Phase Locked Loop Patents (Class 375/376)
  • Patent number: 8884672
    Abstract: A phase locked loop (PLL) device is configurable in an analog phase locked loop and a hybrid analog-digital phase locked loop. In an analog mode, at least a phase detector, an analog loop filter, and a voltage controlled oscillator (VCO), are connected to form an analog loop. In a digital mode, at least the phase detector, the voltage controlled oscillator (VCO), a time to digital converter (TDC), a digital loop filter and a digital to analog converter (DAC) are connected to form the hybrid digital-analog loop.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 11, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Gary John Ballantyne, Jeremy D. Dunworth, Bhushan Shanti Asuri
  • Patent number: 8885775
    Abstract: Apparatuses, systems, and methods are directed to maintaining optimal carrier tracking performance in view of operating conditions that prevail. Such configurations employ a phase lock loop that configured to generate an estimated phase error value, a variance module configured to calculate a phase noise variance based on the estimated phase error value, and a loop control bandwidth module that calculates a loop bandwidth value based on a detected lower phase noise variance, generates modified loop filter values in accordance with the calculated loop bandwidth value, and updates the phase lock loop with the modified loop filter values. During subsequent iterations, the modified loop filter values are incrementally adjusted along a particular direction until the phase noise variance increases at which point the modified loop filter values are incrementally adjusted in an opposite direction to converge on an optimal loop bandwidth value.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 11, 2014
    Assignee: Intel Corporation
    Inventors: Thushara Hewavithana, Bernard Arambepola
  • Patent number: 8885773
    Abstract: An ultra low power radio receiver architecture based on phase locked loop is provided. Embodiments of an ultra low power radio receiver architecture based on phase locked loop can detect a complex modulated MSK signal with only a single path receiver chain. According to an embodiment of the present invention, the overall power consumption of the radio receiver in the present invention can be reduced by almost fifty percent compared to that of the conventional complex path radio receiver architecture. The radio receiver architecture of the invention is suitable for the ultra low power radio application such as wireless sensor networks (WSN).
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: November 11, 2014
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Choong Yul Cha, Kenneth K. O
  • Patent number: 8885776
    Abstract: A symbol error detector can be configured to detect symbol errors of a Bluetooth enhanced data rate (EDR) packet without relying solely on a CRC error detection mechanism. After a phase of a current symbol is demodulated to determine a demodulated current symbol, the phase of the demodulated current symbol can be subtracted from the phase of the current symbol prior to demodulation to yield a phase error. The phase error can be compared against a phase error threshold to determine a potential unreliability of the demodulated current symbol. The phase error being greater than the phase error threshold can indicate that the demodulated current symbol may be unreliable. Accordingly, a symbol error notification can be generated to indicate that the demodulated current symbol may be unreliable.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 11, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Soner Ozgur
  • Patent number: 8878614
    Abstract: A PLL circuit includes an oscillator, a detection block, an integral path and a proportional path. The oscillator generates an oscillation signal. The detection block detects a phase difference between the oscillation signal and a reference signal and generates an integral signal that represents an integral value of the phase difference and a proportional signal that represents a current value of the phase difference. The integral path includes a regulator that receives the integral signal and supplies a regulated integral signal to the oscillator, and the regulator has a feedback loop including an error amplifier. The proportional path supplies the proportional signal, separately from the integral signal, to the oscillator. The oscillator generates the oscillation signal having an oscillation frequency controlled by both of the regulated integral signal and the proportional signal such that the phase of the oscillation signal is locked to the phase of the reference signal.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 4, 2014
    Assignee: MegaChips Corporation
    Inventors: Wenjing Yin, Anand Gopalan
  • Patent number: 8879681
    Abstract: A system and method are provided for determining a time for safely sampling a signal of a dock domain. In one embodiment, a frequency estimate of a first clock domain is calculated utilizing a frequency estimator. Additionally, a time during which a signal from the first clock domain is unchanging is determined such that the signal is capable of being safely sampled by a second clock domain, using the frequency estimate. In another embodiment, a frequency estimate of a first dock domain is calculated utilizing a frequency estimator. Further, a phase estimate of the first clock domain is calculated based on the frequency estimate, utilizing a phase estimator. Moreover, a time during which a signal from the first clock domain is unchanging is determined such that the signal is capable of being safely sampled by a second clock domain, using the phase estimate.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 4, 2014
    Assignee: NVIDIA Corporation
    Inventors: William J. Dally, Stephen G. Tell
  • Patent number: 8873693
    Abstract: In one embodiment, a method includes adjusting a first frequency of a first clock signal based on a frequency difference between the first frequency and a reference clock signal frequency of a reference clock signal, and further adjusting the first frequency and a first phase of the first clock signal based on a phase difference between the first clock signal and an input data bit stream and the frequency difference between the first frequency and the reference clock signal frequency to substantially lock the first frequency and the first phase of the first clock signal to the input data bit frequency and input data bit phase of the input data bit stream.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 28, 2014
