With Light Detector (e.g., Photocell) Patents (Class 356/400)
  • Patent number: 8976356
    Abstract: According to one embodiment, a measurement mark includes: a first line pattern, first lines extending in a first direction, the first lines arranged in a second direction in the first line pattern, the first line pattern capable of forming a first moire pattern by overlapping with an arrangement pattern including a pattern, and a first polymer and a second polymer being alternately arranged in the pattern; a second line pattern, second lines extending in the first direction, the second lines being arranged in the second direction in the second line pattern, the second line pattern capable of forming a second moire pattern by overlapping with the arrangement pattern; and a reference pattern with a reference position configured to assess a first shift amount from the reference position of the first moire pattern and a second shift amount from the reference position of the second moire pattern.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuhiro Komine, Yosuke Okamoto
  • Patent number: 8964179
    Abstract: A tester including a laser transmitter, a laser receiver, a zero reference plane located between the laser transmitter and the laser receiver, a tower reference plane located between the laser transmitter and the laser receiver, wherein the tower reference plane defines an aperture, and a controller. The controller is configured to measure a pitch static attitude of a head stack assembly by at least determining a zero axis, determining a first horizontal position of the aperture and a second horizontal position of the aperture, determining a mid-point of a first slider of the head stack assembly, determining a first vertical position of the aperture, determining a first horizontal line, and generating a pitch static attitude reference line corresponding to a pitch static attitude of the first slider based on a least squares approximation using the mid-point of the first slider and the first horizontal line.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: February 24, 2015
    Assignee: Western Digital Technologies, Inc.
    Inventors: Chaiya Thongrattana, Angkhan Thongsuksai, Phatrasiri Rungsang, Panuwat Rodchom, Porntep Prangprasit
  • Publication number: 20150049334
    Abstract: A method of aligning an upper substrate and a lower substrate is provided. The upper and lower substrates are oppositely arranged, and the aligning method includes the following steps: providing an optical image capturing module; emitting light rays to a third surface of a first prism; filtering the light rays, so that the light rays are divided into light rays at the first wavelength range and light rays at the second wavelength range, wherein the light rays at the first wavelength range irradiate a pattern on the upper substrate, and light rays at the second wavelength range irradiate a pattern on the lower substrate; reflecting a pattern image on the upper substrate to an image capturing apparatus; reflecting a pattern image on the lower substrate to the image capturing apparatus; and determining locations of the patterns of the upper and lower substrate that are on the image capturing apparatus.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 19, 2015
    Inventors: SHI-WEI LIN, CHUN-MING YANG, CHIH-CHIN WEN, CHORNG-TYAN LIN
  • Publication number: 20150036137
    Abstract: Alignment of a near field transducer (NFT) optical input coupler and a light emitting device involves providing excitation radiation from an excitation light source through an optical input coupler to the NFT and filtering output radiation from the NFT using a short wavelength pass optical filter. The optical input coupler is scanned through multiple positions while the photoluminescent radiation is detected. A first alignment position between the NFT input coupler and the excitation light source is identified based on the detected photoluminescent radiation. A light emitting device is scanned through multiple positions the light output is detected by a detector. A second alignment position between the light emitting device and the detector is identified. The first and second alignment positions are used to align the light emitting device with the optical input coupler.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Applicant: Seagate Technology LLC
    Inventors: Chubing Peng, Amit Sharma, Kaspar Ko
  • Patent number: 8947665
    Abstract: To perform high-speed and highly accurate measurement by setting desired measuring conditions for each measuring object. In an alignment sensor of exposure apparatus, in the case of performing position measurement for a plurality of sample shots, measurement is performed by changing the measuring conditions, in response to a measuring axis direction, a mark or a layer whereupon a mark to be measured exists. At that time, for the measuring objects to be measured under the same measuring conditions, for example, a position in a Y axis direction and a position in an X axis direction, measurement is continuously performed. When the measuring condition is changed, a baseline value is remeasured. The changeable measuring conditions are wavelength of measuring light, use and selection of a retarder, NA and ? of an optical system, a light quantity of measuring light, illumination shape, signal processing algorithm, etc.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: February 3, 2015
    Assignee: Nikon Corporation
    Inventors: Mitsuru Kobayashi, Masahiko Yasuda
  • Patent number: 8947641
    Abstract: In a lithographic apparatus, a slip of a patterning device relative to a support, the support constructed to support the patterning device, may be provided by measuring a position of the support relative to a first structure of the lithographic apparatus; measuring a position of the patterning device relative to a second structure of the lithographic apparatus; determining a correlation between the position of the patterning device and the position of the support from the measured position of the support, the measured position of the patterning device, and the mutual positions of the first and second structures; and deriving from the correlation a slip of the patterning device relative to the support. The structure may include a projection system to project a radiation beam patterned by the patterning device. The projection system may be connected to a frame, such as a metrology frame of the lithographic apparatus.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: February 3, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Johannes Onvlee, Erik Roelof Loopstra
  • Patent number: 8941833
    Abstract: An optical reader for interrogating an optical analyte sensor includes a housing, comprising in its interior: at least one light source, a detector, and a programmable logic device. The housing has a registration feature configured to align the optical reader with an optical analyte sensor. Methods for confirming alignment of such optical readers are also disclosed.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: January 27, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Kiran S. Kanukurthy, Neal A. Rakow
  • Patent number: 8941832
    Abstract: Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements include at least two measurements with different polarization states of incident light, each measurement including illuminating the measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between the diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 27, 2015
    Assignee: Nova Measuring Instruments, Ltd.
