Phase Locked Loop Patents (Class 375/376)
  • Patent number: 8553828
    Abstract: A clock data restoration device (1A) includes a sampler portion (11), a phase comparison portion (12), a drive portion (13), a charge pump (14), a capacitive element (15), a potential adjustment portion (16) and a voltage control oscillator (17). The phase comparison portion (12) outputs a signal (UP) that becomes a significant value when the phase of a clock (CKX) delays with respect to an input digital signal, and outputs a signal (DN) that becomes a significant value when the phase advances. The drive portion (13) increases or decreases a value ? to or from a variable ? when the signals (UP) and (DN) become a significant value, and increases or decrease a value N to or from the variable ? when the value of the variable ? is equal to or more than +N or when the value of the variable ? is equal to or less than ?N, and signals (UPFRQ) and (DNFRQ) are output to the charge pump (14).
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: October 8, 2013
    Assignee: Thine Electronics, Inc.
    Inventors: Seiichi Ozawa, Shuhei Yamamoto
  • Patent number: 8553827
    Abstract: A Phase-Locked Loop (PLL) includes a Phase-to-Digital Converter (PDC), a programmable digital loop filter, a Digitally-Controlled Oscillator (DCO), and a loop divider. Within the PDC, phase information is converted into a stream of digital values by a charge pump and an Analog-to-Digital Converter (ADC). The stream of digital values is supplied to the digital loop filter which in turn supplies digital tuning words to the DCO. A number of types of ADCs can be used for the ADC including a continuous-time delta-sigma oversampling Digital ADC and a Successive Approximation ADC. The voltage signal on the charge pump output is a small amplitude midrange voltage signal. The small voltage amplitude of the signal leads to numerous advantages including improved charge pump linearity, reduced charge pump noise, and lower supply voltage operation of the overall PLL.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 8, 2013
    Assignee: Qualcomm Incorporated
    Inventor: Gang Zhang
  • Patent number: 8553814
    Abstract: In a communication receiver, timing recovery circuitry includes a loop filter associated with a timing recovery loop of a first communication device. The first communication device is in communication with a second communication device prior to a temporary power down/power up sequence in the first communication device. The loop filter is configured to: (i) temporarily disable at least a portion of the timing recovery loop after the temporary power down/power up sequence in the first communication device; and (ii) initiate a progression through a set of potential sampling phases to determine a given sampling phase at which the first communication device can recommence communication with the second communication device.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: October 8, 2013
    Assignee: LSI Corporation
    Inventors: Albert Molina, Oisin Ó Cuanacháin, Ramon Sanchez
  • Publication number: 20130259178
    Abstract: Exemplary embodiments of the present invention relate to a clock and data recovery (CDR) apparatus with adaptive optimum CDR bandwidth estimation by using a Kalman gain extractor. The Kalman gain extractor includes an off chip digital processor which receives a phase update information from the CDR outputs an estimated optimum Kalman gain obtained by extracting the standard deviation of step sizes of the accumulation jitter from the power spectral density (PSD) of the phase update information, and a on chip digital loop filter consists of a cyclic accumulator which accumulates the phase detector's output, a gain multiplier and a phase interpolator (or DCO) controller. The off chip digital processor includes a storage register, a fast Fourier transform (FFT) processor and an optimum Kalman gain estimator. The storage register stores the phase update information, from which the FFT processor extracts the PSD of the absolute input jitter.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicants: TeraSquare Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Hyeon Min Bae, Joon Young Lee, Hyo Sup Won, Jong Hyeok Yoon, Jin Ho Park, Tae Ho Kim
  • Patent number: 8547148
    Abstract: A digital compensation phase locked loop circuit of a semiconductor device includes a phase locked loop circuit including a voltage controlled oscillator having capacitors at oscillation nodes and consecutively controlled by an applied voltage, and a digital compensation circuit which variably controls the capacitors at the oscillation nodes of the voltage controlled oscillator in accordance with an input phase difference. A gain of the conventional voltage controlled oscillator whose gain is determined by an applied voltage is discretely changed by a control signal of the digital compensation circuit. The digital compensation circuit dynamically controls the gain so as to secure the optimum phase margin by applying a load (capacitor) to the oscillation node of the voltage controlled oscillator with respect to a phase lead and decreasing the load (capacitor) with respect to a phase delay.
