With Light Detector (e.g., Photocell) Patents (Class 356/400)
  • Patent number: 10338484
    Abstract: A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: July 2, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Timothy Dugan Davis, Peter David Engblom, Kaustuve Bhattacharyya
  • Patent number: 10310288
    Abstract: In systems and methods for adjusting the position of a headset element (e.g., a display and/or other optical element), coherent light (e.g., a laser beam) is transmitted through a display of a headset to produce a diffraction pattern on a detector, which detects the diffraction pattern. The orientation of the headset element is determined based in part on the detected diffraction pattern. Based on the determined orientation and a target orientation, an adjustment to the orientation of the headset element is determined. The position of the headset element is adjusted based on the determined adjustment. This method may be repeated until the headset element is determined to be correctly oriented.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: June 4, 2019
    Assignee: Facebook Technologies, LLC
    Inventors: Samuel Redmond D'Amico, Evan M. Richards
  • Patent number: 10288408
    Abstract: A white light interferometric metrology device operates in the image plane and objective pupil plane. The interferometric metrology device extracts the electric field with complex parameters and that is a function of azimuth angle, angle of incidence and wavelength from interferometric data obtained from the pupil plane. Characteristics of the sample are determined using the electric field based on an electric field model of the azimuth angle, the angle of incidence and the wavelength that is specific for a zero diffraction order. A center of the pupil in the pupil plane may be determined based on a Fourier transform of the interferometric data at each new measurement and used to convert each pixel from the camera imaging the objective pupil plane into a unique set of angle of incidence and azimuth angle of light incident on the sample.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 14, 2019
    Assignee: Nanometrics Incorporated
    Inventors: Nigel P. Smith, George Andrew Antonelli
  • Patent number: 10278654
    Abstract: A medical X-ray photographing apparatus includes a support configured to hold the X-ray generator and the X-ray detector in a facing state, a base body (support holder) configured to rotatably hold the support on a side opposite to a position where the X-ray generator and the X-ray detector are provided, and a turning driver configured to drive and turn the support about a turning axis. The medical X-ray photographing apparatus also includes a center-direction setting part configured to set a center direction passing through a center of a swing angle of the support in X-ray photography and a turning controller configured to control the turning driver such that the support turns with a swing angle around the center direction set by the center-direction setting part.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 7, 2019
    Assignee: J. MORITA MANUFACTURING CORPORATION
    Inventors: Tomoyuki Sadakane, Takahiro Yoshimura
  • Patent number: 10269723
    Abstract: A package includes a device die, a molding material molding the device die therein, a through-via penetrating through the molding material, and an alignment mark penetrating through the molding material. A redistribution line is on a side of the molding material. The redistribution line is electrically coupled to the through-via.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Hsien Huang, Hsien-Wei Chen, Ching-Wen Hsiao, Der-Chyang Yeh, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 10260872
    Abstract: The present application provides an LTPS multilayered structure, which includes: a first stack layer having a reference pattern structure formed thereon and provided with uniformly distributed first references; and a second stack layer disposed on the first stack layer and having an alignment pattern structure formed thereon and provided with uniformly distributed second references each selectively aligning with one of the first references so that misalignment between the first stack layer and the second stack layer is precisely calculated by markings attached to each of the first references. The present further provides a method for measuring misalignment between a plurality of stack layers in the LTPS multilayered structure.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: April 16, 2019
    Assignee: EverDisplay Optronics (Shanghai) Limited
    Inventors: Ching Che Yang, Yu Chia Huang, Wei-Liang Wu
  • Patent number: 10254658
    Abstract: A method of measuring a parameter of a lithographic process, the method including: illuminating a diffraction measurement target on a substrate with radiation, the measurement target including at least a first sub-target, at least a second sub-target and at least third sub-target, wherein the first, second and third sub-targets each include a periodic structure and wherein the first sub-target, second sub-target and third sub-target each have a different design and wherein at least two of the sub-targets are respectively designed for determination of a different lithographic process parameter; and detecting radiation scattered by the at least two sub-targets to obtain for that target a measurement representing the different parameters of the lithographic process.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 9, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Daan Maurits Slotboom, Arie Jeffrey Den Boef, Martin Ebert
