Phase Locking Patents (Class 375/373)
  • Patent number: 8514997
    Abstract: Methods and systems for a receiver with undersampling mixing using multiple clock phases are disclosed and may include undersampling a received wireless signal utilizing multiple undersamplers and clocking each of the undersamplers with a separate clock signal. Each of the clock signals may be at a sampling frequency but with a different phase angle. The difference of the phase angle between each of the clock signals may be adjusted and may be determined by the number of undersamplers. A gain ratio may be configured for two signals summed to generate each of the clock signals for the phase angle adjusting. The two signals may include in-phase and quadrature signals. Each of the summed signals may be normalized utilizing limiters. The sampling frequency may be an integer sub-harmonic of the received signal. The undersamplers may include track and hold or sample and hold circuits.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: August 20, 2013
    Assignee: Broadcom Corporation
    Inventors: Ahmadreza Rofougaran, Maryam Rofougaran
  • Patent number: 8514920
    Abstract: Methods and apparatus are provided for pseudo asynchronous testing of receive paths in serializer/deserializer (SerDes) devices. A SerDes device is tested by applying a source of serial data to a receive path of the SerDes device during a test mode. The receive path substantially aligns to incoming data using a bit clock. A phase is adjusted during the test mode of the bit clock relative to the source of serial data to evaluate the SerDes device. The source of serial data may be, for example, a reference clock used by a phase locked loop to generate the bit clock. The phase of the bit clock can be directly controlled during the test mode, for example, by a test phase control signal, such as a plurality of interpolation codes that are applied to an interpolator that alters a phase of the bit clock.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 20, 2013
    Assignee: LSI Corporation
    Inventors: Christopher J. Abel, Parag Parikh, Vladimir Sindalovsky
  • Patent number: 8509373
    Abstract: An apparatus and method for generating a small-size spread spectrum clock signal that can include generating a reference clock signal by dividing an external clock signal, detecting frequency and phase differences between a reference clock signal and a comparison clock signal as error signals, modulating a controlled voltage corresponding to the current in accordance with a modulation control signal, outputting an oscillation clock signal having a frequency oscillated according to the modulated controlled voltage as a spectrum-spread version of the external clock signal, and generating the comparison clock signal by dividing the oscillation clock signal, and then compensating for the modulation of the controlled voltage in accordance with a demodulation magnitude that is generated for use in compensating for the modulation magnitude.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 13, 2013
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Ha-Jun Jeon, Sang-Seob Kim
  • Patent number: 8509371
    Abstract: A continuous-rate clock and data recovery circuit includes a delay locked loop with a first integrator and a phase locked loop with a separate integrator. The delay locked loop and the phase locked loop are in a dual loop architecture. The first integrator is a digital accumulator that wraps upon exceeding a maximum or minimum value. The second integrator is a digital accumulator that saturates at its maximum or minimum value.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 13, 2013
    Assignee: Analog Devices, Inc.
    Inventor: John G. Kenney
  • Patent number: 8509370
    Abstract: A phase locked loop device includes a phase detector that measures a difference in phase between a reference clock signal and an output clock signal provided to a device module. The phase detector provides a pulse having a width indicative of the phase difference. If the phase difference exceeds one of a plurality of threshold values, an indicator can be asserted. Based on the indicator, a control module can take remedial action, such as providing a different clock signal to the device module or triggering an interrupt at a processor device.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: August 13, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gayathri A. Bhagavatheeswaran, Joseph P. Gergen, Arvind Raman, Hector Sanchez
  • Patent number: 8503501
    Abstract: A spread spectrum clock generation circuit and a controlling method thereof are disclosed, which provide clocks having less jitter and ideal spread spectrum and enable a reduction in circuit scale and in power consumption. To this end, a current control type modulator 19a is equipped with a current source Ia (current 4i). A charger unit CGa and a discharger unit DGa are designed such that currents i, 2i and 4i are allowed to flow, for example, by properly setting the sizes of transistors. Modulation cycles CIa to CIIIa are repeated and an output code is generated from a switching control circuit 20a according to each modulation cycle. A switching unit SSa is controlled according to the output code, thereby charging or discharging a capacitor element C1 with a charge/discharge current CDI corresponding to the output code. Hence, charge amounts and discharge amounts for all the modulation cycles CIa to CIIIa have the same value, i.e., 6i [A·clock].