    Inventors: Boaz Brill, Moshe Finarov, David Schiener
  • Patent number: 8928856
    Abstract: An exposure apparatus for forming a predetermined pattern on a substrate by using exposure light, includes a stage apparatus which is movable with respect to an optical axis of the exposure light; a light-transmissive member provided at the stage apparatus, wherein a liquid is supplied on an upper surface of the light-transmissive member; and a measurement device which is settable below the light-transmissive member when measurement using the measurement device is performed. Leakage or entrance of a liquid used for exposure into an optical measurement device such as a wavefront aberration measurement device can be prevented, thereby enabling preferable optical adjustment such as imaging performance or optical characteristics.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: January 6, 2015
    Assignee: Nikon Corporation
    Inventor: Kazuya Ono
  • Publication number: 20150002845
    Abstract: A spectroscopy system for auto-aligning a biopsy collecting device is presented. The spectroscopy system includes an illumination subsystem configured to emit an illumination light towards the biopsy collecting device, whereas the biopsy collecting device includes an activator unit and a needle unit and wherein the needle unit includes a cannula and a stylet having a biopsy specimen. Also, the spectroscopy system includes a fixation subsystem capable of holding the biopsy collecting device and configured to place the needle unit comprising the biopsy specimen across the illumination light. Further, the spectroscopy system includes a detection subsystem configured to receive a light comprising at least one of an attenuated illumination light and a re-emitted light from the needle unit. In addition, the detection subsystem is configured to send a control signal to align the needle unit at a predetermined position in the spectroscopy system based on the received light.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Inventors: Victor Petrovich Ostroverkhov, Dmitry Vladimirovich Dylov, Siavash Yazdanfar, Stephen B. Solomon
  • Patent number: 8922756
    Abstract: A position measurement system includes a first part and a second part for determining a position of a first member relative to a second member by providing a position signal representing a position of the first part relative to the second part, and a computational unit comprising an input terminal for receiving the position signal. The computational unit is configured to, in use, apply a conversion to the position signal to obtain a signal representing a position of the first member relative to the second member; and apply an adjustment to the conversion to at least partly compensate for a drift of the first part or the second part or both. The adjustment is based on a predetermined drift characteristic of the first part or the second part or both respectively. The predetermined drift characteristic includes one or more base shapes of the first part and/or the second part.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: December 30, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Willem Herman Gertruda Anna Koenen, Emiel Jozef Melanie Eussen, Engelbertus Antonius Fransiscus Van Der Pasch, Robbert Edgar Van Leeuwen, Adrianus Hendrik Koevoets
  • Publication number: 20140375993
    Abstract: An alignment device for bicycle handlebars that enables them to be accurately aligned relative to the front wheel. The device may include a unitary body and a laser beam emitter. The laser beam emitted may create a visible point of light wherever the beam makes contact with the front wheel, or the bicycle frame, or another component attached to the bicycle frame. The laser beam can be perpendicular to the handlebars. The laser beam emitter is preferably able to be changed by the user. Using the laser beam, and by adjusting the beam's angle of declination or inclination, the user can preferably make fine adjustments to the alignment of the handlebars, relative to the front wheel, and/or another component that is mounted on the bicycle frame, relative to the bicycle frame.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 25, 2014
    Inventor: Maxwell David Kettle
  • Patent number: 8908181
    Abstract: A device having an overlay mark over a substrate and a method of adjusting multi-layer overlay alignment using the overlay mark for accuracy are disclosed. The overlay mark includes a first feature in a first layer, having a plurality of first alignment segments substantially parallel to each other extending only along an X direction; a second feature in a second layer over the first layer, having a plurality of second alignment segments substantially parallel to each other extending along a Y direction different from the X direction; and a third feature in a third layer over the second layer, having a plurality of third alignment segments substantially parallel to each other extending along the X direction and a plurality of fourth alignment segments substantially parallel to each other extending along the Y direction.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Yu Chen, Ming-Feng Shieh, Ching-Yu Chang
  • Patent number: 8908162
    Abstract: Disclosed is a system for aligning a collimator tube with an alignment ring used to hold a film or sensor aligned with the collimator tube. The disclosed alignment system includes a light source, a light detector, and a reflective surface, where, when the collimator and alignment ring are aligned, light emitted from the light source reflects off the reflective surface and is received by the light detector.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 9, 2014