  • Patent number: 10239210
    Abstract: The problem of picking tightly-pack generally uniformed products such as rubber bales in a bin is solved by sequentially selecting each one of the products based on the products depths in the bin, using a robot with a tool to grip each selected product, and moving on an output station each gripped product considering its position relative to the gripping tool. A first sensor system is used to determine the product depths in the bin. The sensor system can be mounted on the robot tool or be positioned above the bin. The position of each gripped product in the gripping tool is achieved by analyzing an image of the gripped product in the gripping tool.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: March 26, 2019
    Assignee: Symbotic Canada ULC
    Inventors: Sylvain-Paul Morency, Marc Ducharme, Robert Jodoin, Christian Simon, Jonathan Fournier, Sebastien Lemay
  • Patent number: 10211078
    Abstract: The present invention provides a position-detecting and chip-separating device applied to a semiconductor structure that includes a base layer and a plurality of light emitting chips disposed on the base layer. The position-detecting and chip-separating device includes a position detecting module and a chip separating module. The position detecting module includes an emitting element and a receiving element, and the chip separating module corresponds to the position detecting module. The position detecting module provides a position data of a contact interface between the base layer and the light emitting chip by pairing of the emitting element and the receiving element. A projection light source generated by the chip separating module is projected onto the contact interface between the base layer and the light emitting chip according to the position data so as to easily separate the light emitting chip from the base layer.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: February 19, 2019
    Assignee: ASTI GLOBAL INC., TAIWAN
    Inventor: Chien-Shou Liao
  • Patent number: 10197390
    Abstract: A pre-alignment measurement device includes, disposed in a direction of propagation of light, a laser, a first cylindrical lens, a first imaging lens, an illumination diaphragm, a second imaging lens, a second cylindrical lens and a CCD detector. The laser, an object under measurement and the CCD detector are arranged at respective apexes of a triangle formed by the measurement device for pre-alignment. A light beam is emanated by the laser and is transformed into a line beam. The line beam is reflected by the object under measurement and then passes through the second cylindrical lens to form a CCD image which has different horizontal and vertical magnifications, allowing horizontal and vertical resolutions to be matched with horizontal and vertical measuring ranges, respectively. The CCD image contains information of a position and a height of a step defined by the object under measurement and the wafer stage.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 5, 2019
    Assignee: SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    Inventors: Rong Du, Dawei Yu, Chenhui Yu
  • Patent number: 10185876
    Abstract: A detection apparatus includes an image pickup unit and a processor which detects a position of a mark using a two-dimensional image of the mark. The processor generates a one-dimensional signal having a plurality of peaks by accumulating images included in a detection region, detects peaks in which differences between values of the peaks and a reference value are equal to or larger than a threshold value and peaks in which differences between values of the peaks and the reference value are smaller than the threshold value from among the plurality of generated peaks and obtains a failure region in the mark, resets the detection region such that the differences between the values of the detected peaks and the reference value become smaller than the threshold value, generates a one-dimensional signal by accumulating images included in the reset detection region, and detects a position of the mark.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: January 22, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Tadaki Miyazaki
  • Patent number: 10154234
    Abstract: An imaging system includes a primary imager and plurality of 3A-control sensors. The primary imager has a first field of view and includes a primary image sensor and a primary imaging lens with a first optical axis. The primary image sensor has a primary pixel array and control circuitry communicatively coupled thereto. The plurality of 3A-control sensors includes at least one of a peripheral imager and a 3A-control sensor. The peripheral imager, if included, has a second field of view including (i) at least part of the first field of view and (ii) a phase-difference auto-focus (PDAF) sensor and a peripheral imaging lens, the PDAF sensor being separate from the primary image sensor. The 3A-control sensor, if included, is separate from the primary pixel array and communicatively connected to the control circuitry to provide one of auto-white balance and exposure control for the primary pixel array.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: December 11, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chengming Liu, Jizhang Shan