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: August 6, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Syuichi Saito, Koji Okada
  • Patent number: 8494105
    Abstract: An apparatus provides a digital representation of a time difference between a periodic reference signal having a reference signal period and a periodic input signal having an input signal period. The apparatus includes a free-running finite state machine (FSM) that traverses a multiplicity of states in a predetermined order, the state having corresponding state vectors, each of which is held for a state dwell time. A timing circuit receives the reference signal, the input signal and the FSM state vectors, and determines a state transition count equal to a number of FSM state transitions that occur during a counting interval, which corresponds to the time difference between the reference and input signals. A digital low-pass filter receives the state transition counts and provides an output value including weighted sums of the state transition counts, proportional to the time difference between the reference and input signal. A period of the FSM is independent of the reference signal period.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: July 23, 2013
    Assignee: Agilent Technologies, Inc.
    Inventor: Jeffery Patterson
  • Patent number: 8494034
    Abstract: A communication device includes: a reception unit that receives a signal transmitted from another communication device via a transmission path; a transmission unit that transmits a signal to the another communication device via the transmission path; an error rate measurement unit that measures an error rate representing a probability of occurrence of errors in a signal received by the reception unit in a case where a bi-directional communication with the another communication device is performed; and a phase adjustment unit that adjusts a phase of a signal transmitted from the transmission unit to the another communication device based on an error rate measured by the error rate measurement unit.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: July 23, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Yasuaki Konishi
  • Patent number: 8494092
    Abstract: In described embodiments, a receiver includes a clock and data recovery (CDR) module with a voltage control oscillator (VCO) and a Sigma-Delta modulator in an integral loop control of the VCO. Providing finer resolution by the Sigma-Delta modulator reduces quantization noise in the integral control loop when compared to a loop without a Sigma-Delta modulator in the integral loop. Sigma-Delta modulation within the integral loop control of a VCO-based CDR reduces effective quantization of the VCO integral word control, allowing the proportional loop control compensation to i) reduce effective quantization of the VCO integral word control and, ii) enhance receiver jitter tolerance in presence of periodic-jitter, serial data whose frequency is offset from the nominal rate and serial data whose nominal frequency is modulated by a spread spectrum clock.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 23, 2013
    Assignee: LSI Corporation
    Inventors: Vladimir Sindalovsky, Lane Smith, Shawn Logan
  • Patent number: 8487671
    Abstract: A delay circuit generates an internal clock signal or a second clock signal by delaying an external clock signal. A detection-potential generation circuit included in a phase-difference determination circuit generates a detection potential corresponding to a difference between a timing of an active edge of an internal clock signal or a third clock signal and a timing of the target external clock signal in a first node. A reference-potential generation circuit included in the phase-difference determination circuit generates a reference potential in a second node. A phase control circuit delays the second clock signal according to the detection potential. At this time, when the detection potential is higher than the reference potential, an adjustment amount of the second clock signal per adjustment changes.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 16, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Kazutaka Miyano
  • Patent number: 8488707
    Abstract: The present invention relates to a multi-antenna subsystem for a SDR (software defined radio) capable of supporting a multi-antenna technique to an antenna system using a multi-antenna subsystem. The multi-antenna subsystem of a multi-antenna system includes an algorithm executing unit for carrying out an algorithm for a multi-antenna technique to be required in the multi-antenna system, a frame synchronization unit for a synchronization acquisition, and a control unit for controlling the algorithm executing unit and the frame synchronization. The algorithm executing unit has a plurality of functional blocks and the functional block has state information, which can be referred by other functional blocks, for supporting SDR system.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: July 16, 2013
    Assignee: Intellectual Discovery Co., Ltd.
    Inventors: Seung-Heon Hyeon, June Kim, Seung-Won Choi
  • Patent number: 8482332
    Abstract: An embodiment is an integrated circuit. The integrated circuit comprises a clock generator and data transmission lines. The clock generator generates clock signals. At least some of the clock signals have a phase difference from an input clock signal input into the clock generator, and at least some of the clock signals have a different phase difference with respect to at least another of the clock signals. Each of the data transmission lines is triggered at least in part by at least one of the clock signals.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: July 9, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chow Peng, Min-Shueh Yuan, Chih-Hsien Chang
  • Patent number: 8477877
    Abstract: The carrier phase of a carrier wave modulated with information symbols is recovered with a multi-stage, feed-forward carrier phase recovery method. A series of digital signals corresponding to the information signals is received. For each digital signal, a coarse phase recovery is performed to determine a first phase angle which provides a first best estimate of the information symbol corresponding to the digital signal. Using the first best estimate as input, a second stage of estimation is then performed to determine a second phase angle which provides an improved (second) best estimate of the information symbol. Additional stages of estimation can be performed. The multi-stage, feed-forward carrier phase recovery method retains the same linewidth tolerance as a single-stage full blind phase search method; however, the required computational power is substantially reduced. The multi-stage, feed-forward carrier phase recovery method is highly efficient for M-QAM optical signals.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 2, 2013
    Assignee: AT&T Intellectual Property I, L.P.
