection device is configured to detect reflected light intensity from the wafer to locate at least one wafer alignment mark of wafer alignment marks separated by a plurality of angles. At least two of those angles are equal.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: December 24, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hsiang Tseng, Chin-Hsiang Lin, Heng-Hsin Liu, Jui-Chun Peng, Ho-Ping Chen
  • Patent number: 10504851
    Abstract: In an exemplary method, a first layer is formed on a substrate. First overlay marks are formed in a first zone of the first layer. A non-transparent layer is formed on top of the first layer. At least a portion of the non-transparent layer is removed from an area above the first zone of the first layer. This provides optical access to the first overlay marks. A second layer is formed on top of the non-transparent layer. Second overlay marks are formed in a second zone of the second layer. Position information is obtained from each of the first overlay marks and the second overlay marks.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: December 10, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Cung D. Tran, Huaxiang Li, Bradley Morgenfeld, Xintuo Dai, Sanggil Bae, Rui Chen, Md Motasim Bellah, Dongyue Yang, Minghao Tang, Christian J. Ayala, Ravi Prakash Srivastava, Kripa Nidhan Chauhan, Pavan Kumar Chinthamanipeta Sripadarao
  • Patent number: 10497583
    Abstract: According to embodiments, a method for manufacturing a semiconductor device includes forming a mask comprising a pattern of inert structures on a side of a first main surface of a semiconductor substrate. A semiconductor layer is formed over the first main surface, and the semiconductor substrate is thinned from a second main surface opposite to the first main surface. Thereafter, a semiconductor region laterally adjoining the inert structures is anisotropically etched.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: December 3, 2019
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Iris Moder, Sophia Friedler, Ingo Muri, Hans-Joachim Schulze
  • Patent number: 10499037
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may include a stereo camera including two cameras. To maintain proper alignment of the stereo camera as the UAV moves about, a management device may access calibration information for the stereo camera and receive sensing information indicating movement of the two cameras relative to each other. Based at least in part on the calibration information and the sensing information, the management device may instruct an actuator to move one of the two cameras to the proper alignment or may rectify frames captured by the two cameras to return to the proper alignment.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: December 3, 2019
    Assignee: Amazon Technologies, Inc.
    Inventor: Scott Michael Wilcox
  • Patent number: 10483145
    Abstract: Devices and methods are provided for positioning and/or rotating a substrate without solid contact, such as by floating the wafer on a thin layer of gas. Since there is no solid contact with components of a processing chamber, features on the wafer are used to determine wafer position and rotational speed. Closed loop control systems are provided with capacitive sensors to monitor the position of the edge of the wafer in a horizontal plane. Control systems may also monitor the position of a wafer feature as it rotates, such as a notch in the edge of the wafer. Because the presence of a notch can disrupt sensors facing the edge of the wafer, methods and devices to reduce or eliminate this disruption are also provided.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: November 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Blake Koelmel
  • Patent number: 10466599
    Abstract: A lithographic apparatus having a substrate table, a projection system, an encoder system, a measurement frame and a measurement system. The substrate table has a holding surface for holding a substrate. The projection system is for projecting an image on the substrate. The encoder system is for providing a signal representative of a position of the substrate table. The measurement system is for measuring a property of the lithographic apparatus. The holding surface is along a plane. The projection system is at a first side of the plane. The measurement frame is arranged to support at least part of the encoder system and at least part of the measurement system at a second side of the plane different from the first side.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: November 5, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Hans Butler, Engelbertus Antonius Fransiscus Van Der Pasch, Paul Corné Henri De Wit
  • Patent number: 10451736
    Abstract: Some embodiments of the invention may include an electro-optical distance measurement method having at least one emission of a light signal, in particular of laser light, from at least one light source onto a target object, detection of a fraction of the light signal returning from the target object using a detector and a signal processing electronics system connected downstream from the detector, and/or determination of a distance to the target object. In some embodiments, the emitted light signal comprises in this case a sequence of sequential elements of, in each case at least one light pulse and one light signal train. In some embodiments, the light pulses each have a higher intensity amplitude than the light signal trains. Some embodiments may also an electro-optical distance meter having the features analogous to The distance measurement method according to the invention.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: October 22, 2019
    Assignee: LEICA GEOSYSTEMS AG
    Inventor: Reto Stutz
  • Patent number: 10410895
    Abstract: A conveyance control device according to one aspect of the present invention is configured to control operation of one or more carriages each configured to convey a FOUP. The conveyance control device includes: a basic processing unit that generates basic command data based on basic input data 32a containing a request to convey the FOUP; an optimization processing unit that generates optimization command data based on optimization input data containing the request to convey the FOUP; an output unit that outputs the basic command data or the optimization command data to each of the carriages; and a switching unit that controls operation of at least one of the basic processing unit, the optimization processing unit, and the output unit such that either one of the basic command data and the optimization command data is output by the output unit.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: September 10, 2019
    Assignee: Murata Machinery, Ltd.