    Assignee: IDI Dental, Inc.
    Inventors: Michael R. Razzano, Raynold Lee Saar
  • Patent number: 8885164
    Abstract: An exposure method comprises: a first detection step of detecting a position of a first mark by a first scope; a second detection step of detecting a position of a second mark by a second scope having a magnification higher than the first scope; a first calculation step of calculating a first correction value based on the detection results obtained in the first and second detection steps; a third detection step of detecting a position of a third mark by the second scope after the substrate is aligned based on the first correction value calculated in the first calculation step; a second calculation step of calculating a second correction value based on the detection results obtained in the second and third detection steps; and an exposure step of exposing the substrate after the substrate is aligned based on the second correction value calculated in the second calculation step.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: November 11, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Nozomu Hayashi
  • Patent number: 8853087
    Abstract: A target space ratio of a monitor pattern on a substrate for inspection is determined to be different from a ratio of 1:1. A range of space ratios in a library is determined to include the target space ratio and not include a space ratio of 1:1. The monitor pattern is formed on a film to be processed by performing predetermined processes on the substrate for inspection. Sizes of the monitor pattern are measured. The sizes of the monitor pattern are converted into sizes of a pattern of the film to be processed having a space ratio of 1:1, and processing conditions of the predetermined processes are compensated for based on the sizes of the converted pattern of the film to be processed. After that, the predetermined processes are performed on a wafer under the compensated conditions to form a pattern having a space ratio of 1:1 on the film to be processed.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Keisuke Tanaka, Machi Moriya
  • Patent number: 8842269
    Abstract: A beam deflection device including an aluminum disc containing a plurality of lasers, each laser projecting a laser beam substantially along one of the ‘X’, ‘Y’, and ‘Z’ axes of a structural beam to which the device is attached. Wiring is attached to each of the plurality of lasers to provide power and transmit data. Passageways are provided in the solid disc to route the wiring to the exterior. A suction cup on a surface of the device allows it to be attached to the beam by pressing the device against a flat surface area of the beam.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 23, 2014
    Inventor: Nicolai Taylor Blankers
  • Patent number: 8842278
    Abstract: Within area where of four heads installed on a wafer stage, heads included in the first head group and the second head group to which three heads each belong that include one head different from each other face the corresponding areas on a scale plate, the wafer stage is driven based on positional information which is obtained using the first head group, as well as obtain the displacement (displacement of position, rotation, and scaling) between the first and second reference coordinate systems corresponding to the first and second head groups using the positional information obtained using the first and second head groups. By using the results and correcting measurement results obtained using the second head group, the displacement between the first and second reference coordinate systems is calibrated, which allows the measurement errors that come with the displacement between areas on scale plates where each of the four heads face.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: September 23, 2014
    Assignee: Nikon Corporation
    Inventor: Yuichi Shibazaki
  • Patent number: 8836943
    Abstract: An example embodiment relates to an alignment device including an optical aligner system including a plurality of aligners configured to measure a position of a workpiece having a plurality of alignment marks, and an optical member. The optical member is configured to diverge alignment beams reflected from neighboring alignment marks of the plurality of alignment marks and transmit the beams to neighboring aligners of the plurality of aligners respectively if a distance between the neighboring aligners is greater than a distance between the neighboring alignment marks.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung Min Ahn, Sang Don Jang
  • Publication number: 20140233032
    Abstract: A tester including a laser transmitter, a laser receiver, a zero reference plane located between the laser transmitter and the laser receiver, a tower reference plane located between the laser transmitter and the laser receiver, wherein the tower reference plane defines an aperture, and a controller. The controller is configured to measure a pitch static attitude of a head stack assembly by at least determining a zero axis, determining a first horizontal position of the aperture and a second horizontal position of the aperture, determining a mid-point of a first slider of the head stack assembly, determining a first vertical position of the aperture, determining a first horizontal line, and generating a pitch static attitude reference line corresponding to a pitch static attitude of the first slider based on a least squares approximation using the mid-point of the first slider and the first horizontal line.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 21, 2014
    Applicant: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventor: Western Digital Technologies, Inc.