    Inventor: Xiang Zhou
  • Patent number: 8477873
    Abstract: A frequency signal generator includes a controller for generating a frequency generation signal, a reference frequency signal generator for generating a first frequency signal and generate a second frequency signal by dividing a first frequency signal from the controller, an assistance frequency signal generator adapted to generate a third, fourth, and fifth frequency signals and to output a sixth frequency signal in response to an assistance frequency select signal, a mixer for selecting a sign of the sixth frequency signal in response to a sign select signal and generating a seventh frequency signal and a eighth frequency signal by mixing the sixth frequency signal of the selected sign and the first frequency signal, a switch adapted to output the seventh or eighth frequency signal in response to a dividing select signal, and a first divider outputting a ninth frequency signal by dividing the eighth frequency signal from the switch.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: SangSoo Ko, Sunggi Yang
  • Patent number: 8477898
    Abstract: One embodiment of the present invention provides a phase-locked loop (PLL) for synthesizing a fractional frequency. The PLL can include a 1/N frequency divider, a voltage-controlled oscillator (VCO), a programmable phase mixer, and a phase detector. The programmable phase mixer can be coupled between an output of the VCO and an input of the frequency divider, wherein the programmable phase mixer is configured to receive the output clock signal from the VCO and generate a first clock signal of frequency f1 by varying a phase of the output clock signal. The frequency divider is configured to receive the first clock signal from the programmable phase mixer and generate a second clock signal of frequency f2=f1/N. The phase detector can receive a reference clock signal and the second clock signal as inputs, and the phase detector's output can be used to generate the control voltage for the VCO.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 2, 2013
    Assignee: Synopsys, Inc.
    Inventors: James P. Flynn, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin, Dino A. Toffolon, Jasjeet Singh
  • Patent number: 8477896
    Abstract: A clock-data recovery doubler circuit for digitally encoded communications signals is provided. A window comparator includes two thresholds. A clock output is created by the window comparator and also used internally as feedback. Based on the clock output, the window comparator circuit collapses the thresholds while sampling input Bipolar return to zero data.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: July 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Santoshkumar Jinagar, Animesh Khare, Ravi Lakshmipathy, Narendra K. Rane, Umesh Shukla, Pradeep K. Vanama
  • Patent number: 8472580
    Abstract: A clock and data recovery circuit injects a noise waveform into the control loop to offset the data sampling point artificially in order to induce errors. The amplitude of the injected waveform can be varied to ascertain the effect on the bit error rate (BER) so as to be able to evaluate the temporal noise margin.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Jonathan Paul Milton, Richard Simpson, Eugenia Carr Cordero Crespo
  • Patent number: 8472552
    Abstract: A digital linear transmitter for digital to analog conversion of a radio frequency signal. The transmitter includes a delta sigma (??) digital to analog converter (DAC) and a weighted signal digital to analog converter in the transmit path of a wireless device to reduce reliance on relatively large analog components. The ?? DAC converts the lowest significant bits of the oversampled signal while the weighted signal digital to analog converter converts the highest significant bits of the oversampled signal. The transmitter core includes components for providing an oversampled modulated digital signal which is then subjected to first order filtering of the oversampled signal prior to generating a corresponding analog signal. The apparatus and method reduces analog components and increases digital components in transmitter core architecture of wireless RF devices.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 25, 2013
    Assignee: Icera, Inc.