    Type: Grant
    Filed: February 12, 2011
    Date of Patent: October 1, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Akira Matsumoto, Tatsunori Usugi
  • Patent number: 8548104
    Abstract: A method includes, in a receiver that operates using multiple clock signals having respective clock frequencies, accepting a request to receive a target channel frequency. In response to the request, a set of preferred clock frequencies is calculated, which when applied by the receiver will cause the receiver to tune to the target channel frequency while satisfying a predefined criterion relating to interference caused by the clock signals. The target channel frequency is received by setting the clock signals to the preferred clock frequencies.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: October 1, 2013
    Assignee: Siano Mobile Silicon Ltd.
    Inventor: Roy Oren
  • Patent number: 8537955
    Abstract: A clock recovery circuit includes a phase detector, a loop filter, a phase rotator, a predictor and a delay line. The phase detector receives an input data signal and generates a phase error signal for estimating phase error in the input data signal when referred to a recovered clock. The loop filter receives the phase error signal and determines a phase control signal based on the phase error signal. The phase rotator receives the phase control signal, and provides a phase adjusted clock based on a reference clock and the phase control signal. The predictor receives the phase error signal, and determines a delay control signal based on the phase error signal. The delay line outputs the recovered clock by delaying the phase adjusted clock from the phase rotator using the delay control signal from the predictor, and provides the recovered clock to the phase detector.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: September 17, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: John Patrick Keane, Günter Steinbach
  • Patent number: 8537954
    Abstract: The disclosed invention is a technology for producing a recovered clock signal using a multi-mode clock data recovery (CDR) circuit that accommodates a flexible range operating frequencies F and consecutive identical digit requirements CID. In a first mode of operation, a controlled oscillator produces the recovered clock signal, and in a second mode of operation, a phase interpolator produces the recovered clock signal. The multi-mode CDR circuit operates in the first mode if (CID/F) is less than a threshold time value and in the second mode if (CID/F) is greater than the threshold time value.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Altera Corporation
    Inventors: Sergey Y. Shumarayev, Rakesh H. Patel, Wilson Wong, Tim T. Hoang
  • Patent number: 8537935
    Abstract: A change-point detection circuit 16 extracts a clock signal from serial data, input data. A variable delay circuit provides a delay in accordance with a delay control signal to a reference signal having a predetermined frequency, so that the phase of the reference signal is shifted on the basis of an initial delay. An input latch circuit latches internal serial data by using an output signal of the variable delay circuit as a strobe signal. A phase comparator matches the frequencies of the clock signal and the strobe signal with each other, and generates phase difference data in accordance with a phase difference between the two signals. A loop filter integrates the phase difference data generated by the phase comparator and outputs it as the delay control signal. The phase shift amount acquisition unit acquires a phase shift amount based on the delay control signal, the phase shift amount being based on the initial delay provided to the reference signal by the variable delay circuit.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: September 17, 2013
    Assignee: Advantest Corporation
    Inventors: Daisuke Watanabe, Toshiyuki Okayasu
  • Patent number: 8537957
    Abstract: A clock synchronizer for generating a local clock signal synchronized to a received clock signal. The clock synchronizer incorporates a reference oscillator providing a reference signal, and a synthesizer circuit arranged to synthesize a local clock signal from the reference signal. The synthesizer circuit comprises a phase-locked-loop circuit, including a phase detector receiving the reference signal, and a controllable divider arranged in a feedback path from a controlled oscillator to the phase detector, the divider being controllable to set a frequency division value N along the path to determine a ratio of the local clock frequency to the reference frequency. The clock synchronizer also incorporates a clock comparison circuit adapted to generate a digital signal indicative of an asynchronism between the local and received clock signals. A control link is arranged to link the clock comparison circuit to the divider.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: September 17, 2013
    Assignee: Wolfson Microelectronics plc
    Inventor: Paul Lesso
  • Patent number: 8537956
    Abstract: A demultiplexer circuit separates input data having different data rates into output data. A phase-locked loop circuit generates first clock signals having average frequencies that are based on a frequency of a second clock signal times a fractional, non-integer number. A serializer circuit serializes a set of the output data to generate serial data signals in response to one of the first clock signals generated by the phase-locked loop circuit.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: September 17, 2013
    Assignee: Altera Corporation
    Inventors: Tien Duc Pham, Leon Zheng, Sergey Shumarayev, Zhi Y. Wong, Paul B. Ekas
  • Patent number: 8537953
    Abstract: A clock-data recovery (CDR) that employs a time-interleaved scheme is disclosed. The circuit comprises: a time-interleaved sampler/phase-detector circuit for receiving an input voltage signal and a plurality of clock signals and outputting N-bit data and N phase signals, wherein N is an integer greater than 1; a control circuit, coupled to the time-interleaved sampler/phase-detector circuit, for receiving the N phase signals and converting the N phase signals into a control signal; and a controlled oscillator, coupled to the control circuit, for generating the plurality of clock signals under the control of the control signal. The CDR is used to relax circuit speed requirement by time-interleaving phase detection by using a multi-phase lower speed circuit.