  • Patent number: 10151987
    Abstract: A pattern formed on a substrate includes first and second sub-patterns positioned adjacent one another and having respective first and second periodicities. The pattern is observed to obtain a combined signal which includes a beat component having a third periodicity at a frequency lower than that of the first and second periodicities. A measurement of performance of the lithographic process is determined by reference to a phase of the beat component. Depending how the sub-patterns are formed, the performance parameter might be critical dimension (CD) or overlay, for example. For CD measurement, one of the sub-patterns may comprise marks each having of a portion sub-divided by product-like features. The measurement can be made using an existing alignment sensor of a lithographic apparatus. Sensitivity and accuracy of the measurement can be adjusted by selection of the first and second periodicities, and hence the third periodicity.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: December 11, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: David Deckers, Franciscus Godefridus Casper Bijnen, Sami Musa
  • Patent number: 10123709
    Abstract: A pulse wave measurement device includes a storage unit and a subtracter. When a light emitting element alternately switches between a lighting state in which the light emitting element emits light into a body and a non-lighting state in which the light emitting element does not emit light, the storage unit stores a value of a first digital signal representing an output state of a light receiving element that receives light transmitted through or reflected by the body at timing of the lighting state, and a value of a second digital signal representing an output state of the light receiving element at timing of the non-lighting state. The subtracter subtracts the second digital signal value stored in the storage unit from the first digital signal value stored in the storage unit.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: November 13, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Shigeo Imai
  • Patent number: 10113865
    Abstract: A system for checking the axial position of a bearing (30) inside an hole (31) of an E-block (29), preferably during the assembly of an HSA, comprises a reference system (3) that locates the E-block, a coupling element (17) that comes into contact with the bearing, a floating element (8) that, being connected to the coupling element, assumes the attitude of the bearing, two or more detection devices, for example optoelectronic, that cooperate with the floating element and detect at the same time, at checking areas are spaced apart from each other, quantities indicative of the position and, in case, of the attitude of the bearing with respect to the E-block, and a processing unit (50) for receiving and processing the detected quantities.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: October 30, 2018
    Assignee: Marposs Societa' Per Azioni
    Inventor: Riccardo Cipriani
  • Patent number: 10042268
    Abstract: A substrate has three or more overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values and an assumed non-linear relationship between overlay and target asymmetry, thereby to correct for feature asymmetry. The periodic relationship in the region of zero bias and P/2 has gradients of opposite sign. The calculation allows said gradients to have different magnitudes as well as opposite sign. The calculation also provides information on feature asymmetry and other processing effects. This information is used to improve subsequent performance of the measurement process, and/or the lithographic process.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 7, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Arie Jeffrey Den Boef, Omer Abubaker Omer Adam, Martin Jacobus Johan Jak
  • Patent number: 10014203
    Abstract: A semiconductor die pick and place device comprising a handing mechanism comprising a pick arm movable between a placement location and a pick-up location. A reference feature is located on the pick arm, and a light reflecting module is carried by the pick arm. The light reflecting module is operable to reflect an image of the reference feature to an image capturing module such that the reference feature appears to the light reflecting module to be in focus at a virtual position that is equivalent to a position at the pick-up location and/or the placement location.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 3, 2018
    Assignee: ASM TECHNOLOGY SINGAPORE PTE LTD
    Inventors: Kui Kam Lam, Kai Siu Lam, Zhuanyun Zhang, Nim Tak Wong, Chung Yan Lau
  • Patent number: 9978625
    Abstract: A semiconductor method is disclosed. The semiconductor method is performed upon semiconductor wafers, wherein each of the semiconductor wafers includes a first exposure field and a second exposure field, and each of the first exposure field and the second exposure field includes a first alignment mark and a second alignment mark. The method includes: determining a first alignment pattern for a first wafer by selecting one of the alignment marks of the first exposure field, and selecting one of the alignment marks of the second exposure field; performing the aligning operation upon the first semiconductor wafer by using the first alignment pattern; determining a second alignment pattern for a second wafer by selecting one of the alignment marks of the first exposure field, and selecting one of the alignment marks of the second exposure field, wherein the first alignment pattern is different from the second alignment pattern.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 22, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yung-Yao Lee, Jui-Chun Peng, Ho-Ping Chen, Heng-Hsin Liu