    Inventors: Tajinder Manku, Abdellatif Bellaouar
  • Patent number: 8467490
    Abstract: A communication system includes: a transmitter adapted to transmit a synchronizing clock and serial data synchronous with the synchronizing clock over a line at low amplitude; and a receiver adapted to receive the serial data and synchronizing clock from the transmitter. The receiver includes an amplifier adapted to amplify the received synchronizing clock of low amplitude to restore the clock to its original amplitude, a latched comparator adapted to latch the received serial data in synchronism with a reproduction clock, and a phase-locked circuit.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: June 18, 2013
    Assignee: Sony Corporation
    Inventors: Takaaki Yamada, Hiroki Kihara, Tatsuya Sugioka, Hisashi Owa, Taichi Niki, Yukio Shimomura
  • Patent number: 8461888
    Abstract: A phase-locked loop for generating an output signal that has a predetermined frequency relationship with a reference signal, the phase-locked loop comprising a signal generator arranged to generate the output signal, a charge pump arranged to generate current pulses for controlling the signal generator, two control units for controlling a duration of the current pulses generated by the charge pump and a selection unit arranged to select either the first control unit or the second control unit to control the charge pump, wherein a first one of the control units is arranged to continuously monitor a phase-difference between the reference signal and a feedback signal formed from the output signal and to, when selected by the selection unit, control the charge pump to output a current pulse having a duration that is dependent on that phase-difference and a second one of the control units is arranged to, when selected by the selection unit, control the charge pump to output a current pulse of predetermined duratio
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: June 11, 2013
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Pasquale Lamanna, Nicolas Sornin
  • Patent number: 8451887
    Abstract: A multi-channel regulator system includes serially connected PWM integrated circuits, each of which determines a PWM signal for a respective channel to operate therewith, and individually controls its operation mode according to whether or not an external clock is detected. Therefore, each channel will not be limited to operate under a constant mode and could become a master channel or a slave channel. Additionally, each of the PWM integrated circuits generates a phase shifted synchronous clock for its next channel during it is enabled, and thus all the channels operate in a synchronous but phase interleaving manner.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 28, 2013
    Assignee: Richtek Technology Corp.
    Inventors: An-Tung Chen, Shao-Hung Lu, Isaac Y. Chen
  • Patent number: 8451971
    Abstract: A clock generation circuit is provided and includes a phase locked loop (PLL) and a calibrator. The PLL is arranged to receive a first clock signal and generate the output clock signal. The PLL adjusts the frequency of the output clock signal according to a control signal. The calibrator is arranged to receive the output clock signal and a second clock signal, execute a frequency calibration between the output clock signal and the second clock signal, and generate the control signal according to results of the frequency calibration.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: May 28, 2013
    Assignee: Mediatek Inc.
    Inventors: Kuan-Hua Chao, Shiue-Shin Liu, Jeng-Horng Tsai, Chih-Ching Chen, Chuan Liu, Tse-Hsiang Hsu
  • Patent number: 8451970
    Abstract: The present disclosure provides a variable delay circuit comprising a delay circuit that includes a first delay unit and a second delay unit and delays an input signal to generate an output signal; a selection signal generation unit that detects a delay value of the delay circuit and generates a selection signal to select a delay unit for delaying the input signal from the first delay unit and the second delay unit; a first control unit that controls a delay value of the delay unit selected by the selection signal in response to a delay increase/decrease signal; and a second control unit that controls a delay value of the delay unit which is not selected by the selection signal.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 28, 2013
    Assignee: Korea University Research and Business Foundation
    Inventors: Chul Woo Kim, Young Ho Kwak
  • Patent number: 8451968
    Abstract: A phase-coupled clock signal generator comprises a start-stop oscillator (1) to which a control signal is applied. The clock frequency is dependent on an adjusting value (F). For adjusting and monitoring the clock frequency, the clock signal generator is provided with a counter (2). This counter counts the number of received clock pulses during a predetermined period and generates a corresponding counting value (C). A control circuit (3) compares the counting value (C) with a reference value and adapts the adjusting value (F). Such a clock signal generator is suitable for On Screen Display applications in a television receiver.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: May 28, 2013
    Assignee: Entropic Communications, Inc.