    Assignee: Fujitsu Limited
    Inventor: Nikola Nedovic
  • Publication number: 20140314192
    Abstract: Systems and methods for smoothing jitter generated by byte stuffing. A frequency synthesizer comprises a smoothing logic coupled with a PLL. The smoothing logic is configured to modify a phase error signal generated by a phase frequency detector into a distributed phase error signal that spread over multiple clock cycles. The distributed phase error signal is used to drive a DCO. The smoothing logic may comprise a ramping logic operable to generate a series of ramping values to substitute a phase difference in the phase error signal. The phase difference may correspond to a stuffing byte.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: Applied Micro Circuits Corporation
    Inventors: Yehuda AZENKOT, Timothy P. WALKER
  • Publication number: 20140314193
    Abstract: A method of receiving wireless data is provided. The method includes generating a plurality of local clocks having different delayed phases with respect to a carrier wave during a carrier wave period and receiving a data packet using the plurality of local clocks. The plurality of local clocks includes at least a first local clock and a second local clock. The first local clock has a 0 degree delayed phase with respect to the carrier wave. The second local clock has a 90 degree delayed phase with respect to the carrier wave.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 23, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Hyuk-Jun Sung
  • Patent number: 8866520
    Abstract: One embodiment relates to a fracture-able PLL circuit. The fracture-able PLL circuit includes a first phase-locked loop circuit generating a first frequency output, a second phase-locked loop circuit; arranged to generate a second frequency output, and a plurality of shared output resources. Reconfigurable circuitry is arranged so that either of the first and second frequency outputs is receivable by each of the plurality of shared output resources. Another embodiment relates to an integrated circuit which includes a plurality of PMA modules, a plurality of multiple-purpose PLL circuits, and a programmable clock network. The programmable clock network is arranged to allow the clock signals output by the multiple-purpose PLL circuits to be selectively used either by the PMA modules for a transceiver application or by other circuitry for a non-transceiver application. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: October 21, 2014
    Assignee: Altera Corporation
    Inventors: Tien Duc Pham, Sergey Shumarayev, Richard G. Cliff
  • Patent number: 8867597
    Abstract: The present invention discloses a clock dejitter method comprising: a data sending adapter module inputting data with a system clock and using a sending clock to send data; a clock dejitter module associating the system clock with the sending clock of the data sending adapter module using; and the clock dejitter module tracking variations in the system clock and a data enable signal reflecting data sending state by referring to the system clock, and dynamically generating the sending clock varying with the data sending state. The present invention also discloses a clock dejitter apparatus and a data transmission system. The present invention greatly improves the free scheduling processing ability of services and reduces the bit error rate of data transmission while increasing efficiency of large capacity data switch transmission by dynamically adjusting the sending clock.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 21, 2014
    Assignee: ZTE Corporation
    Inventor: Xiaoyi Wei
  • Patent number: 8866556
    Abstract: A phase shift phase locked loop (PSPLL) are described. The phase shift PLL includes a PLL and a phase adjusting circuit coupled to the inputs of the PLL. The phase adjusting circuit has a first input, a first output, a second input, a third input, and a second output. The first output and the second output are coupled to a first input and a second input of the PLL, respectively. The second input of the phase adjusting circuit receives a feedback signal and the third input of the phase adjusting circuit receives a control signal. The phase adjusting circuit receives a reference signal and sends a first output signal and a second output signal based on the reference signal to the PLL to adjust a phase of an output signal of the PLL in an increment less than a time period of the output signal of the PLL.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: October 21, 2014
    Assignee: Analog Bits, Inc.
    Inventor: Alan C. Rogers
  • Patent number: 8867520
    Abstract: A method and an apparatus for augmenting timing synchronization in a base station using backhaul network frequency synchronization are provided. When in a first mode an external time epoch reference synchronized with system time is used to synchronize the base station to system time. When in a second mode a network frequency reference recovered from a backhaul network link is used to maintain the timing synchronization.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: October 21, 2014
    Inventors: Charles Nicholls, David Steer, Bradley John Morris
  • Patent number: 8867685
    Abstract: A delay-locked loop, including a phase detector configured to receive two signals, one of the signals being delayed relative to the other of the signals, the phase detector having an UP output and a DOWN output. The delay-locked loop also includes a charge pump system operatively coupled with the phase detector, the charge pump system including (1) a charge pump configured to be responsive to assertion of actuating signals from the UP output and the DOWN output so as to control pumping of charge from the charge pump system, such pumped charge being usable to control a delay line carrying one of the two signals, so as to control relative delay occurring between the two signals; and (2) a feedback control loop configured to dynamically adjust at least one bias signal at the charge pump so as to minimize net charge pumped from the charge pump system during simultaneous assertion of actuating signals from the UP output and the DOWN output.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: October 21, 2014
    Assignee: True Circuits, Inc.