  • Patent number: 8804107
    Abstract: Method for determining wheel alignment of a vehicle, which vehicle comprises at least one wheel axle (12, 13, 14) having an axle end with at least one wheel member (2a-b, 3a-b, 4a-b) at a respective longitudinal side of the vehicle. The method comprises steps for determining the out of square of the wheel axle in relation to the longitudinal geometric centerline of the vehicle. A system for carrying out the method is also described.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 12, 2014
    Assignee: Josam AB
    Inventors: Franco Giacomini, Marco Verveer, Torbjorn Backlund, Hans Karlsson
  • Publication number: 20140204380
    Abstract: In a method for determining alignment between an optical fiber and a converging or diverging lens, light is directed into an optical fiber of an optical connector with a lens element. The lens element has a front surface forming a lens and a back surface defining a recess, the optical fiber is inserted into the recess and points at the lens, to form a light spot on the front surface. An image of the front surface of the lens is captured and a coordinate system is established. Coordinate values of the center of the lens and of the light spot in the coordinate system are measured. The respective coordinate values of the center of the lens and of the center of the light spot are compared for matching or otherwise to determine correct alignment or otherwise.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 24, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHANG-WEI KUO
  • Patent number: 8786856
    Abstract: A method of monitoring combustion properties in an interior of a boiler of the type having walls comprising a plurality of parallel steam tubes separated by a metal membrane. First and second penetrations are provided in the metal membrane between adjacent tubes on opposite sides of the boiler. A beam of light is projected through a pitch optic comprising a pitch collimating lens and a pitch relay lens, both residing outside the boiler interior. The pitch relay lens projects the beam through a penetration into the boiler interior. The beam of light is received with a catch optic substantially identical to the pitch optic residing outside the boiler interior. The strength of the collimated received beam of light is determined. At least one of the pitch collimating lens and the catch collimating lens may then be aligned to maximize the strength of the collimated received beam.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: July 22, 2014
    Assignee: Zolo Technologies, Inc.
    Inventors: Michael John Estes, Andrew D. Sappey, Henrik Hofvander, Allen Molitoris, Bernard Patrick Masterson, Pei Huang
  • Patent number: 8781778
    Abstract: Systems and methods for thermal gradient compensation for ring laser gyroscopes are provided. In one embodiment, a method for producing bias compensated angular rate measurements from a ring laser gyroscope comprises: sampling an angle measurement output from a laser block sensor to obtain an angular rate measurement; obtaining an laser block temperature measurement (Tblock) for the laser block sensor; obtaining a temperature gradient measurement (Tdiff) for at least one gradient line across a portion of the laser block sensor; calculating a rate bias error by applying parameters produced from the temperature measurement (Tblock) and the temperature gradient measurement (Tdiff) to a thermal gradient compensation model, wherein the thermal gradient compensation model includes at least one coefficient corresponding to the temperature gradient measurement (Tdiff); and calculating a difference between the angle rate measurement and the rate bias error to produce a bias compensated angular rate measurement.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 15, 2014
    Assignee: Honeywell International Inc.