    Inventor: Josephus A. A. Den Ouden
  • Patent number: 8447003
    Abstract: A source device counts a clock CLKpixel for pixel data using a transmitting counter, adds a counted value Csource(t) of the transmitting counter at a timing of transmitting a video packet Pvideo to the sink device to a header part of the video packet Pvideo as a time stamp value Csource(t), and transmits the video packet Pvideo to the sink device. The sink device receives the video packet Pvideo, extracts the time stamp value Csource(t) from the header part of the video packet Pvideo, generates a fixed reference clock CLKref based on the counted value Csource(t) of the transmitting counter using a first PLL, circuit, and generates the clock CLKpixel for the pixel data of the source device based on the reference clock CLKref using a second PLL circuit.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: May 21, 2013
    Assignee: Panasonic Corporation
    Inventors: Akihiro Tatsuta, Makoto Funabiki, Hiroshi Ohue
  • Patent number: 8437441
    Abstract: A phase locked loop includes a voltage controlled oscillator operable to generate an output signal corresponding to a reference signal in response to a control voltage signal outputted by a filter in response to a current signal, and a variable frequency divider operable to perform frequency division on the output signal using a variable divisor so as to generate a divided feedback signal. A charge pump outputs the current signal in response to a phase detecting output from a phase/frequency detector indicating phases of the divided feedback signal and the reference signal. A phase error comparator outputs, in accordance with the phase detecting output, a digital output indicating whether the divided feedback signal lags or leads the reference signal and further indicating a phase difference between the divided feedback signal and the reference signal.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: May 7, 2013
    Assignee: National Taiwan University
    Inventors: Tsung-Hsien Lin, Wei-Hao Chiu, Yu-Hsiang Huang
  • Patent number: 8437442
    Abstract: A method and apparatus for generating a carrier frequency signal is disclosed. The method includes generating a first frequency signal; injecting a modulation signal at a first point of the two-point modulation architecture; generating a second frequency signal from the modulation signal; introducing the second frequency signal by mixing the first frequency signal and the second frequency signal to generate a mixed frequency signal and outputting the carrier frequency signal selected from the mixed frequency signal.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 7, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Christian Grewing, Anders Jakobsson, Ola Pettersson, Anders Emericks, Bingxin Li
  • Patent number: 8433024
    Abstract: A spread spectrum clock generator includes a triangular modulator, a delta sigma modulator, a frequency divider, and a phase lock loop. The triangular modulator generates a digital modulation signal, representing a decimal, according to a digital parallel signal, in which the spread amount is in proportion to the digital parallel signal. The delta sigma modulator, electrically connected to the triangular modulator, generates a divider divisor, including the decimal and an integer, according to the digital modulation signal. The frequency divider divides the frequency of the output signal clock according to the divider divisor to generate a divided clock signal, in which the frequency of the divided clock signal is substantially equal to a quotient result from dividing the frequency of the output clock signal with the divider divisor. The phase lock loop adjusts the frequency of the output clock signal according to the divided clock signal and a reference clock signal.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: April 30, 2013
    Assignee: National Taiwan University
    Inventors: Chia-Tseng Chiang, Hen-Wai Tsao
  • Patent number: 8433020
    Abstract: A high-speed serial data transceiver includes multiple receivers and transmitters for receiving and transmitting multiple analog, serial data signals at multi-gigabit-per-second data rates. Each receiver includes a timing recovery system for tracking a phase and a frequency of the serial data signal associated with the receiver. The timing recovery system includes a phase interpolator responsive to phase control signals and a set of reference signals having different predetermined phases. The phase interpolator derives a sampling signal, having an interpolated phase, to sample the serial data signal. The timing recovery system in each receiver independently phase-aligns and frequency synchronizes the sampling signal to the serial data signal associated with the receiver. A receiver can include multiple paths for sampling a received, serial data signal in accordance with multiple time-staggered sampling signals, each having an interpolated phase.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 30, 2013
    Assignee: Broadcom Corporation
    Inventors: Aaron W. Buchwald, Michael Le, Josephus Van Engelen, Xicheng Jiang, Hui Wang, Howard A. Baumer, Avanindra Madisetti
  • Patent number: 8433025
    Abstract: A digital PLL (DPLL) includes a time-to-digital converter (TDC) and a control unit. The TDC is periodically enabled for a short duration to quantize phase information and disabled for the remaining time to reduce power consumption. The TDC receives a first clock signal and a first reference signal and provides a TDC output indicative of the phase difference between the first clock signal and the first reference signal. The control unit generates an enable signal based on a main reference signal and enables and disables the TDC with the enable signal. In one design, the control unit delays the main reference signal to obtain the first reference signal and a second reference signal, generates the enable signal based on the main reference signal and the second reference signal, and gates a main clock signal with the enable signal to obtain the first clock signal for the TDC.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: April 30, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Bo Sun, Gurkanwal Singh Sahota, Zixiang Yang
  • Patent number: 8432957
    Abstract: The present invention provides a novel symbol timing recovery method for VSB receivers. Systems are described that comprise a timing error detector (TED) that produces an exact symbol timing error even in the presence residual carrier phase offset, loop filter that controls the characteristics of acquisition and tracking of digital PLL loop, Voltage/Numerically Controlled Oscillator (VCO/NCO) that adjusts the sampling instant and phase, A/D converter that samples a continuous VSB input signal, and a interpolating squared root raised cosine filter that performs both matched filtering and a compensation of constant timing offset of quarter symbol caused by the invented TED. The timing error detector in this invention comprises an envelope detector, band pass filter, squaring block, high pass filter, and decimator.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: April 30, 2013
    Assignee: Techwell, Inc.