  • Patent number: 9977351
    Abstract: A patterning device support for controlling a temperature of a patterning device can include a movable component. The movable component can include a gas inlet for supplying a gas flow across a surface of the patterning device and a gas outlet for extracting the gas flow. The patterning device support can also include a gas flow generator coupled to a duct, for recirculating the gas flow from the gas outlet to the gas inlet.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 22, 2018
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Earl William Ebert, Johannes Onvlee, Samir A. Nayfeh, Mark Josef Schuster, Peter A. Delmastro, Christopher Charles Ward, Frank Johannes Jacobus Van Boxtel, Abdullah Alikhan, Daniel Nathan Burbank, Daniel Nicholas Galburt, Justin Matthew Verdirame
  • Patent number: 9964805
    Abstract: A backlight system for a display device which comprises a light emitting diode comprising an encapsulating lens and an aspheric lens interposed between the light emitting diode and the display device. The backlight system provides a luminance of substantially 100K nits at a cone angle of substantially 12° and is of particular utility in conjunction with laser-based range and speed measurement instruments.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 8, 2018
    Assignees: Laser Technology, Inc., Kama-Tech (HK) Limited
    Inventor: Jeremy G. Dunne
  • Patent number: 9946171
    Abstract: One pair each of a Y linear motor (a total of four) on the +X side and the ?X side that drive a reticle stage include one pair each of a stator section (a total of four) and three each of a mover section (a total of six) on the +X side and the ?X side. In this case, the three each of the mover sections on the +X side and the ?X side configure one each of a mover. The mover section located in the center in the Z-axis direction of each of the movers is used in common by each pair of the Y linear motors. Therefore, the weight of the mover section (reticle stage) of the reticle stage device is reduced, which allows a higher acceleration. Further, the mover section located in the center in the Z-axis direction of each of the movers coincides with a neutral plane of the reticle stage.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: April 17, 2018
    Assignee: NIKON CORPORATION
    Inventor: Yuichi Shibazaki
  • Patent number: 9935422
    Abstract: A multi-layer laser diode mount is configured with a submount made from thermo- and electro-conductive material. One of the opposite surfaces of the submount supports a laser diode. The other surface of the submount faces and is spaced from a heatsink. The submount and heatsink are configured with respective thermal expansion coefficients (“TEC”) which are different from one another. The opposite surfaces of the submount are electroplated with respective metal layers one of which is bonded to a soft solder layer. In one aspect of the disclosure, the mount is further configured with a spacer having the same TEC as that of the submount and bonded to the soft solder layer. A layer of hard solder bonds the spacer and heatsink to one another. In a further aspect of the disclosure, the electroplated metal layer in contact with the other surface of the submount is hundred- or more micron thick. The soft solder is directly bonded to the heatsink.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 3, 2018
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexey Komissarov, Dmitriy Miftakhutdinov, Pavel Trubenko, Igor Berishev, Nikolai Strougov
  • Patent number: 9891178
    Abstract: An industrial CT scanning test system. The test system includes a test base, a multi-axis motion swivel table supported on the test base, a ray generator, an image acquisition device, and a fluid pressure loading device, and further includes a control device. The fluid pressure loading device includes at least one loading cylinder, and in case of performing a scanning experiment, the at least one loading cylinder is placed on a sample stage of the multi-axis motion swivel table together with a sample, and real-time loading of loads in different directions on the sample is performed according to test requirements.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: February 13, 2018
    Assignee: CHINA UNIVERSITY OF MINING AND TECHNOLOGY, BEIJING
    Inventors: Yang Ju, Jianqiang Wang, Ruidong Peng, Lingtao Mao, Hongbin Liu
  • Patent number: 9874823
    Abstract: A purge cover is equipped whose upper end is connected to an illumination unit and the lower end has a pair of plate sections facing an upper surface of a reticle stage and a reticle via a predetermined clearance. Therefore, gaseous circulation can be substantially blocked via the clearance between the reticle stage and the plate sections. This allows a space which is almost airtight surrounded by the purge cover, the reticle stage and/or the reticle to be formed on the optical path of the illumination light that reaches the projection optical system from the illumination unit. Further, the space above which is almost airtight serves as a purge space that is purged with clean dry air and the like.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: January 23, 2018