    Inventors: Alan Bruce Touchberry, Timothy J. Callaghan, Bruce A. Seiber
  • Patent number: 8773664
    Abstract: A method and system align a laser diode on a first substrate to a waveguide on a second substrate. The first substrate includes an edge and a first surface adjoining the edge. The laser diode has an emission exit on the edge. The second substrate includes a back side and a side edge. The waveguide has a waveguide input on the back side and directs light along the side edge. A first alignment mark set on the first substrate is aligned to a second alignment mark set on the second substrate. The first alignment mark set corresponds to the emission exit, is formed on the first surface and is visible from the edge. The second alignment mark set corresponds to the waveguide input, is formed on the side edge, and is visible from the back side. The first substrate's edge is affixed to the second substrate's back side.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 8, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, William J. Kozlovsky
  • Publication number: 20140185045
    Abstract: Consistent with the present disclosure, an apparatus for producing a control signal for a laser source is provided, comprising an etalon configured to receive light from the laser source and control circuitry that provides the control signal, wherein the control signal is indicative of a comparison of (a) a difference between a forward transmission signal of the etalon and a backward reflection signal of the etalon and (b) the light received by the etalon from the laser source. Alternatively, the control signal is indicative of a comparison of (a) a difference between a forward transmission signal of the etalon and a backward reflection signal of the etalon and (b) a combination of the forward transmission signal of the etalon and the backward reflection signal of the etalon.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Inventors: Xiaofeng Han, Tim Butrie, David Coult
  • Publication number: 20140176945
    Abstract: An exemplary aligning module for aligning a lens with a light-emitting diode (LED) chip includes a controlling module, a first image sensing module and a second image sensing module controlled by the controlling module, and a gripping module controlled also by the controlling module. The controlling module controls the first image sensing module and the second image sensing module to sense the light center of the LED chip and the geometric center of the lens, respectively. The controlling module controls the gripping module to bring the geometry center of lens to be aligned precisely with the light center of the LED chip according to a coordinate of the light center the LED and a coordinate of the geometric center of the lens. The present disclosure also relates to a method for aligning a lens with a light emitting diode chip.
    Type: Application
    Filed: August 27, 2013
    Publication date: June 26, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIH-CHEN LAI
  • Publication number: 20140176944
    Abstract: A physiological monitoring system may determine a probe-off condition. A physiological sensor may be used to emit one or more wavelengths of light. A received light signal may be processed to obtain a light signal corresponding to the emitted light and an ambient signal. The signals may be analyzed to identify similar behavior. The system may determine whether the physiological sensor is properly positioned based on the analysis.
    Type: Application
    Filed: December 22, 2012
    Publication date: June 26, 2014
    Applicant: Covidien LP
    Inventors: Paul Stanley Addison, James Nicholas Watson
  • Publication number: 20140167298
    Abstract: Exemplary embodiments of the invention relate to an alignment apparatus including a source unit providing an electromagnetic signal, a receiving unit detecting the provided electromagnetic signal, and a polarization element positioned between the source unit and the receiving unit and having a transmissive axis fixed in a predetermined direction. A substrate may be positioned between the source unit and the receiving unit, and may be formed with a polarizer including a plurality of metal lines with a minute linear pattern. The luminance or intensity of the electromagnetic signal may be detected by the receiving unit while rotating the substrate.