    Inventors: John George Maneatis, Jaeha Kim, Daniel Karl Hartman
  • Patent number: 8866468
    Abstract: A dF/dT trigger system and method includes instantaneously triggering on a frequency deviation of a data signal, which can be associated with an SSC signal. After receiving a signal at an input terminal of a test and measurement instrument, the signal is low-pass filtered and transmitted to trigger circuitry. When a frequency deviation rate in the filtered signal exceeds or crosses one or more thresholds, a trigger event is produced. Also disclosed is a test and measurement instrument including an input terminal to receive the signal, input circuitry to receive and process the signal, and dF/dT trigger circuitry configured to receive the signal and produce a trigger event when a frequency deviation in the signal exceeds or crosses one or more thresholds.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 21, 2014
    Assignee: Tektronix, Inc.
    Inventors: Patrick A. Smith, Daniel G. Knierim, John C. Calvin, Shane A. Hazzard
  • Publication number: 20140307842
    Abstract: Techniques are disclosed relating to generating compatible clock signals. In one embodiment, an apparatus is configured to receive an input clock signal and a reference clock signal. In this embodiment, the apparatus includes a rate estimation unit and a phase-locked loop (PLL) unit. In this embodiment, the PLL unit is configured to generate, using a control signal from the rate estimation unit and the input clock signal, a PLL output clock signal. In this embodiment, the rate estimation unit is configured to adjust the control signal such that the PLL output clock signal and the reference clock signal are compatible. In this embodiment, the rate estimation unit is configured to adjust the control signal based on the reference clock signal and a comparison clock signal generated by the apparatus based on the PLL output clock signal.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 16, 2014
    Applicant: SILICON LABORATORIES INC.
    Inventor: Brian D. Green
  • Patent number: 8860479
    Abstract: Integrated clock differential buffering. A first phase locked loop (PLL) circuit having a first clocking ratio is coupled to receive an input differential clock signal. The first PLL circuit generates a first reference clock signal. A second PLL circuit having a second clocking ratio is coupled to receive the input differential clock signal. The second PLL circuit to generate a second reference clock signal. A first set of clock signal output buffers are coupled to receive the first reference clock signal and to provide a first differential reference clock signal corresponding to the first reference clock signal. A second set of clock signal output buffers is coupled to receive the second reference clock signal and to provide a second differential reference clock signal corresponding to the second reference clock signal.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: October 14, 2014
    Assignee: Intel Corporation
    Inventors: Choupin Huang, Vijaya K. Boddu, Stefan Rusu, Nicholas B Peterson
  • Patent number: 8860478
    Abstract: The invention provides a phase-locked loop with loop gain calibration and methods for measuring an oscillator gain, gain calibration and jitter measurement for a phase-locked loop. The method for measuring an oscillator gain of a phase-locked loop includes the steps of providing a varying code at an input end of the oscillator; outputting excess reference phase information by a reference phase integral path and outputting excess feedback phase information based on the varying code by a feedback phase integral path; and obtaining an estimated gain information of the oscillator based on the excess reference phase information and the excess feedback phase information.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: National Chiao Tung University
    Inventors: Wei-Zen Chen, Shu-Chin Chuang
  • Patent number: 8860433
    Abstract: Disclosed are systems, apparatus, and methods for a self-contained timing and jitter measurement. In various embodiments, a device may include a first clock signal generator operative to provide a first clock signal to a transmitter of a transceiver, where the first clock signal operates at a first frequency. The device may further include a second clock signal generator operative to provide a second clock signal to a receiver of the transceiver, where the second clock signal operates at a second frequency, and where the receiver samples an output of the transmitter at a sampling rate determined by the second frequency. In some embodiments, the device may further include a logic circuit operative to receive an output signal from the receiver and further operative to determine an indication of jitter based on the received output signal.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: October 14, 2014
    Assignee: Altera Corporation
    Inventors: Victor A. Chang, Bozidar Krsnik
  • Patent number: 8861669
    Abstract: The present disclosure provides techniques for recovering source stream clock data at the sink in a high definition multimedia digital content transport system. The disclosure includes a fractional-N Phase-Locked Loop (PLL) based clock generator, a programmable Sigma-Delta Modulator (SDM), and a clock data calibrator to fully recover the original source stream clock data. The fractional-N PLL provides flexible source stream clock recovery. When there is a frequency deviation between the original clock and the regenerated clock, the clock data calibrator control circuit adjusts the clock data, preventing any stream data buffer overflow or underflow problems. The disclosed techniques are compatible with the sink devices based on the standards of DisplayPort and HDMI.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: October 14, 2014