    Assignee: NIKON CORPORATION
    Inventor: Yuichi Shibazaki
  • Patent number: 9874527
    Abstract: Metrology methods and respective software and module are provided, which identify and remove measurement inaccuracy which results from process variation leading to target asymmetries. The methods comprise identifying an inaccuracy contribution of process variation source(s) to a measured scatterometry signal (e.g., overlay) by measuring the signal across a range of measurement parameter(s) (e.g., wavelength, angle) and targets, and extracting a measurement variability over the range which is indicative of the inaccuracy contribution. The method may further assume certain functional dependencies of the resulting inaccuracy on the target asymmetry, estimate relative donations of different process variation sources and apply external calibration to further enhance the measurement accuracy.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: January 23, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Eran Amit, Zeev Bomzon, Barak Bringoltz, Boris Efraty
  • Patent number: 9869543
    Abstract: Methods and systems for minimizing of algorithmic inaccuracy in scatterometry overlay (SCOL) metrology are provided. SCOL targets are designed to limit the number of oscillation frequencies in a functional dependency of a resulting SCOL signal on the offset and to reduce the effect of higher mode oscillation frequencies. The targets are segmented in a way that prevents constructive interference of high modes with significant amplitudes, and thus avoids the inaccuracy introduced by such terms into the SCOL signal. Computational methods remove residual errors in a semi-empirical iterative process of compensating for the residual errors algorithmically or through changes in target design.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: January 16, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Barak Bringoltz, Mark Ghinovker, Daniel Kandel, Vladimir Levinski, Zeev Bomzon
  • Patent number: 9863754
    Abstract: A wafer alignment apparatus includes a light source, a light detection device, and a rotation device configured to rotate a wafer. The light source is configured to provide light directed to the wafer. The light detection device is configured to detect reflected light intensity from the wafer to locate at least one wafer alignment mark of wafer alignment marks separated by a plurality of angles. At least two of those angles are equal.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: January 9, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hsiang Tseng, Chin-Hsiang Lin, Heng-Hsin Liu, Jui-Chun Peng, Ho-Ping Cheng
  • Patent number: 9857697
    Abstract: While a wafer stage linearly moves in a Y-axis direction, a multipoint AF system detects surface position information of the wafer surface at a plurality of detection points that are set at a predetermined distance in an X-axis direction and also a plurality of alignment systems that are arrayed in a line along the X-axis direction detect each of marks at positions different from one another on the wafer. That is, detection of surface position information of the wafer surface at a plurality of detection points and detection of the marks at positions different from one another on the wafer are finished, only by the wafer stage (wafer) linearly passing through the array of the plurality of detection points of the multipoint AF system and the plurality of alignment systems, and therefore, the throughput can be improved.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: January 2, 2018
    Assignee: NIKON CORPORATION
    Inventor: Yuichi Shibazaki
  • Patent number: 9851300
    Abstract: Methods and metrology modules and tools are provided, which minimize an estimated overlay variation measure at misalignment vector values obtained from a derived functional form of an overlay linear response to non-periodic effects. Provided methods further quantifying target noise due to the non-periodic effects using multiple repeated overlay measurements of the target cells, calculating an ensemble of overlay measurements between the cells over the multiple measurement repeats and expressing the target noise as a statistical derivative of the calculated overlay measurements. Sub-ensembles may be selected to further characterize the target noise. Various outputs include optimized scanning patterns, target noise metrics and recipe and target optimization.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: December 26, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Barak Bringoltz, Ofer Zaharan, Amnon Manassen, Nadav Carmel, Victoria Naipak, Alexander Svizher, Tzahi Grunzweig, Daniel Kandel
  • Patent number: 9829384
    Abstract: A long wave infrared imaging polarimeter (LWIP) is disclosed including a pixilated polarizing array (PPA) in close proximity to a microbolometer focal plane array (MFPA), along with an alignment engine for aligning and bonding the PPA and MFPA and method for assembly.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: November 28, 2017
    Assignee: Polaris Sensor Technologies, Inc.