    Type: Grant
    Filed: September 13, 2008
    Date of Patent: September 17, 2013
    Assignee: Realtek Semiconductor Corp.
    Inventor: Chia-Liang Lin
  • Patent number: 8537952
    Abstract: A fractional-N PLL uses separate charge pumps under the control of separate frequency and phase detectors. Phase jitter from an N divider is linearized by the use of a circuit that generates pulses from the output of the N divider. After frequency lock, the frequency detector turns off the frequency charge pump. After phase lock, activity in the phase detector down charge pump is minimized, reducing the overall noise produced by respective phase and frequency detector charge pumps.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: September 17, 2013
    Assignee: Marvell International Ltd.
    Inventor: Himanshu Arora
  • Patent number: 8537934
    Abstract: A method of compensating for carrier frequency and phase errors of a received multi-carrier modulated signal. The received multi-carrier signal including modulated carriers for transmitting known data and unmodulated carriers for error correction, comprising, time domain down converting the received multi-carrier signal to base-band to provide a down-converted signal, the down-converted signal including a plurality of modulated carriers for transmitting known data and unmodulated carriers for error correction. Sampling an unmodulated carrier of the down-converted signal to provide received data samples. Providing a reference signal derived from the unmodulated carrier of the down-converted signal. And, estimating phase errors from a phase difference between the ummodulated carrier and the reference signal derived from the unmodulated carrier of the down-converted signal to provide a plurality of received sample phase error estimates for each modulated carrier.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: September 17, 2013
    Assignee: Broadcom Corporation
    Inventors: Robindra B. Joshi, Jeffrey S. Putnam, Thuji S. Lin, Paul T. Yang
  • Patent number: 8531214
    Abstract: Spread spectrum generators and methods are disclosed. In one implementation, a spread spectrum clock generator includes a phase locked loop generating an output clock according to a first clock and a second clock; a delay line coupled between the first clock and the phase locked loop; a modulation unit providing a modulation signal to control the delay line thereby modulating phase of the first clock, such that frequency of the output clock generated by the phase locked loop varies periodically; a scaling unit scaling the modulation signal from the modulation unit according to a scaling ratio, and outputting to the delay line; and a calibration unit generating an output signal for controlling the scaling ratio.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: September 10, 2013
    Assignee: MediaTek Inc.
    Inventors: Shang-Ping Chen, Ping-Ying Wang
  • Patent number: 8532122
    Abstract: A method for dynamical adjusting channel direction and Network-on-Chip architecture thereof are provided. The Network-on-Chip architecture of dynamical adjusting channel direction comprises a first channel, a first router and a second router. The first channel has a first transmission direction. The first router generates and outputs a first output request when receiving a first data. The second router is coupled to the first router through the first channel. The second router receives the first data through the first channel when receiving the first output request.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: September 10, 2013
    Assignee: National Taiwan University
    Inventors: Ying-Cherng Lan, Shih-Hsin Lo, Sao-Jie Chen
  • Patent number: 8532590
    Abstract: A feedback loop is used to determine phase distortion created in a signal by directly extracting the phase distortion information from a feedback signal using original frequency modulation information.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 10, 2013
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thomas Mayer, Nick Shute
  • Patent number: 8531244
    Abstract: A high frequency signal processing device is capable of carrying out high-accuracy modulation by a PLL circuit. A digital loop is configured in addition to an analog loop having, for example, a phase frequency detector, a charge pump circuit, and a loop filter. A digital calibration circuit is provided which searches for the optimal code set to a capacitor bank upon frequency modulation. Upon the search for the optimal code, a calibration controller first sets a division ratio based on a center frequency to a divider and determines the value of a voltage control signal using the analog loop. Then, the loop filter holds the value of the voltage control signal therein, and a division ratio corresponding to a “center frequency+modulated portion” is set to the divider, thereby operating the digital loop. The optimal code is obtained by a convergent value of the digital loop.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: September 10, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kenichi Shibata, Toshiya Uozumi
  • Patent number: 8532243
    Abstract: A technique that is readily implemented in monolithic integrated circuits includes a method including generating an output clock signal during a presence of a reference clock signal based, at least in part, on a digital control value indicating a phase difference between a feedback signal of a PLL and a reference clock signal. The method includes generating the output clock signal during an absence of the reference clock signal and based, at least in part, on an average digital control word indicating an average value of a number of samples of the digital control value during the presence of the reference clock signal, the number of samples preceding the absence of the reference clock signal by a delay period. The number of samples is selected from a plurality of numbers of samples and the delay period is selected from a plurality of delay periods.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: September 10, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Srisai R. Seethamraju, Jerrell P. Hein, Kenneth Kin Wai Wong, Qicheng Yu