    Assignee: Synaptics Incorporated
    Inventors: Xiaoqian Zhang, Shubing Zhai, Yanbo Wang
  • Patent number: 8861580
    Abstract: Methods and apparatus are provided for determining one or more channel compensation parameters based on data eye monitoring. According to one aspect of the invention, a method is provided for evaluating the quality of a data eye associated with a signal. The received signal is sampled for a plurality of different phases, for example, using at least two latches, and the samples are evaluated to identify when the signal crosses a predefined amplitude value, such as a zero crossing. It is determined whether the points of predefined amplitude crossing satisfy one or more predefined criteria. One or more parameters of one or more channel compensation techniques can optionally be adjusted based on a result of the determining step. One or more parameters of an adjacent transmitter can also be adjusted to reduce near end cross talk based on a result of the determining step.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 14, 2014
    Assignee: Agere Systems LLC
    Inventors: Christopher J. Abel, Mohammad S. Mobin, Gregory W. Sheets, Lane A. Smith
  • Patent number: 8860474
    Abstract: A control circuit for a sensing electrode array is described. The control circuit for the sensing electrode array includes a signal intensity analyzer, an intensity-to-phase frequency converter, and a phase frequency analyzing unit. The signal intensity analyzer obtains an intensity signal corresponding to a sensing signal of each sensing line of the sensing electrode array, wherein each intensity signal is a direct-current signal. The intensity-to-phase frequency converter generates a phase frequency signal based on the intensity signal. At least the phase or the frequency of the phase frequency signal is related to the level of the corresponding intensity signal. The phase frequency analyzing unit obtains a signal magnitude of the corresponding sensing line according to each phase frequency signal. The control circuit for the sensing electrode array enhances the operating speed and the signal-to-noise ratio of the touch control sensing system without increasing the manufacturing cost.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 14, 2014
    Assignee: TPK Touch Solutions Inc.
    Inventors: Chun-Hsueh Chu, Jui-Jung Chiu
  • Patent number: 8855258
    Abstract: A system and method are provided for resynchronizing a transmission signal using a jitter-attenuated clock derived from an asynchronous gapped clock. A first-in first-out (FIFO) memory accepts an asynchronous gapped clock derived from a first clock having a first frequency. The gapped clock has an average second frequency less than the first frequency. The input serial stream of data is loaded at a rate responsive to the gapped clock. A dynamic numerator (DN) and dynamic denominator (DD) are iteratively calculated for the gapped clock, averaged, and an averaged numerator (A and an averaged denominator (AD) are generated. The first frequency is multiplied by the ratio of AN/AD to create a jitter-attenuated second clock having the second frequency. The FIFO memory accepts the jitter-attenuated second clock and supplies data from memory at the second frequency. A framer accepts the data from the FIFO memory and the jitter-attenuated second clock.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: October 7, 2014
    Assignee: Applied Micro Circuits Corporation
    Inventors: Viet Do, Simon Pang
  • Patent number: 8855192
    Abstract: Disclosed is a method, circuit and system for transmission of video data between a video source and a video sink. A video source transceiver may include: (1) a video source interface for receiving video data, optionally including one or more video synchronization signals functionally associated video source device; (2) a video source clock sampler for sampling a video clock parameter of received video data; (3) a video data buffer for buffering received video data prior to transmission; and (4) a video transmission circuit including packet size timing logic adapted to generate and transmit to a functionally associated video sink transceiver a value correlated to an expected data packet size based on video data stored in the video buffer.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 7, 2014
    Assignee: Amimon, Ltd.
    Inventor: Ariel Sagi
  • Patent number: 8855179
    Abstract: On-chip at-speed eye measurements of digitized signals in data and timing recovery circuits are disclosed. Eye diagrams and jitter measurements are used to evaluate signal quality and bath-tub Bit Error Rate characteristics in baseband communication systems. This disclosure describes a method and apparatus for digitally sampling a received signal at speed to produce an eye diagram of the received signal. This involves adding a small amount of circuitry to the existing prior art systems that use an interpolator for timing recovery and data recovery. In the present disclosure a temporary offset is applied to the interpolation index of the interpolator to obtain interpolated samples between the baud center and baud edge. The eye diagram can be produced from the received digitized and interpolated signal before equalization, or alternatively from the equalized signal.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 7, 2014
    Assignee: PMC-Sierra US, Inc.