    Inventor: Joon Tae Kim
  • Patent number: 8433026
    Abstract: A Digital Phase-Locked Loop (DPLL) involves a Time-to-Digital Converter (TDC) that receives a Digitally Controlled Oscillator (DCO) output signal and a reference clock and outputs a first stream of digital values. The TDC is clocked at a high rate. Downsampling circuitry converts the first stream into a second stream. The second stream is supplied to a phase detecting summer of the DPLL such that a control portion of the DPLL can switch at a lower rate to reduce power consumption. The DPLL is therefore referred to as a multi-rate DPLL. A third stream of digital tuning words output by the control portion is upsampled before being supplied to the DCO so that the DCO can be clocked at the higher rate. In a receiver application, no upsampling is performed and the DCO is clocked at the lower rate.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: April 30, 2013
    Assignee: Qualcomm Incorporated
    Inventors: Gary John Ballantyne, Jifeng Geng, Daniel F. Filipovic
  • Patent number: 8428213
    Abstract: A digital waveform synthesizer (1) is implemented as a single chip integrated circuit on a single chip (2) and comprises a direct digital synthesizer (10) which produces a synthesized output signal waveform on an output terminal (4) which is substantially phase and frequency locked to the phase and frequency of an externally generated input signal applied to an input terminal (5).
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 23, 2013
    Assignee: Analog Devices, Inc.
    Inventor: Hans Juergen Tucholski
  • Patent number: 8428207
    Abstract: A system and method are provided for determining a time for safely sampling a signal of a clock domain. In one embodiment, a frequency estimate of a first clock domain is calculated utilizing a frequency estimator. Additionally, a time during which a signal from the first clock domain is unchanging is determined such that the signal is capable of being safely sampled by a second clock domain, using the frequency estimate. In another embodiment, a frequency estimate of a first clock domain is calculated utilizing a frequency estimator. Further, a phase estimate of the first clock domain is calculated based on the frequency estimate, utilizing a phase estimator. Moreover, a time during which a signal from the first clock domain is unchanging is determined such that the signal is capable of being safely sampled by a second clock domain, using the phase estimate.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 23, 2013
    Assignee: NVIDIA Corporation
    Inventors: William Dally, Stephen G. Tell
  • Patent number: 8416907
    Abstract: Methods and apparatus are provided for improving the performance of second order CDR systems. The integral state of the CDR system is initialized to a value that is based on an expected frequency profile that may be known a priori for certain applications. One or more quality of lock (QOL) metrics are also monitored that are derived from the integral register state value. A quality of a locking between a received signal and a local clock generated by a Clock and Data Recovery (CDR) system is evaluated by monitoring a state value of an integral register in a digital loop filter of the CDR system; evaluating one or more predefined criteria based on the integral register state value; and identifying a poor lock condition if the one or more predefined criteria are not satisfied.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: April 9, 2013
    Assignee: Agere Systems LLC
    Inventors: Pervez M. Aziz, Gregory W. Sheets, Vladimir Sindalovsky
  • Patent number: 8411810
    Abstract: A circuit with adaptive synchronization and a method thereof is provided. The synchronous receiving circuit adaptively adjusts the timing of a clock signal generated therein for receiving data without accompanying a clock signal for synchronization. The synchronous receiving circuit includes a clock generator, an edge detector, a synchronization unit and a latch. The clock generator generates a first clock signal according to an input data signal. The edge detector detects edges to generate an indication signal. The synchronization unit is coupled to the clock generator and the edge detector, and adaptively adjusts the first clock signal according to the indication signal. The latch latches the input data signal according to the adjusted first clock signal.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: April 2, 2013
    Assignee: MStar Semiconductor, Inc.