  • Patent number: 8526559
    Abstract: A clock generation circuit for a transmitter which transmits data according to an output clock signal is provided. The clock generation circuit include a clock generator and a phase locked loop (PLL). The clock generator generates a first clock signal. The PLL initially generates the output clock signal according to the first clock signal. When a frequency of the output clock signal generated according to the first clock signal is not within a range required for specification of the transmitter, the PLL generates the output clock signal according to a second clock signal.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: September 3, 2013
    Assignee: Mediatek Inc.
    Inventors: Kuan-Hua Chao, Shiue-Shin Liu, Tse-Hsiang Hsu
  • Patent number: 8526528
    Abstract: A communication terminal includes first and second transmitters, which are coupled to produce respective first and second Radio Frequency (RF) signals that are phase-shifted with respect to one another by a beamforming phase offset, and to transmit the RF signals toward a remote communication terminal. The terminal includes a reception subsystem including first and second receivers and a phase correction unit. The first and second receivers are respectively coupled to receive third and fourth RF signals from the remote communication terminal. The phase correction unit is coupled to produce, responsively to the third and fourth RF signals, a phase correction for correcting an error component in the beamforming phase offset.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 3, 2013
    Assignee: Provigent Ltd.
    Inventors: Rafi Ravid, Zohar Montekyo, Ahikam Aharony
  • Patent number: 8520725
    Abstract: A data equalizing circuit includes an equalizer configured to control a gain of data according to a value of a control code and output a controller gain; and a detection unit configured to divide n cycles of the data into N periods, count data transition frequencies for n/N periods while changing the value of the control code, calculate dispersion values of data transition frequencies for 1/N periods of the data from the data transition frequencies for the n/N periods, and finally output the value of the control code corresponding to a largest dispersion value, wherein n is equal to or greater than 2 and is set such that boundaries of the respective n/N periods of the data have different positions in the 1 UI data.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 27, 2013
    Assignee: SK Hynix Inc.
    Inventors: Chun Seok Jeong, Jae Jin Lee, Chang Sik Yoo, Jang Woo Lee, Seok Joon Kang
  • Patent number: 8519798
    Abstract: Embodiments of the invention relate to apparatus and method for reducing electromagnetic interference (EMI) and radio frequency interference (RFI) in computer systems via a chaotic frequency modulation. In one embodiment, an apparatus comprises a first cell comprising a chaotic signal generator to generate a chaotic signal and a phase-locked loop (PLL) to generate a modulated output signal based at least on an un-modulated reference signal and the chaotic signal.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Intel Corporation
    Inventors: Ruchir Saraswat, Ulrich Bretthauer
  • Patent number: 8520788
    Abstract: A receiving device includes: a buffer temporarily accumulating receive data received through a network; a data processing means for processing the receive data; a short-time variation value acquisition means for acquiring a short-time variation value indicating variation of accumulated quantity of the receive data sequentially accumulated in the buffer in a first unit time; a long-time variation value acquisition means for acquiring a long-time variation value indicating variation of accumulated quantity in a second unit time; and a clock control means for controlling a clock frequency for performing processing of the receive data by the data processing means in accordance with evaluation results of the acquired long-time variation value. The clock control means stops adjustment of the clock frequency when an error of the network or the receive data is detected, and starts the adjustment again after a given adjustment stop time passes from the detection of the error.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 27, 2013
    Assignee: Sony Corporation
    Inventor: Masayuki Imanishi
  • Patent number: 8521115
    Abstract: An integrated circuit including a Phase Locked Loop (PLL) configured for use with a continuous stream receiver is disclosed. A control voltage line is configured to deliver a control voltage with a capacitive load delivered by a capacitor array to the control voltage based upon an add signal and a subtract signal. A threshold generator generates a high threshold voltage and a low threshold voltage using and including at least one process dependent resistor and at least two temperature and process dependent current sources. The PLL responds during calibration to the control voltage being above the high threshold voltage by asserting the add signal directing the capacitor array to increase the capacitive load on the control voltage line, and to the control voltage being below the low threshold voltage by asserting the subtract signal to decrease the capacitive load.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: August 27, 2013
    Assignee: QUALCOMM Incorporated
    Inventor: Christopher R. Leon
  • Patent number: 8520792