    Type: Application
    Filed: April 26, 2013
    Publication date: June 19, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Jae Hyuk CHANG, Hi Kuk Lee, Cha-Dong Kim, Sang Hyun Yun, Jung-In Park, Chang Hoon Kim, Kim Beom Lee
  • Patent number: 8735819
    Abstract: The invention relates to a system and method for positioning and passively aligning at least one optical component as close as possible to an electromagnetic radiation detector. This system comprises supporting wedges (37) for Z positioning of the optical component (35) as close as possible to the detector (21) and passive X and Y alignment means via holding wedges and/or holding balls (36), the X, Y and Z axes being axes perpendicular to each other.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: May 27, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Manuel Fendler, Gilles Lasfargues, Francois Marion
  • Patent number: 8709687
    Abstract: A pattern from a patterning device is applied to a substrate by a lithographic apparatus. The applied pattern includes product features and metrology targets. The metrology targets include large targets and small targets which are for measuring overlay. Some of the smaller targets are distributed at locations between the larger targets, while other small targets are placed at the same locations as a large target. By comparing values measured using a small target and large target at the same location, parameter values measured using all the small targets can be corrected for better accuracy. The large targets can be located primarily within scribe lanes while the small targets are distributed within product areas.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 29, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Patrick Warnaar, Kaustuve Bhattacharyya, Hendrik Jan Hidde Smilde, Michael Kubis
  • Patent number: 8705007
    Abstract: For angular resolved spectrometry a radiation beam is used having an illumination profile having four quadrants is used. The first and third quadrants are illuminated whereas the second and fourth quadrants aren't illuminated. The resulting pupil plane is thus also divided into four quadrants with only the zeroth order diffraction pattern appearing in the first and third quadrants and only the first order diffraction pattern appearing in the second and third quadrants.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: April 22, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Hugo Augustinus Joseph Cramer, Antoine Gaston Marie Kiers, Henricus Petrus Maria Pellemans
  • Patent number: 8675175
    Abstract: A lithography apparatus includes a projection system configured to project a radiation beam onto a substrate, a detector configured to inspect the substrate, and a substrate table configured to support the substrate and move the substrate relative to the projection system and the detector. The detector is arranged to inspect a portion of the substrate while the substrate is moved and before the portion is exposed to the radiation beam.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 18, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Richard Alexander George, Cheng-Qun Gui, Pieter Willem Herman De Jager, Robbert Edgar Van Leeuwen, Jacobus Burghoorn
  • Patent number: 8675180
    Abstract: Example embodiments are directed to a maskless exposure device and an alignment method. The alignment method performs an overlay of each layer of a plurality of layers on a substrate using a virtual mask in a maskless exposure technique. The maskless exposure device and the alignment method use a virtual mask instead of a physical mask used in a conventional mask exposure, a virtual target mark instead of an alignment mark used in the conventional mask exposure, and perform an overlay per layer, such that the deposition exposure can be achieved in the maskless exposure.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung Min Ahn, Ho Seok Choi, Sang Don Jang
  • Patent number: 8638438
    Abstract: An alignment feature disposed on a substrate, the alignment feature including a first lithographic pattern having a first aggregate geometric center point defined by a first sub-pattern comprising alignment marks having a first sub-pattern geometric center point arranged a distance (d0) in a first direction from the first aggregate geometric center point, and a second sub-pattern comprising alignment marks having a second sub-pattern geometric center point arranged the distance d0 in a reciprocal direction of the first direction from the first aggregate geometric center point.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Christopher P. Ausschnitt, Nelson Felix
  • Publication number: 20140010500
    Abstract: An optical connector is structured so as to include a fiber connection structure therein. A multi-core fiber is included inside a ferrule, and affixed to the ferrule substrate. One end surface of the multi-core fiber is exposed to an end surface of the ferrule. The other end of the multi-core fiber passes through and is affixed to a capillary. A plurality of optical fiber pass through a capillary that faces the capillary, and are affixed thereto the capillary in the same manner. Seven optical fiber cores of the same diameter are joined in a close-packed arrangement in the fiber connection structure.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Tsunetoshi SAITO, Kengo WATANABE
  • Publication number: 20140002822
    Abstract: A device having an overlay mark over a substrate and a method of adjusting multi-layer overlay alignment using the overlay mark for accuracy are disclosed. The overlay mark includes a first feature in a first layer, having a plurality of first alignment segments substantially parallel to each other extending only along an X direction; a second feature in a second layer over the first layer, having a plurality of second alignment segments substantially parallel to each other extending along a Y direction different from the X direction; and a third feature in a third layer over the second layer, having a plurality of third alignment segments substantially parallel to each other extending along the X direction and a plurality of fourth alignment segments substantially parallel to each other extending along the Y direction.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Yu CHEN, Ming-Feng SHIEH, Ching-Yu CHANG
  • Patent number: 8618510
    Abstract: Devices and methods for screening emissive properties of a cell, such as the resistance to photobleaching or other photophysical property. In one example, a device may include a microfluidic reservoir having at least an input channel for receiving the cell, a main channel fluidly coupled with the input channel, at least a first output channel and a second output channel, the first and second output channels fluidly coupled with the main channel; and a multibeam interrogation section generating a plurality of light beams impinging upon the main channel of the microfluidic reservoir. As a cell passes from the input channel through the main channel of the microfluidic reservoir, the cell is exposed to the plurality of light beams thereby generating emissions that are received by a signal processing section. A cell trapping section selectively diverts the cell to the second output channel if the cell contains desired emissive properties.