    Inventors: J Larry Pezzaniti, Justin Parker Vaden, Michael Ernest Roche
  • Patent number: 9817274
    Abstract: The present invention provides a method for manufacturing a liquid crystal display device, which hardly causes display unevenness in joining parts in which mutually neighboring exposure regions are overlapped upon carrying out a photo-alignment treatment for forming a horizontal alignment film.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 14, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koichi Miyachi, Isamu Miyake
  • Patent number: 9816810
    Abstract: Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 14, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Shankar Krishnan, Kevin Peterlinz, Thaddeus Gerard Dziura, Noam Sapiens, Stilian Ivanov Pandev
  • Patent number: 9805960
    Abstract: When an edge of a wafer passes above a right sensor and a left sensor disposed in a conveyance route of the wafer to a substrate processing chamber, four edge intersecting points are acquired in a first wafer coordinate system, and a reference edge intersecting point set composed of two adjacent edge intersecting points is created from the four edge intersecting points. Between the two remaining edge intersecting points which do not constitute the reference edge intersecting point set, an edge intersecting point present within an area surrounded by two circles defined based on the two edge intersecting points constituting the reference edge intersecting point set is selected as an effective edge intersecting point, and a central position of a circle passing through the reference edge intersecting points and the effective edge intersecting point is acquired as a central position of the wafer.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: October 31, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takehiro Shindo, Tadashi Shioneri, Masahiro Dogome
  • Patent number: 9793183
    Abstract: An SEM image is acquired. The SEM image shows a metal line and a via hole disposed above the metal line. The via hole exposes a portion of the metal line vertically aligned with the via hole. A first portion and a second portion of the via hole are each vertically not aligned with the metal line and are disposed on opposite sides of the metal line. The acquired SEM image is processed to enhance a contrast between the first and second portions and their surrounding areas. A first dimension of the first portion and a second dimension of the second portion of the via hole are measured in a first direction. The first direction is different from a second direction along which the metal line extends. An overlay between the via hole and the metal line is determined based on the first dimension and the second dimension.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: October 17, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ming Ho, Po Shun Lin, Venkata Sripathi Sasanka Pratapa, Yi-Ju Wang
  • Patent number: 9786537
    Abstract: Devices and methods are provided for positioning and/or rotating a substrate without solid contact, such as by floating the wafer on a thin layer of gas. Since there is no solid contact with components of a processing chamber, features on the wafer are used to determine wafer position and rotational speed. Closed loop control systems are provided with capacitive sensors to monitor the position of the edge of the wafer in a horizontal plane. Control systems may also monitor the position of a wafer feature as it rotates, such as a notch in the edge of the wafer. Because the presence of a notch can disrupt sensors facing the edge of the wafer, methods and devices to reduce or eliminate this disruption are also provided.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: October 10, 2017
    Assignee: Applied Materials, Inc.