    Abstract: A determining unit of a phase adjusting device determines whether or not a data stream to be detected included in serial transfer data can be detected in each output (first output to fourth output) of a first data obtaining unit and a second data obtaining unit. A phase adjusting unit adjusts a delay amount given to the serial transfer data to be output based on a determination result of the determining unit.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 27, 2013
    Assignee: Nikon Corporation
    Inventor: Daiki Ito
  • Patent number: 8519760
    Abstract: A device characteristic compensation circuit includes a device characteristic detection block configured to detect one or more of a frequency of a clock signal and characteristics of devices, and generate a control code signal according to a detection result; and an internal voltage regulation unit configured to regulate a level of an internal voltage in response to the control code signal and generate a corrected internal voltage.
    Type: Grant
    Filed: August 27, 2011
    Date of Patent: August 27, 2013
    Assignee: SK Hynix Inc.
    Inventors: Ki Han Kim, Hyun Woo Lee
  • Patent number: 8520793
    Abstract: A phase detector includes a first sampling unit, a sampling module and a phase determining module. The first sampling unit is arranged for sampling a first data input signal to generate a first data signal according to a first clock signal. The sampling module includes a second sampling unit and a third sampling unit. The second sampling unit is arranged for sampling a second data input signal to generate a second data signal according to a second clock signal. The third sampling unit is arranged for sampling the second data signal to generate a third data signal according to the first clock signal. The phase determining module is arranged for generating a phase detecting result according to the first data signal and the third data signal.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 27, 2013
    Assignee: Faraday Technology Corp.
    Inventors: Chun-Cheng Lin, Ming-Shih Yu
  • Publication number: 20130216014
    Abstract: Systems and methods for automatic detection and compensation of frequency offset in point-to-point communication. A burst mode clock and data recovery (CDR) system comprises input data received at a first frequency and a reference clock operating at a second frequency. A master phase-locked loop (PLL) comprising a first gated voltage controlled oscillator (GVCO) is configured to align the phases of reference clock and the input data, and provide phase error information and a recovered clock. A second GVCO is controlled by the recovered clock to sample the input data. A frequency alignment loop comprising a feedback path from the second GVCO to the master PLL is configured to use the phase error information to correct a frequency offset between the first frequency and the second frequency.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Applicant: QUALCOMM Incorporated
    Inventors: Xiaohua Kong, Zhi Zhu, Nam V. Dang
  • Patent number: 8514920
    Abstract: Methods and apparatus are provided for pseudo asynchronous testing of receive paths in serializer/deserializer (SerDes) devices. A SerDes device is tested by applying a source of serial data to a receive path of the SerDes device during a test mode. The receive path substantially aligns to incoming data using a bit clock. A phase is adjusted during the test mode of the bit clock relative to the source of serial data to evaluate the SerDes device. The source of serial data may be, for example, a reference clock used by a phase locked loop to generate the bit clock. The phase of the bit clock can be directly controlled during the test mode, for example, by a test phase control signal, such as a plurality of interpolation codes that are applied to an interpolator that alters a phase of the bit clock.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 20, 2013
    Assignee: LSI Corporation
    Inventors: Christopher J. Abel, Parag Parikh, Vladimir Sindalovsky
  • Patent number: 8514122
    Abstract: An analog-digital conversion system comprising at least one variable gain amplifier amplifying an input signal e, an analog-digital converter CAN digitizing said signal e, an interference-suppressing digital processing module, processing the digitized signal, also comprises a first automatic gain control AGC loop, called the analog AGC loop, that compares an estimate of the output power of the CAN converter with a control setpoint g1 called the control setpoint of the analog AGC loop, a gain ga used to control the variable gain amplifier being deduced from this comparison. The system also comprises a second automatic gain control AGC loop called the digital loop, said digital loop comparing an estimate of the power after the interference-suppressing digital processing with a predetermined control setpoint gn, the analog AGC loop being controlled by a control setpoint deduced from this comparison.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 20, 2013
    Assignee: Thales
    Inventors: Nicolas Martin, Jean-Michel Perre, David Depraz
  • Patent number: 8513995
    Abstract: System and method providing multiple circuit paths to control characteristics of periodic signals. In one embodiment first and second detector signals are indicative of a phase and frequency differences between the output signal and a reference signal. A first input signal based on the first detector signal adjusts the phase difference. A first control signal based on the second detector signal has frequency content in high and low frequency ranges. A second input signal based on the control signal reduces the frequency difference. A second control signal based on the second detector signal has relatively low frequency content in the high frequency range. A third input signal based on the second control signal reduces the frequency difference.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: August 20, 2013