    Inventor: Aryan Saed
  • Publication number: 20140294133
    Abstract: A method for frequency synchronization of a multiport device may include recovering a clock frequency of a master port of a first device that is linked to the multiport device at a slave port of the multiport device. A clock frequency of the slave port may be locked to the recovered-clock frequency of the master port of the first device. Frequency data may be stored in a first frequency register associated with the slave port. The stored frequency data may include a difference between the recovered-clock frequency of the master port of the first device and a local-clock frequency of the multiport device. A clock frequency of one or more master ports of the multiport device may be synchronized with the locked clock frequency of the slave port by coupling the first frequency register to frequency registers associated with one or more master ports.
    Type: Application
    Filed: May 8, 2013
    Publication date: October 2, 2014
    Applicant: BROADCOM CORPORATION
    Inventors: Ahmad CHINI, Mehmet Vakif TAZEBAY
  • Patent number: 8848851
    Abstract: An output signal adjustment system includes a signal adjustment unit, a reference slope generating unit, a slope detecting unit, a voltage-to-current conversion unit, and a control unit. The slope detecting unit compares the slope of the rising and falling edges of the output signal of the reference slope generating unit with that of the signal adjustment unit and outputs a voltage signal. The voltage-to-current conversion unit converts the voltage signal into a current signal. Based on the current signal, the control unit outputs a control signal for controlling the adjustment of the signal adjustment unit to the slope of the rising and falling edges of the output signal. The output signal adjustment system can automatically adjust the slope of the rising and falling edges of the output signal, so that the output signal is insensitive to the packaging, the printed circuit board, the transmission line and other sender loads.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: September 30, 2014
    Assignee: IPGoal Microelectronics (SIChuan) Co., Ltd.
    Inventors: Zhaolei Wu, Guosheng Wu
  • Publication number: 20140286470
    Abstract: A clock and data recovery circuit includes: a first current source configured to supply a charge current through a first signal line; a second current source configured to supply a discharge current through a second signal line; a loop filter configured to convert the charge current into a first voltage signal and output the first voltage signal through a third signal line, and to convert the discharge current into a second voltage signal and output the second voltage signal through a fourth signal line; a voltage control oscillator configured to be controlled in frequency; and a phase detector configured to receive a data signal from outside and receive a clock signal from the voltage control oscillator, and to supply a control signal to each of the first current source and the second current source, and generate a recovery clock signal and a recovery data signal.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 25, 2014
    Applicant: Sony Corporation
    Inventors: Zhiwei Zhou, Takashi Masuda, Tetsuya Fujiwara
  • Patent number: 8842783
    Abstract: A method of accelerated carrier signal acquisition for a digital communication receiver, the method comprising receiving a carrier signal by a receiver comprising a carrier recovery loop (CRL), setting the CRL to an open loop setting using a processor, setting a numerically controlled oscillator (NCO) within the CRL at a center frequency of the NCO, determining, by the processor, one or more initial parameters of the CRL, calculating an estimate and polarity for a sign frequency detection frequency using a sign frequency detector while simultaneously estimating a Fast Fourier Transform (FFT) frequency by running an FFT using the processor, comparing polarities of the estimates of the sign frequency detection frequency and FFT frequency and determining a frequency offset using the processor, and adjusting one or more parameters of the CRL based on the frequency offset using the processor.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: September 23, 2014
    Assignee: Comtech EF Data Corp.