    Inventor: Meng Che Tsai
  • Patent number: 8406366
    Abstract: Disclosed herein is a synchronization circuit including: a first phase-locked loop circuit; a second phase-locked loop circuit; a first output circuit; a second output circuit; a first detection circuit; a second detection circuit; and a control circuit.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Sony Corporation
    Inventors: Masayuki Hattori, Tetsuhiro Futami, Yuichi Hirayama, Keita Izumi
  • Patent number: 8406362
    Abstract: A communication device includes a current information storage unit 130 that stores the bit boundary signal at each of timings at which a sampling clock is updated, a past information storage unit 140 that takes in and stores a signal stored in the current information storage unit 130 when a variation point of a reception signal is detected, and does not update a signal stored therein when no variation point of the reception signal is detected, and a clock selection unit 44 that selects CLKSEL2 used for the sampling of the reception signal from N-phase clocks based on a signal stored in the current information storage unit 130 when a variation point of the reception signal is detected, and selects CLKSEL3 based on a signal stored in the past information storage unit 140 when no variation point of the reception signal is detected.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Shinya Konishi, Norio Arai, Osamu Ohnishi
  • Patent number: 8406364
    Abstract: In the following B cycles, the second frequency-divided signal fA is maintained at a low level, while the third frequency-divided signal fB is maintained at a high level. The three-modulus prescaler 13 has a frequency division value (M?1) if the pseudo random values are negative values, and a frequency division value (M+1) if the pseudo random values are positive values, in accordance with the signs of the pseudo random values outputted from the ?? modulator 8. After that, the frequency division value becomes M. A frequency division value of (MN+A+Bx) including the pseudo random value Bx is obtained in the comparison frequency divider 4. A fractional frequency division operation can be realized through ?? modulation by using the pseudo random numbers including negative values, as they are.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: March 26, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Morihito Hasegawa
  • Publication number: 20130070882
    Abstract: In one embodiment, a method includes adjusting a first frequency of a first clock signal based on a frequency difference between the first frequency and a reference clock signal frequency of a reference clock signal, and further adjusting the first frequency and a first phase of the first clock signal based on a phase difference between the first clock signal and an input data bit stream and the frequency difference between the first frequency and the reference clock signal frequency to substantially lock the first frequency and the first phase of the first clock signal to the input data bit frequency and input data bit phase of the input data bit stream.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: FUJITSU LIMITED
    Inventor: Nikola Nedovic
  • Patent number: 8401120
    Abstract: A symbol error detector can be configured to detect symbol errors of a Bluetooth enhanced data rate (EDR) packet without relying solely on a CRC error detection mechanism. After a phase of a current symbol is demodulated to determine a demodulated current symbol, the phase of the demodulated current symbol can be subtracted from the phase of the current symbol prior to demodulation to yield a phase error. The phase error can be compared against a phase error threshold to determine a potential unreliability of the demodulated current symbol. The phase error being greater than the phase error threshold can indicate that the demodulated current symbol may be unreliable. Accordingly, a symbol error notification can be generated to indicate that the demodulated current symbol may be unreliable.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: March 19, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Soner Ozgur
  • Patent number: 8401121
    Abstract: A symbol error detector can be configured to detect symbol errors of GFSK modulated portions of a Bluetooth packet without relying solely on a CRC error detection mechanism. The symbol error detector can operate on frequency error signals that are a difference between a frequency associated with a current symbol and predetermined frequency outputs from a bank of filters matched to a frequency response of the Bluetooth receiver for predefined combinations of three consecutive symbols (i.e., an estimated previously decoded symbol, an estimated current symbol, and an estimated subsequent symbol). The frequency error signals can be compared against a threshold and against each other to determine a potential unreliability in decoding the current symbol and to determine whether to generate a symbol error notification. The frequency error signals being within a threshold of each other can indicate potential unreliability in decoding the current symbol.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: March 19, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Soner Ozgur
  • Patent number: 8396176
    Abstract: An OFDM receiving device for settling a problem of complicated configuration is provided, in that the OFDM receiving device receives an OFDM signal where no smaller than one specific sub-carriers among plurality of sub-carriers are modulated by a known modulation signal sk(t), and includes a converting means for converting the received OFDM signal into the received signals for each sub-carrier, an extracting means for extracting the ingredient caused by a frequency drift and a phase noise based on received signal rk(t) of the specific sub-carrier and the known modulation signal sk(t), and a compensating means for H) compensating the received signal of the sub-carrier using the extracted ingredient.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 12, 2013