    Assignee: Intel Corporation
    Inventors: Robert Wang, Antonios Pialis, Rajeevan Mahadevan, Navid Yaghini, Rafal Karakiewicz, Raymond Kwok Kei Tang, Sida Shen, Mark Andruchow, Zhuobin Li, Nicola Pantaleo
  • Patent number: 8509370
    Abstract: A phase locked loop device includes a phase detector that measures a difference in phase between a reference clock signal and an output clock signal provided to a device module. The phase detector provides a pulse having a width indicative of the phase difference. If the phase difference exceeds one of a plurality of threshold values, an indicator can be asserted. Based on the indicator, a control module can take remedial action, such as providing a different clock signal to the device module or triggering an interrupt at a processor device.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: August 13, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gayathri A. Bhagavatheeswaran, Joseph P. Gergen, Arvind Raman, Hector Sanchez
  • Patent number: 8508271
    Abstract: A phase locked loop that includes a signal generator arranged to output a feedback signal, a first phase detector arranged to detect a phase difference between the feedback signal and a reference signal and to output a first phase detect signal in dependence on that detection, a second phase detector arranged to detect a phase difference between the feedback signal and a delayed version of the reference signal or between the reference signal and a delayed version of the feedback signal and to output a second phase detect signal in dependence on that detection, and an adjustor. The adjustor is arranged to determine which of the first and second phase detect signals commutes first and to alter the frequency of the feedback signal in dependence on the result of the determination.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 13, 2013
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Pasquale Lamanna, Davide Orifiamma
  • Patent number: 8509372
    Abstract: A multi-band clock generator includes a phase-locked loop (PLL) integrated circuit responding to first and second clock signals, and includes a multi-band voltage controlled oscillator (VCO) responding to a multi-bit control word that sets a frequency characteristic curve of the VCO. The multi-band clock generator also includes an adaptive frequency calibration (AFC) circuit responding to the first and second clock signals, and the AFC circuit is configured to look-up a first multi-bit control word during an operation to lock an output clock signal generated by the VCO to a first frequency characteristic curve associated with the first multi-bit control word.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: August 13, 2013
    Assignee: Integrated Device Technology, Inc.
    Inventors: Yu Zhang, Changming Wei
  • Patent number: 8508308
    Abstract: Described embodiments provide a method of calibrating, by a calibration engine, a phase-locked loop (PLL) having one or more adjustable oscillators. The method includes entering a calibration mode of the PLL. The PLL is set to an initial state, thereby selecting one of the adjustable oscillators for calibration, an initial threshold window, and an initial tuning band of the selected adjustable oscillator. If the control signal of the selected adjustable oscillator is not within the initial threshold window, the calibration engine iteratively adjusts at least one of: (i) the selected tuning band of the selected adjustable oscillator, (ii) the selected adjustable oscillator, and (iii) the selected threshold window until the control signal of the selected adjustable oscillator is within the adjusted threshold window. If the control signal is within the threshold window, the one or more calibration settings of the PLL are stored and used to set the PLL operation.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: August 13, 2013
    Assignee: LSI Corporation
    Inventors: Yikui Jen Dong, Freeman Y. Zhong, Tai Jing, Chaitanya Palusa
  • Patent number: 8509721
    Abstract: A method and apparatus for non-linear frequency control tracking of a control loop of a voltage controlled oscillator (VCO) in a wireless mobile device receiver is provided. A channel metric based on one or more channel quality indicators associated with a received radio frequency channel is determined and a state metric associated with the current operating state of the control loop are determined. One or more state metric threshold value associated with the determined channel metric, providing hysteresis between operating states, are determined wherein each state metric threshold value is associated with a transition to a possible operating state of the control loop. The control loop transitions from the current operating state to the operating state associated with an exceeded state metric threshold value. Coefficients are provided to an adaptive loop filter of the control loop, wherein the coefficients coefficient are associated with the transitioned operating state.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 13, 2013
    Assignee: Research In Motion Limited
    Inventors: Onur Canpolat, Francis Chukwuemeka Onochie
  • Patent number: 8509371
    Abstract: A continuous-rate clock and data recovery circuit includes a delay locked loop with a first integrator and a phase locked loop with a separate integrator. The delay locked loop and the phase locked loop are in a dual loop architecture. The first integrator is a digital accumulator that wraps upon exceeding a maximum or minimum value. The second integrator is a digital accumulator that saturates at its maximum or minimum value.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 13, 2013
    Assignee: Analog Devices, Inc.