    Inventor: Lazaro F. Cajegas, III
  • Patent number: 8842794
    Abstract: A method of communication to a semiconductor device includes: transmitting a sampling clock signal from a first semiconductor device to a second semiconductor device; transmitting a training signal from the first semiconductor device to the second semiconductor device while transmitting of the sampling clock signal, the training signal comprising plural test patterns sent sequentially to the second semiconductor device, phases of at least some of the test patterns being adjusted to be different from each other during transmitting of the training signal; receiving first information from the second semiconductor device over a first signal line, the first signal line separate from a data bus connected between the first semiconductor device and the second semiconductor device; and transmitting a data signal over the data bus while transmitting the sampling clock signal, the data signal sent at a timing with respect to the sampling clock signal responsive to the received first information.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: September 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jun Bae, Seong-Jin Jang, Beom-Sig Cho
  • Publication number: 20140270033
    Abstract: An integrated circuit device may have an internal oscillator for generating a system clock, a trimming logic with a trimming register for adjusting an oscillation frequency of the internal oscillator; a serial data receiver, wherein a serial data stream includes a synchronization signal. The synchronization signal is operable to indicate that the system clock correct, too fast or too slow. The device may further have a circuit for decoding the synchronization signal operable to re-adjust a value stored in the trimming register upon evaluation of the synchronization signal.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventor: Patrick Kelly Richards
  • Publication number: 20140270032
    Abstract: Techniques for detecting and correcting phase discontinuity of a local oscillator (LO) signal are disclosed. In one design, a wireless device includes an LO generator and a phase detector. The LO generator generates an LO signal used for frequency conversion and is periodically powered on and off. The phase detector detects the phase of the LO signal when the LO generator is powered on. The detected phase of the LO signal is used to identify phase discontinuity of the LO signal. The wireless device may further include (i) a single-tone generator that generates a single-tone signal used to detect the phase of the LO signal, (ii) a downconverter that downconverts the single-tone signal with the LO signal and provides a downconverted signal used by the phase detector to detect the phase of LO signal, and (iii) phase corrector that corrects phase discontinuity of the LO signal in the analog domain or digital domain.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Li Liu, Praveen-Kumar Sampath, Lai Kan Leung, Chiewcharn Narathong, Soon-Seng Lau, Ketan Humnabadkar, Raghu Narayan Challa, Devavrata Vasant Godbole
  • Patent number: 8836387
    Abstract: Methods and systems for compensating reducing jitter produced by a phase-locked loop are disclosed. For example, in a particular embodiment, a phase-locked loop device for reducing jitter may include a voltage-control oscillator (VCO) signal configured to produce a VCO signal, phase-detection circuitry configured to compare an input signal and the VCO signal to produce a phase error signal, and slew-rate limiting circuitry configured to receive the phase error signal and apply a slew-rate limit process on the phase error signal to produce a modified error signal.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: September 16, 2014
    Assignee: Marvell International Ltd.
    Inventors: Jin Xie, Bin Ni, Mats Oberg
  • Patent number: 8836391
    Abstract: A method for plesiochronous clock generation for parallel wireline transceivers, includes: inputting, into at least one decoder, at least one digital frequency mismatch number; decoding, with the at least one decoder, the at least one digital frequency mismatch number to obtain at least one digital frequency divider number that represents a transmit frequency associated with at least one signal; inputting the at least one digital frequency divider number into at least one fractional-N phase lock loop; and utilizing, by the at least one fractional-N phase lock loop, the at least one digital frequency divider number and an analog reference signal produced by a reference oscillator to produce a resultant signal at the transmit frequency; wherein the at least one decoder and the at least one fractional-N phase lock loop are contained on a single integrated circuit.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: September 16, 2014
    Assignee: Xilinx, Inc.
    Inventors: Parag Upadhyaya, Jafar Savoj, Anthony Torza
  • Patent number: 8837657
    Abstract: A circuit can include an input section configured to store a data signal in response to phase shifted clocks to generate a plurality of sample values; an output section configured to store one of the sample values; and a logic section configured to selectively output one of the sample values to the output section in response to the sample values and a previous sampled value stored in the output section.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 16, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventor: Mezyad Amourah
  • Patent number: 8837660
    Abstract: A system, method, and apparatus for handling transition errors is presented herein. The transition errors include handling unreported time base discontinuities during trick mode transition, miscalculated time stamps during trick mode transition, erroneous sequence end codes, and unreported broken group of picture transmission. Unreported time base discontinuities are detected by comparing the program clock reference (PCR) value of the data packet to the system time clock (STC). If the difference exceeds a predetermined threshold, the STC is set to the PCR value. Miscalculated time stamps are detected by examining the difference in PTS values between temporally adjacent data packets. If the difference is not within a margin of error from predetermined value, the PTS is disabled. Unreported broken groups of pictures are handled by skipping the first two B-frames of the first group of pictures following a trick mode transition.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Broadcom Corporation