    Inventors: Kenji Kumagai, Atsushi Kobayashi
  • Patent number: 10409084
    Abstract: A method for assessing the relative alignment of a first and second diffractive element. The method includes illuminating the first diffractive element to form a first diffraction pattern in the far field and illuminating the second diffractive element to form a second diffraction pattern in the far field. The method further comprises determining a positional and/or rotational relationship between the first diffraction pattern and the second diffraction pattern in the far field.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: September 10, 2019
    Assignee: Optalysys Ltd.
    Inventors: Nicholas James New, Robert Todd
  • Patent number: 10393504
    Abstract: An optical coordinate measuring system (OCMS) for manufactured components having build variations that require splices for accurate integration of the components. The OCMS includes manufacturing the components that include integral three dimensional optical reticle image arrays affixed to predetermined surfaces of the components, such that those surfaces can be optically captured in three dimensional composite measurements associated with various 3-D scanned poses. Each pose includes an orthogonal pair of grid lines, and each pose involves a single field of view. A plurality of poses can then be collated to form composite measurements that extend out-of-range of any single pose. The three dimensional optical reticle image arrays can be concave or convex, ideally formed as an integral part of each as-manufactured component. The three dimensional aspect enhances scanning clarity of each scanned pose, thus assuring greater accuracies of composite measurements that result from any plurality of collated poses.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: August 27, 2019
    Assignee: The Boeing Company
    Inventor: Jerald A. Hull
  • Patent number: 10338484
    Abstract: A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: July 2, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Timothy Dugan Davis, Peter David Engblom, Kaustuve Bhattacharyya
  • Patent number: 10310288
    Abstract: In systems and methods for adjusting the position of a headset element (e.g., a display and/or other optical element), coherent light (e.g., a laser beam) is transmitted through a display of a headset to produce a diffraction pattern on a detector, which detects the diffraction pattern. The orientation of the headset element is determined based in part on the detected diffraction pattern. Based on the determined orientation and a target orientation, an adjustment to the orientation of the headset element is determined. The position of the headset element is adjusted based on the determined adjustment. This method may be repeated until the headset element is determined to be correctly oriented.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: June 4, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Samuel Redmond D'Amico, Evan M. Richards
  • Patent number: 10288408
    Abstract: A white light interferometric metrology device operates in the image plane and objective pupil plane. The interferometric metrology device extracts the electric field with complex parameters and that is a function of azimuth angle, angle of incidence and wavelength from interferometric data obtained from the pupil plane. Characteristics of the sample are determined using the electric field based on an electric field model of the azimuth angle, the angle of incidence and the wavelength that is specific for a zero diffraction order. A center of the pupil in the pupil plane may be determined based on a Fourier transform of the interferometric data at each new measurement and used to convert each pixel from the camera imaging the objective pupil plane into a unique set of angle of incidence and azimuth angle of light incident on the sample.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 14, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Nigel P. Smith, George Andrew Antonelli
  • Patent number: 10278654
    Abstract: A medical X-ray photographing apparatus includes a support configured to hold the X-ray generator and the X-ray detector in a facing state, a base body (support holder) configured to rotatably hold the support on a side opposite to a position where the X-ray generator and the X-ray detector are provided, and a turning driver configured to drive and turn the support about a turning axis. The medical X-ray photographing apparatus also includes a center-direction setting part configured to set a center direction passing through a center of a swing angle of the support in X-ray photography and a turning controller configured to control the turning driver such that the support turns with a swing angle around the center direction set by the center-direction setting part.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 7, 2019
    Assignee: J. MORITA MANUFACTURING CORPORATION
    Inventors: Tomoyuki Sadakane, Takahiro Yoshimura
  • Patent number: 10269723
    Abstract: A package includes a device die, a molding material molding the device die therein, a through-via penetrating through the molding material, and an alignment mark penetrating through the molding material. A redistribution line is on a side of the molding material. The redistribution line is electrically coupled to the through-via.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Hsien Huang, Hsien-Wei Chen, Ching-Wen Hsiao, Der-Chyang Yeh, Shin-Puu Jeng, Chen-Hua Yu