    Inventor: John G. Kenney
  • Patent number: 8508270
    Abstract: Circuits and methods for controlling a VCO output signal. A filtered version of an integral path input signal controls current flow through a proportional path. An exemplary embodiment generates an integral path input signal from a digital to analog converter. First integral path circuitry includes a first transistor device and a low pass filter which provides a filtered version of the integral path input signal to a first transistor device to control conduction through the device, providing a first VCO input signal for frequency adjustment of the output signal. Proportional path switching circuitry between a supply terminal and VCO input terminal includes a second transistor device which receives the first VCO input signals to control conduction between the supply terminal and the first VCO input terminal to provide a second signal for adjustment of the phase of the VCO output signal relative to the reference signal.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: Navid Yaghini, Robert Wang, Antonios Pialis, Rajeevan Mahadevan, Rafal Karakiewicz, Raymond Kwok Kei Tang, Sida Shen
  • Patent number: 8509373
    Abstract: An apparatus and method for generating a small-size spread spectrum clock signal that can include generating a reference clock signal by dividing an external clock signal, detecting frequency and phase differences between a reference clock signal and a comparison clock signal as error signals, modulating a controlled voltage corresponding to the current in accordance with a modulation control signal, outputting an oscillation clock signal having a frequency oscillated according to the modulated controlled voltage as a spectrum-spread version of the external clock signal, and generating the comparison clock signal by dividing the oscillation clock signal, and then compensating for the modulation of the controlled voltage in accordance with a demodulation magnitude that is generated for use in compensating for the modulation magnitude.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 13, 2013
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Ha-Jun Jeon, Sang-Seob Kim
  • Patent number: 8502613
    Abstract: An oscillating circuit including a digital sigma-delta modulator and a controlled oscillator is disclosed. The digital sigma-delta modulator receives a fractional bit signal to generate a control signal. The controlled oscillator includes a varactor dynamically coupled to receive the control signal.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 6, 2013
    Assignee: Mediatek Inc.
    Inventors: Ping-Ying Wang, Hsiang-Hui Chang
  • Patent number: 8503596
    Abstract: A method and apparatus are described for regenerating a local clock within a wireless module and synchronizing the local clock with a wireless host clock. For one embodiment, the wireless module generates a local clock, counts the cycles of the clock during a common timing reference period maintained wirelessly between the wireless module and the host, receives a count of the host clock during the same common timing reference period, and adjusts the local clock signal based upon a comparison of the two counts. For one embodiment, the wireless module further receives timing references from the host and, in addition, receives packets of audio samples from the host accompanied by a timestamp, the timestamp based upon the host timing reference, and outputs the audio sample at the time designated by the timestamp.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 6, 2013
    Assignee: AliphCom
    Inventor: William Sheets
  • Patent number: 8503595
    Abstract: The invention relates to a clock generation circuit and a signal reproduction circuit including the clock generation circuit, and, more particularly, the invention provides a data judgment/phase comparison circuit capable of performing both of data judgment and phase comparison by a single-phase clock, and provides a CDR (Clock Data Recovery) circuit including the data judgment/phase comparison circuit. The same data and clock are inputted to two data judging units C_GOOD and C_BAD each having a different data determination period (setup/hold time) required for correctly judging a data, and an output of the data judging unit C_GOOD having a shorter required data determination period is taken as a data output of the data judgment/phase comparison circuit. When the outputs of both of the data judging units are different from each other, a signal Early indicating that a clock phase is too early or a signal Late indicating that the clock phase is too late is outputted.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 6, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Koji Fukuda, Hiroki Yamashita
  • Patent number: 8503598
    Abstract: An initialization circuit in a delay locked loop ensures that after power up or other reset clock edges are received by a phase detector in the appropriate order for proper operation. After reset of the delay locked loop, the initialization circuit assures that at least one edge of a reference clock is received prior to enabling the phase detector to increase (or decrease) the delay in a delay line. After at least one edge of a feedback clock is received, the initialization circuit enables the phase detector to decrease (or increase) the delay in a delay line.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: August 6, 2013