    Inventor: Blake Koelmel
  • Patent number: 9733523
    Abstract: An exposure method includes loading a first substrate on a loading portion , the first substrate having a photo alignment agent which is coated on the first substrate, irradiating the first substrate by moving the first substrate in a first speed in a first direction to a working portion while loading a second substrate on the loading portion, the working portion having an ultra violet light source generating ultra violet ray to harden a photo alignment agent, simultaneously irradiating the first substrate and the second substrate by moving the first substrate and the second substrate in the first direction in the working portion, and unloading the first substrate from an unloading portion while irradiating the second substrate by moving the second substrate in the first direction in the working portion.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 15, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yeon-Jae Lee, Min-Soo Kim, Tae-Jin Kim, Hee-Chang Yang, Eun-Ho Jung
  • Patent number: 9721589
    Abstract: Implementations disclosed herein provide a method comprising emitting light at a plurality of locations across a surface of a recording head, detecting light output from a diffraction grating axis with a detector, and determining a target position for mounting a light source on the surface of the recording head by analyzing the detected light output corresponding to one or more of the plurality of locations.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: August 1, 2017
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventor: Ralph Kevin Smith
  • Patent number: 9709903
    Abstract: An overlay target for use in imaging based metrology is disclosed. The overlay target includes a plurality of target structures including three or more target structures, each target structure including a set of two or more pattern elements, wherein the target structures are configured to provide metrology information pertaining to different pitches, different coverage ratios, and linearity. Pattern elements may be separated from adjacent pattern elements by non-uniform distance; pattern elements may have non-uniform width; or pattern elements may be designed to demonstrate a specific offset as compared to pattern elements in a different layer.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: July 18, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: DongSub Choi, David Tien
  • Patent number: 9690141
    Abstract: The present invention provides a method for manufacturing a liquid crystal display device, which hardly causes display unevenness in joining parts in which mutually neighboring exposure regions are overlapped upon carrying out a photo-alignment treatment for forming a horizontal alignment film.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: June 27, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Koichi Miyachi, Isamu Miyake
  • Patent number: 9678644
    Abstract: A system for displaying a plurality of registered images is disclosed. A first viewport unit displays a representation of a first image dataset in a first viewport. A second viewport unit displays a representation of a second image dataset in a second viewport. A position indication unit enables a user to indicate a position in the first dataset displayed in the first viewport, to obtain a user-indicated position. A corresponding position determining unit determines a position in the second image dataset corresponding to the user-indicated position, to obtain a corresponding position in the second image dataset, based on correspondence information mapping positions in the first image dataset to corresponding positions in the second image dataset. The second viewport unit displays an indication of the corresponding position in the second viewport.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: June 13, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Buelow, Martin Bergtholdt, Kirsten Regina Meetz, Ingwer-Curt Carlsen, Rafael Wiemker
  • Patent number: 9653404
    Abstract: The present invention provides an overlay target. The overlay target includes a plurality of first pattern blocks and a plurality of second pattern blocks. The first pattern blocks and the second patterns blocks are arranged in array by being separated by at least one first gaps stretching along a first direction and at least one second gaps stretching along a second direction. Each first pattern block is composed of a plurality of first stripe patterns stretching along a third direction, and each second pattern block is composed of a plurality of second stripe patterns stretching along a fourth direction. The first direction is orthogonal to the second direction, the third direction and the fourth direction are 45 degrees relative to the first direction.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: May 16, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Jing Wang, En-Chiuan Liou, Mei-Chen Chen, Han-Lin Zeng, Chia-Hung Lin, Chun-Chi Yu
  • Patent number: 9651876
    Abstract: A measurement apparatus includes: an imaging unit positioned with fixing with respect to a first member; a first detector configured to detect a position of a stage with reference to a second member; a second detector configured to detect fluctuation of a position of the first member with reference to the second member; and a control unit configured to obtain the position of the mark from an image of the mark sensed by the imaging unit while controlling a relative position of the stage relative to the second member so as to reduce fluctuation of a relative position of the mark relative to the imaging unit due to the fluctuation of the position of the first member based on detection results of the first and second detectors.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: May 16, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Kenji Noda
  • Patent number: 9640487
    Abstract: A wafer alignment apparatus includes a light source, a light detection device, and a rotation device configured to rotate a first wafer and a second wafer. The light source is configured to provide a first light directed to the first wafer and a second light directed to the second wafer. The light detection device is configured to detect reflected light intensity from the first wafer to find a position of at least one wafer alignment mark of the first wafer and to detect reflected light intensity from the second wafer to find a position of at least one wafer alignment mark of the second wafer.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: May 2, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hsiang Tseng, Chao-Hsiung Wang, Chin-Hsiang Lin, Heng-Hsin Liu, Ho-Ping Chen, Jui-Chun Peng
  • Patent number: 9588109
    Abstract: The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 7, 2017
    Assignee: Theranos, Inc.