    Inventors: Xuemin Chen, Jiang Fu, David P. Bogosh
  • Publication number: 20140254735
    Abstract: A network processor is described that includes a network reference clock processor module for providing an at least substantially low-jitter, low-wander reference signal. In one or more embodiments, the network reference clock processor module includes a digital phase locked loop configured to at least substantially attenuate a wander noise portion from a reference signal. The network reference clock processor module also includes an analog phase locked loop communicatively coupled to the digital phase locked loop and configured to receive the reference signal from the digital phase locked loop. The analog phase locked loop is configured to attenuate a jitter noise portion having a first frequency characteristic from the reference signal and to provide the reference signal to a transceiver communicatively coupled to the analog phase locked loop. The transceiver is configured to attenuate a jitter noise portion having a second frequency characteristic from the reference signal.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 11, 2014
    Applicant: LSI CORPORATION
    Inventors: Shashank Nemawarkar, Gregory E. Beers, Paul S. Bedrosian, Mark A. Bordogna, Hong Wan
  • Publication number: 20140254734
    Abstract: Described is an integrated circuit (IC) with apparatus for dynamically adapting a clock generator, e.g., phase locked loop (PLL), with respect to changes in power supply. The apparatus comprises: a voltage droop detector coupled to power supply node, the voltage droop detector to generate a digital code word representing voltage droop on the power supply node; and a PLL including a ring oscillator coupled to the power supply node, the ring oscillator to generate an output clock signal, the ring oscillator operable to adjust frequency of the output clock signal according to the digital code word.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Inventors: Mohamed A. Abdelmoneum, Nasser A. Kurd, Amr M. Lotfy, Mamdouh O. Abd El-Mejeed, Mohamed A. Abdelsalam
  • Patent number: 8829958
    Abstract: An integrated circuit (“IC”) may include clock and data recovery (“CDR”) circuitry for recovering data information from an input serial data signal. The CDR circuitry may include a reference clock loop and a data loop. A retimed (recovered) data signal output by the CDR circuitry is monitored by other control circuitry on the IC for a communication change request contained in that signal. Responsive to such a request, the control circuitry can change an operating parameter of the CDR circuitry (e.g., a frequency division factor used in either of the above-mentioned loops). This can help the IC support communication protocols that employ auto-speed negotiation.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: September 9, 2014
    Assignee: Altera Corporation
    Inventors: Kazi Asaduzzaman, Tim Tri Hoang, Tin H. Lai, Shou-Po Shih, Sergey Shumarayev
  • Patent number: 8830001
    Abstract: A new all digital PLL (ADPLL) circuit and architecture and the corresponding method of implementation are provided. The ADPLL processes an integer and a fractional part of the phase signal separately, and achieves power reduction by disabling circuitry along the integer processing path of the circuit when the ADPLL loop is in a locked state. The integer processing path is automatically enabled when the loop is not in lock. Additional power savings is achieved by running the ADPLL on the lower-frequency master system clock, which also has the effect of reducing spur levels on the signals.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: September 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Jingcheng Zhuang, Robert Bogdan Staszewski
  • Patent number: 8824616
    Abstract: In an example, the phase interpolator (PI) is provided to adjust the phase of a clock such that the phase is aligned to an incoming data pattern from a data stream. The data can be captured from a device such as a flip-flop or the like. The present technique uses a PI (digital to phase) and a digital state machine in a feedback loop to set the correct digital code to the PI inputs to achieve an appropriate clock phase. Of course, there can be variations.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 2, 2014
    Assignee: Inphi Corporation
    Inventor: Karthik S. Gopalakrishnan
  • Patent number: 8823416
    Abstract: A phase detector for a phase-locked loop includes a phase detector that is configured to become unstable, oscillate and drift rapidly in frequency in a predictable manner when a reference frequency signal is not available. When applied, for example, to a power converter connected to a power distribution grid, the predictable oscillatory and rapid frequency drift behavior when the phase detector is unstable allows very rapid and reliable detection of disconnection from the grid, referred to as islanding.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 2, 2014
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Timothy N. Thacker, Dushan Boroyevich, Fred Wang, Rolando Burgos
  • Patent number: 8824615
    Abstract: A frequency tracking circuit is disclosed. The frequency tracking circuit includes an edge selector, a phase-frequency processor and a digital controlled oscillator. The edge selector receives a data signal and feedback clock signal and sequentially outputs a data edge signal and a feedback-clock-edge signal. The phase-frequency processor receives the data edge signal and the feedback-clock-edge signal and outputs a frequency adjusting digital signal after executing differential operation according to a first phase difference and a second phase difference. The digital controlled oscillator receives the frequency adjusting digital signal so as to adjust frequency of the feedback clock signal. The phase-frequency processor outputs a frequency tracking signal to the edge selector, wherein the edge selector utilizes the frequency tracking signal for acquiring the data edge signal and utilizes the data edge signal for acquiring the feedback-clock-edge signal.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 2, 2014
    Assignee: National Taiwan University
    Inventors: Tsung-Hsien Lin, Cheng-En Liu, Chen-Chien Lin, Wei-Hao Chiu, Sung-Lin Tsai
  • Patent number: 8824612