    Type: Grant
    Filed: January 28, 2012
    Date of Patent: December 31, 2013
    Assignees: The Regents of the University of Colorado, University of Tennessee Research Foundation, National Institute of Standards and Technology
    Inventors: Amy E. Palmer, Ralph Jimenez, Kevin Dean, Jennifer Lubbeck, Lloyd M. Davis
  • Publication number: 20130342843
    Abstract: In a shadow mask-substrate alignment method, a light source, a beam splitter, a first substrate including a first grate, a second substrate including a second grate, and a light receiver are positioned relative to each other to define a light path that includes light output by the light source being reflected a first time by the beam splitter. The light reflected the first time passes through the first or second grate and is at least partially reflected a second time by the second or first grate back through the first or the second grate, respectively. The light reflected the second time passes at least partially through the beam splitter for receipt by the light receiver. The orientation of the first substrate, the second substrate or both is adjusted to position the first grate, the second grate, or both until a predetermined amount is received by the light receiver.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicant: Advantech Global, LTD
    Inventor: Nobuhiko Tamura
  • Publication number: 20130329217
    Abstract: A system for aligning a bed of an imaging system with an imaging plane. The system includes a laser device which generates a laser beam and a target element having a target detecting surface. The system also includes a reflective element which receives the laser beam. The reflective element includes a reflective detecting surface for detecting a first position of the laser beam. A first parameter of the bed is adjusted until the laser beam is positioned on a first center portion of the reflective detecting surface. In addition, the laser beam is reflected to the target detecting surface to detect a second position of the laser beam. A second parameter of the bed is adjusted until the laser beam is positioned on a second center portion of the target detecting surface to orient the bed substantially perpendicular to the imaging plane.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Shikui Yan, Thomas Bruckbauer, Travis Pless, Robert Scott Beach, Sam Griffin
  • Publication number: 20130321811
    Abstract: A method for measuring a relative position of a first mark and a second mark by using a detection optical system that irradiates a mark formed on the substrate to detect an image of the mark, includes performing a first processing to detect an image of the first mark by using the detection optical system to irradiate the first mark from the first surface side, performing a second processing to detect an image of the second mark by using the detection optical system to irradiate the second mark from the first surface side with light having a wavelength passing through the substrate in a state where the first mark is out of the field of view of the detection optical system, and calculating a relative position of the first mark and the second mark.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 5, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hironori Maeda, Shinichi Egashira
  • Publication number: 20130314708
    Abstract: A method includes directing a beam of radiation along an optical axis toward a workpiece support, measuring a spectrum of the beam at a first time to obtain a first profile, measuring the spectrum of the beam at a second time to obtain a second profile, determining a spectral difference between the two profiles, and adjusting a position of the workpiece support along the optical axis based on the difference. A different aspect involves an apparatus having a workpiece support, beam directing structure that directs a beam of radiation along an optical axis toward the workpiece support, spectrum measuring structure that measures a spectrum of the beam at first and second times to obtain respective first and second profiles, processing structure that determines a difference between the two profiles, and support adjusting structure that adjusts a position of the workpiece support along the optical axis based on the difference.
    Type: Application
    Filed: August 12, 2013
    Publication date: November 28, 2013
    Inventors: Chang-Tsun Hsieh, Fu-Jye Liang, Tzung-Chi Fu, Li-Jui Chen, Chih-Ming Ke
  • Publication number: 20130301049
    Abstract: A system for detecting misalignment of an aero surface relative to other aero surfaces during simultaneous deployment of said aero surfaces is disclosed. It comprises a generator configured to shine a laser through aligned apertures in a series of aero surfaces towards a reflector during deployment of said aero surfaces, a receptor to detect reflection of said laser from said reflector back through said apertures to the generator and, a controller operable to terminate further deployment of said aero surfaces in the event that no reflection is detected by said receptor, or if an actual time taken for the reflected beam of light to be detected by the receptor differs from a predetermined time. In a preferred embodiment the aero sufaces are slats extending from the leading edge of an aircraft wing.