    Assignee: NEC Corporation
    Inventor: Masaki Ichihara
  • Patent number: 8395430
    Abstract: The present disclosure discloses a digital phase locking loop and a method. The digital phase locking loop includes a trigger and a delay line. The trigger receives a delayed clock signal output by the delay line, and receives a signal of a selection end of a first delay element in the delay line; the selection end is in a gating state before triggering of the trigger. The trigger samples the signal of the selection end of the first delay element, and outputs the sampled signal to a selection end of a second delay element in the delay line; the selection end of the second delay element is in the gating state after triggering of the trigger. The signal of the selection end of the first delay element is sampled by the trigger, and the sampled result is used as the signal of the selection end of the second delay element, thus reducing glitches caused by transition.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: March 12, 2013
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Chen Wan
  • Patent number: 8390484
    Abstract: The present invention discloses a transmitted/received data decoding method and apparatus, which achieve effects of decoding performance improvement and synchronous detection. The decoding method includes setting a coded edge pattern, and filtering a received data by using the set coded edge pattern as a window; respectively computing absolute values of filtered values filtered by using the coded edge pattern windows; detecting a maximum absolute value from the computed absolute values; determining a sign (+/?) for the detected maximum absolute value; outputting an intermediate bit value of the corresponding original data as a resultant decoded value according to the determined sign and a window type (i.e. coded edge patter) with the selected maximum absolute value.
    Type: Grant
    Filed: July 9, 2011
    Date of Patent: March 5, 2013
    Assignee: FCI Inc.
    Inventor: Chang-ik Hwang
  • Patent number: 8385485
    Abstract: In some embodiments an adaptive clocking controller determines a clock spread of a system clock that would result in a lowest total interference between a channel received by a radio receiver and the system clock. A clock generator modifies a spread of the system clock in response to the determined clock spread. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: February 26, 2013
    Assignee: Intel Corporation
    Inventors: Harry Skinner, Michael E. Deisher, Chaitanya Sreerama
  • Patent number: 8385394
    Abstract: Disclosed herein are embodiments of an improved built-in self-test (BIST) circuit and an associated method for measuring phase and/or cycle-to-cycle jitter of a clock signal. The embodiments of the BIST circuit implement a Variable Vernier Digital Delay Locked Line method. Specifically, the embodiments of the BIST circuit incorporate both a digital delay locked loop and a Vernier delay line, for respectively coarse tuning and fine tuning portions of the circuit. Additionally, the BIST circuit is variable, as the resolution of the circuit changes from chip to chip, and digital, as it is implemented with standard digital logic elements.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brandon R. Kam, Stephen D. Wyatt
  • Patent number: 8379787
    Abstract: Spread spectrum clock generators. A phase lock loop generates an output clock according to a first input clock and a second input clock, a delay line is coupled between the first input clock and the phase lock loop. A modulation unit provides a modulation signal to control the delay line thereby modulating phase of the first input clock, such that frequency of the output clock generated by the phase lock loop varies periodically.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: February 19, 2013
    Assignee: Mediatek Inc.
    Inventors: Shang-Ping Chen, Ping-Ying Wang
  • Patent number: 8379784
    Abstract: A semiconductor memory device stably performs a read operation at a high frequency, thereby reducing a current consumption. The semiconductor memory device is capable of performing the read operation stably by controlling a data eye. The semiconductor memory device includes an output unit and a data eye control unit. The output unit outputs data in synchronization with clock signals. The data eye control unit controls a data eye of the data output by the output unit.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 19, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang-Hee Lee
  • Patent number: 8379771
    Abstract: A data receiver identifies an alignment symbol in a parallel data stream including encoded symbols, generates a bit order indicator indicating a bit order of the alignment symbol identified in the parallel data stream, and generates a symbol stream including the encoded symbols. Further, the data receiver decodes symbols in the symbol stream and generates a bit polarity indicator indicating a bit polarity of the parallel data stream based on the decoded symbols. Additionally, the data receiver generates a formatted symbol stream having a predetermined bit order and a predetermined bit polarity, based on the symbol stream, the bit order indicator, and the bit polarity indicator. In some embodiments, the data receives a serial data stream and generates the parallel data stream by deserializing data in the serial data stream.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: February 19, 2013
    Assignee: Integrated Device Technology, Inc.
    Inventors: Alex C. Reed, IV, Shriram Kulkarni