    Abstract: Apparatuses, circuits, and methods are disclosed for reducing or eliminating unintended operation resulting from metastability in data synchronization. In one such example apparatus, a sampling circuit is configured to provide four samples of a data input signal. A first and a second of the four samples are associated with a first edge of a latching signal, and a third and a fourth of the four samples are associated with a second edge of the latching signal. A masking circuit is configured to selectively mask a signal corresponding to one of the four samples responsive to the four samples not sharing a common logic level. The masking circuit is also configured to provide a decision signal responsive to selectively masking or not masking the signal.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: September 2, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Yantao Ma
  • Patent number: 8824591
    Abstract: A method and system for synchronous transfer of bitstream data between a power-driver chip and a digital signal processing chip in a digital radio frequency transmit system is disclosed. A master phase-locked-loop located in the power-driver chip is utilized to provide master clocking control for the digital radio frequency transmit system. Furthermore, the clocking method and system is configurable to secure precise carrier frequency positioning of a digitally-generated radio frequency signal based on predetermined chip frequencies unrelated to the carrier frequency, assuring low bitstream phase noise at the output of the power driver chip.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: September 2, 2014
    Assignee: LSI Corporation
    Inventors: Ross S. Wilson, Said E. Abdelli, Peter Kiss, Donald R. Laturell, James F. MacDonald
  • Publication number: 20140241467
    Abstract: A phase locked loop frequency synthesizer has a controlled oscillator for generating an output signal at a desired frequency, a phase/frequency detector module for comparing a feedback signal derived from the controlled oscillator with a reference signal to generate an error signal, a loop filter for processing said at least one error signal from said phase/frequency detector module to generate a combined control signal for the controlled oscillator. The gain of the phase/frequency detector module can be adjusted, preferably by varying the pulse width and pulse cycle, to maintain the overall gain of the phase locked loop within a given range and thereby maximize signal to noise ratio.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: Microsemi Semiconductor ULC
    Inventors: Jun Steed Huang, Guohui Kobe Situ
  • Publication number: 20140240371
    Abstract: A phase locked loop includes a voltage controlled oscillator including a plurality of delay cells configured to respectively generate a plurality of clock signals having different phases and a harmonic lock detector configured to detect harmonic lock in the voltage controlled oscillator and to generate a reset signal in response. Remaining ones of the delay cells other than a first delay cell among the plurality of delay cells are reset in response to the reset signal.
    Type: Application
    Filed: February 17, 2014
    Publication date: August 28, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Woon Taek Oh, Jin Ho Kim, Tae Jin Kim, Jae Youl Lee, Young Hwan Chang
  • Patent number: 8816777
    Abstract: A microwave synthesizer is disclosed that may generate low phase noise and high frequency resolution microwave signals The microwave synthesizer may include a coarse-tuning loop, the coarse-tuning loop may be adopted to generate a first signal with coarsely adjustable frequency. The coarse-tuning loop may have a first voltage controlled oscillator (VCO). An output loop, the output loop may be adopted to generate a second signal with finely adjustable frequency. The output loop may have a second VCO. A frequency mixer may be configured to couple the coarse-tuning loop and the output loop. A frequency mixer may be adopted to subtract the first and second signals. A reference frequency source may be coupled to the coarse-tuning loop and the output loop to provide reference signal for the microwave synthesizer.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 26, 2014
    Inventor: Tomany Szilagyi
  • Patent number: 8816776
    Abstract: An apparatus comprises a clock and data recovery system, and a loss of lock detector at least partially incorporated within or otherwise associated with the clock and data recovery system. The loss of lock detector is configured to generate a loss of lock signal responsive to phase adjustment requests generated for a clock signal in the clock and data recovery system. By way of example, the loss of lock signal may have a first logic level indicative of the phase adjustment requests occurring at a first rate associated with a lock condition and a second logic level indicative of the phase adjustment requests occurring at a second rate lower than the first rate. Absolute values of respective phase increments each associated with multiple up and down phase requests may be accumulated, and the loss of lock signal generated as a function of the accumulated phase increment absolute values.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: August 26, 2014
    Assignee: LSI Corporation
    Inventors: Vladimir Sindalovsky, Mohammad S. Mobin, Lane A. Smith
  • Patent number: 8810291
    Abstract: The PLL includes a voltage-controlled oscillator (VCO), a frequency down conversion circuit, a phase-frequency detector (PFD), and an adjusting circuit. The VCO is configured to generate an output clock signal. The frequency down conversion circuit is configured to receive the output clock signal and an auxiliary clock signal, and to mix the output clock signal and the auxiliary clock signal to generate a feedback clock signal. By detecting the strength of the feedback clock signal, it provides an auxiliary signal to adjust the frequency of the output clock signal. The PFD is configured to compare the frequencies and the phases of the feedback clock signal and a reference clock signal to generate an adjusting signal. The adjusting circuit is configured to receive the adjusting signal, and to adjust the frequency of the output clock signal generated by the VCO according to the adjusting signal.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: August 19, 2014
    Assignee: National Chiao Tung University
    Inventors: Wei-Zen Chen, Yan-Ting Wang