    Assignee: MOSAID Technologies Incorporated
    Inventor: Tony Mai
  • Patent number: 8503597
    Abstract: A method and mechanism for reducing lock time of a dual-path phase lock loop (PLL). The PLL comprises a dual-path low-pass filter (LPF). The LPF includes a first filter and a second filter. The first filter comprises a passive second-order lead-lag low-pass filter. The second filter comprises a first-order lag low-pass filter. During a lock-acquisition state, an impedance value within the second stage is bypassed, which increases the loop bandwidth of the PLL. In addition, a resistance within the first stage is increased in order to increase the gain of the first stage and maintain stability within the PLL. During a lock state, the impedance value may no longer be bypassed and the increased resistance may be returned to its original value.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 6, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Dennis M. Fischette, Rohit Kumar
  • Patent number: 8502580
    Abstract: A semiconductor device includes: an internal clock signal generation unit configured to receive an external clock signal and to generate an internal clock signal in response to a control signal; and a monitoring unit configured to monitor environmental elements reflected in a circuit response to the control signal.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: August 6, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yong-Hoon Kim, Hyun-Woo Lee
  • Patent number: 8494105
    Abstract: An apparatus provides a digital representation of a time difference between a periodic reference signal having a reference signal period and a periodic input signal having an input signal period. The apparatus includes a free-running finite state machine (FSM) that traverses a multiplicity of states in a predetermined order, the state having corresponding state vectors, each of which is held for a state dwell time. A timing circuit receives the reference signal, the input signal and the FSM state vectors, and determines a state transition count equal to a number of FSM state transitions that occur during a counting interval, which corresponds to the time difference between the reference and input signals. A digital low-pass filter receives the state transition counts and provides an output value including weighted sums of the state transition counts, proportional to the time difference between the reference and input signal. A period of the FSM is independent of the reference signal period.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: July 23, 2013
    Assignee: Agilent Technologies, Inc.
    Inventor: Jeffery Patterson
  • Patent number: 8493115
    Abstract: A phase locked loop (PLL) circuit and a system including such a PLL that may at least compensate for leakage current in a loop filter. The PLL circuit may include a voltage adjusting unit configured to pump charges based on a phase difference between an oscillation clock signal and a reference clock signal, a loop filter configured to generate a frequency control voltage, a level of which is shifted by the charge pumping of the voltage adjusting unit, a voltage controlled oscillator (VCO) configured to output the oscillation clock signal having a frequency corresponding to the frequency control voltage, and a current control circuit configured to generate a compensation current corresponding to a leakage current generated by the loop filter and allow the compensation current and the leakage current to substantially and/or completely counterbalance each other.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Kwang Jang, Jae-Jin Park, Ji-Hyun Kim
  • Patent number: 8494034
    Abstract: A communication device includes: a reception unit that receives a signal transmitted from another communication device via a transmission path; a transmission unit that transmits a signal to the another communication device via the transmission path; an error rate measurement unit that measures an error rate representing a probability of occurrence of errors in a signal received by the reception unit in a case where a bi-directional communication with the another communication device is performed; and a phase adjustment unit that adjusts a phase of a signal transmitted from the transmission unit to the another communication device based on an error rate measured by the error rate measurement unit.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: July 23, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Yasuaki Konishi
  • Patent number: 8494085
    Abstract: Aspects of a method and system for bandwidth calibration for a phase locked loop are presented. Aspects of the method may include generating one or more carrier signals based on one or more corresponding calibration signals. A pre-distortion function may be computed based on the generated one or more carrier signals for the phase locked loop circuit. An output radio frequency (RF) synthesized signal generated by the phase locked loop circuit may be modified based on the computed pre-distortion function and a subsequent output RF synthesized signal generated based on the modified output RF synthesized signal.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: July 23, 2013
    Assignee: Broadcom Corporation
    Inventor: Sofoklis Plevridis