    Type: Application
    Filed: December 19, 2011
    Publication date: November 14, 2013
    Applicant: AIRBUS OPERATIONS LIMITED
    Inventor: Phillip Vincent Teague
  • Publication number: 20130273672
    Abstract: Embodiments of the present disclosure describe semiconductor substrate techniques and configurations for an optical receiver. In one embodiment, a system includes a semiconductor substrate having one or more optical alignment features formed in a surface of the semiconductor substrate and an optical receiver assembly coupled with the semiconductor substrate, the optical receiver assembly including a photodetector device coupled with the surface of the semiconductor substrate, wherein the one or more optical alignment features facilitate precise optical alignment between a lens assembly and the photodetector device when the lens assembly is coupled with the semiconductor substrate using the one or more optical alignment features. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 8, 2011
    Publication date: October 17, 2013
    Inventors: John Heck, Ansheng Liu, Brian H. Kim
  • Publication number: 20130258338
    Abstract: A sensor device according to the invention includes a transmission type sensor pair that includes a light emitting unit and a light receiving unit, an optical axis alignment mechanism that aligns optical axes of the light emitting unit and the light receiving unit, and a fixing frame that is adjusted by the optical axis alignment mechanism, and in which the sensor pairs are fixed in a state in which the optical axes of the light emitting unit and the light receiving unit are aligned.
    Type: Application
    Filed: February 22, 2013
    Publication date: October 3, 2013
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Naoyuki FUJIMORI, Kenji Yanagishita
  • Publication number: 20130250298
    Abstract: An apparatus relating to the manufacture of stacked semiconductor devices includes, for example, a first holding section configured to hold a first semiconductor device and a second holding section configured to hold a second semiconductor device. Additionally, a measuring section including an imaging device for acquiring images of the first and second semiconductor devices and a control section configured to control the holding sections to correct misalignment between the semiconductor devices. The control section is further configured to determine misalignment using the images of the first and second semiconductor devices when the images include a first alignment mark disposed proximate to an edge of the first semiconductor device and a second alignment mark disposed proximate to an edge of the second semiconductor device.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 26, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Naoyuki KOMUTA, Masatoshi Fukuda
  • Patent number: 8542358
    Abstract: An optical calibration and testing device for machine tools includes a light source unit, a beam splitter, and at least one photo detector. The light source emits a laser light hitting the beam splitter and is split into two beams. One is perpendicular to the foundation of the light source unit, and the other is parallel with the foundation so as to test straightness, inclination angle, verticalness, vertical column inclination, vertical column parallelism and guide bar inclination of a machine tool. If there is no tested error, the position of the testing light spot coincides with that of the initial light spot. If there is an error, the position of testing light spot varies according to the error.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 24, 2013
    Assignee: National Formosa University
    Inventors: Wen-Yuh Jywe, Chia-Hung Wu, I-Ching Chen, Tung-Hui Hsu, Ren-Chieh Fung, Teng-Yu Yang
  • Publication number: 20130242305
    Abstract: An exclusion region of interest imaging overlay target includes a self-symmetric target structure including two or more pattern elements, and an additional target structure including two or more pattern elements, wherein each of pattern elements of the additional target structure is contained within a boundary defined by one of the pattern elements of the self-symmetric target structure, wherein the self-symmetric target structure is characterized by a composite exterior region of interest, wherein the composite exterior region of interest is formed by removing two or more exclusion zones corresponding with the pattern elements of the additional target structure from an exterior region of interest encompassing the self-symmetric target structure, wherein each of the pattern elements of the additional target structure is characterized by an interior region of interest, wherein the self-symmetric target structure and the additional target structure are configured to have a common center of symmetry upon alignme
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventor: Guy Cohen
  • Patent number: 8535821
    Abstract: A leak detection sensor for detecting a leakage of an electrolyte solution in a flow battery system is provided. The sensor includes a sensor housing, the sensor housing being at least partially surrounded by a fluid and having mounted therein at least one light source.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: September 17, 2013
    Assignee: Deeya Energy, Inc.
    Inventors: Gopalakrishnan R. Parakulam, Saroj Kumar Sahu, Rick Winter
  • Patent number: 8531666
    Abstract: A method for positioning a viewing center of a parallax barrier mainly includes: disposing multiple alignment markers respectively at appropriate places of the parallax barrier and a flat panel display, and performing position measurement and alignment of the multiple alignment markers, so as to achieve a purpose of setting a viewing center at a specific and appropriate position.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: September 10, 2013
    Assignee: Unique Instruments Co. Ltd
    Inventor: Ming-Yen Lin