    Inventors: Tammy Burd, Ian Gibbons, Elizabeth A. Holmes, Gary Frenzel, Anthony Joseph Nugent
  • Patent number: 9581588
    Abstract: The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: February 28, 2017
    Assignee: Theranos, Inc.
    Inventors: Tammy Burd, Ian Gibbons, Elizabeth A. Holmes, Gary Frenzel, Anthony Joseph Nugent
  • Patent number: 9490217
    Abstract: An overlay mark for determining the alignment between two separately generated patterns formed along with two successive layers above a substrate is provided in the present invention, wherein both the substrate and the overlay mark include at least two pattern zones having periodic structures with different orientations, and the periodic structures of the overlay mark are orthogonally overlapped with the periodic structures of the substrate.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 8, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chia-Ching Lin, En-Chiuan Liou, Chia-Hung Wang, Sho-Shen Lee
  • Patent number: 9484274
    Abstract: Embodiments of the disclosure provide methods and system for correcting lithographic film stress/strain variations on a semiconductor substrate using laser energy treatment process. In one embodiment, a method for correcting film stress/strain variations on a substrate includes performing a measurement process in a metrology tool on a substrate to obtain a substrate distortion or an overlay error map, determining dose of laser energy in a computing system to correct film stress/strain variations or substrate distortion based on the overlay error map, and providing a laser energy treatment recipe to a laser energy apparatus based on the dose of laser energy determined to correct substrate distortion or film stress/strain variations.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: November 1, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Christopher Dennis Bencher, Ehud Tzuri, Ellie Y. Yieh
  • Patent number: 9476838
    Abstract: Metrology targets, design files, and design and production methods thereof are provided. The metrology targets are hybrid in that they comprise at least one imaging target structure configured to be measurable by imaging and at least one scatterometry target structure configured to be measurable by scatterometry. Thus, the hybrid targets may be measured by imaging and scatterometry simultaneously or alternatingly and/or the measurement techniques may be optimized with respect to wafer regions and other spatial parameters, as well as with respect to temporal process parameters. The hybrid targets may be used to monitor process parameters, for example via comparative overlay measurements and/or high resolution measurements.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: October 25, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: DongSub Choi, Tal Itzkovich, David Tien
  • Patent number: 9459093
    Abstract: According to one embodiment, a deflection measuring device that irradiates an effective region of a pattern transfer plate on which a pattern is formed, with parallel lights from at least two directions, and detects interference fringes of the parallel lights reflected from the effective region.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: October 4, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hidenori Sato, Nobuhiro Komine
  • Patent number: 9423705
    Abstract: While a wafer stage linearly moves in a Y-axis direction, a multipoint AF system detects surface position information of the wafer surface at a plurality of detection points that are set at a predetermined distance in an X-axis direction and also a plurality of alignment systems that are arrayed in a line along the X-axis direction detect each of marks at positions different from one another on the wafer. That is, detection of surface position information of the wafer surface at a plurality of detection points and detection of the marks at positions different from one another on the wafer are finished, only by the wafer stage (wafer) linearly passing through the array of the plurality of detection points of the multipoint AF system and the plurality of alignment systems, and therefore, the throughput can be improved.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: August 23, 2016
    Assignee: NIKON CORPORATION
    Inventor: Yuichi Shibazaki