Phase Locked Loop Patents (Class 375/376)
  • Patent number: 11652561
    Abstract: An integrated circuit has a transceiver circuit and a memory circuit. The transceiver circuit includes stage circuits that each perform at least one function specified by a data transmission protocol. The transceiver circuit is coupled to receive packets of timing test patterns. Each of the stage circuits in the transceiver circuit generates a timestamp in response to receiving each of the packets of timing test patterns. Each of the stage circuits in the transceiver circuit generates a trigger indicating receipt of a predefined reference point in each of the packets of timing test patterns. The memory circuit stores each of the timestamps generated by the stage circuits in response to a respective one of the triggers and outputs the timestamps for analysis.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Han Hua Leong, Sita Rama Chandrasekhar Mallela, Muhammad Kazim Hafeez, Ming-Shiung Chen, Anuj Agrawal
  • Patent number: 11646743
    Abstract: A digital phase-locked loop (PLL) includes a time-to-digital converter (TDC) and a digitally controlled oscillator (DCO). The DCO generates a PLL clock signal and various sampling clock signals that are mesochronous. The TDC samples a phase difference between a reference clock signal and a frequency-divided version of the PLL clock signal based on the sampling clock signals and various enable signals. The enable signals are generated based on a calibration of the digital PLL. Each enable signal is associated with a sampling clock signal and indicates whether the associated sampling clock signal is to be utilized for sampling the phase difference. Further, the TDC generates control data indicative of the sampled phase difference. The DCO generates the PLL clock signal and the sampling clock signals based on the control data until the digital PLL is in a phase-locked state.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: May 9, 2023
    Assignee: NXP USA, Inc.
    Inventors: Pawan Sabharwal, Anand Kumar Sinha, Krishna Thakur, Deependra Kumar Jain
  • Patent number: 11609262
    Abstract: An integrated circuit die includes a core fabric configurable to include an aging measurement circuit and a device manager coupled to the core fabric to operate the aging measurement circuit for a select period of time. The aging measurement circuit includes a counter to count transitions of a signal propagating through the aging measurement circuit during the select period of time when the aging measurement circuit is operating. The transitions of the signal counted by the counter during the select period of time are a measure of an aging characteristic of the integrated circuit die.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Dheeraj Subbareddy, Ankireddy Nalamalpu, Mahesh A. Iyer, Dhananjay Raghavan
  • Patent number: 11588608
    Abstract: A device includes a transmitter to transmit serialized data within a differential direct-current (DC) signal over a differential output line, a multiplexer circuit coupled to the transmitter, and a calibration circuit coupled between the differential output line, a multi-phase clock, and the multiplexer circuit. The multiplexer circuit is to select the serialized data from ones of multiple input lines according to a multi-phase clock and pass the selected serialized data to the transmitter. The serialized data includes a calibration bit pattern. The calibration circuit is to capture and digitize the differential DC signal into a digital stream, measure an error value from the digital stream that is associated with distortion based on the calibration bit pattern, convert the error value into a gradient value, and correct one or more phases of the multi-phase clock to compensate for the distortion based on the gradient value.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 21, 2023
    Assignee: NVIDIA Corporation
    Inventors: Venkatraman Natarajan, Arif Amin, Dai Dai, Olakanmi Oluwole, Shashank Mahajan
  • Patent number: 11581971
    Abstract: Systems and methods for implementing a software emulation of a clock calibrated by the software based on sampling a hardware clock.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: February 14, 2023
    Assignee: ARRIS Enterprises LLC
    Inventors: Vasudevan Jothilingam, Kumara Swamy Tadikavagilu Venkatappa
  • Patent number: 11575498
    Abstract: A clock and data recovery circuit includes a voltage controlled oscillator, a frequency detector and a control circuit. The voltage controlled oscillator is configured to generate a clock signal according to a voltage signal. The frequency detector is configured to detect whether increasing a frequency of the clock signal is required according to a plurality of sampling results of the input data signal and accordingly generate a first up control signal. The control circuit is coupled to the voltage controlled oscillator and the frequency detector and configured to adjust the voltage signal according to the first up control signal. The clock and data recovery circuit operates in a data recovery mode after detecting that the frequency of the clock signal is locked, and the frequency detector is configured to detect whether increasing the frequency of the clock signal is required in the data recovery mode.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: February 7, 2023
    Assignee: HIMAX TECHNOLOGIES LIMITED
    Inventor: Meng-Chih Weng
  • Patent number: 11571261
    Abstract: Disclosed is a system for assisting in guiding and performing a procedure on a subject. The subject may be any appropriate subject such as inanimate object and/or an animate object. The guide and system may include various manipulable or movable members, such as robotic systems, and may be registered to selected coordinate systems.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: February 7, 2023
    Assignee: Medtronic Navigation, Inc.
    Inventors: Leo Bredehoft, Brad Jacobsen, Shai Ronen
  • Patent number: 11563607
    Abstract: A transmitter is disclosed. The transmitter includes a clock configured to generate one or more output clock signals. The transmitter further includes at least one frequency divider configured to generate a plurality of divided frequencies based on the one or more output clock signals, and a modulator. The transmitter also includes at least one antenna or transducer configured to transmit modulated data. The transmitter includes a memory configured to store instructions, and at least one processor configured to execute instructions performing operations including mapping data to a decimal code value of a plurality of decimal code values, converting the decimal code value to a shrinking base system, and selecting a set of frequencies among the plurality of divided frequencies based on the code value corresponding to the shrinking base system for the decimal code value. The modulator may be configured to modulate the decimal code value using the set of frequencies.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: January 24, 2023
    Assignee: Forkbeard Technologies AS
    Inventor: Wilfred Edwin Booij
  • Patent number: 11555851
    Abstract: An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (??) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ?? TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ?? TDCs are connected to one another in a MASH type configuration to provide the MASH type high-order ?? TDC, wherein the MASH type high-order ?? TDC is configured to measure the phase noise of a device under text (DUT).
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: January 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 11550354
    Abstract: Systems and methods are provided for a clock generator is configured to generate N clock signals evenly spaced by phase. A clock generator includes a poly phase filter configured to utilize a differential clock signal to generate N intermediate signals, the intermediate signals being spaced approximately 360/N degrees apart in phase. A phase error corrector is configured to receive the intermediate signals and to generate N clock output signals, where a phase error is a measure of a difference in phase between consecutive ones of the clock output signals from 360/N degrees, the phase error corrector being configured to reduce phase error among the clock output signals based on a feedback signal. A phase error detection circuit is configured to receive the clock output signals and to generate the feedback signal based on detected phase errors among the clock output signals.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: January 10, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Wei Chih Chen
  • Patent number: 11528016
    Abstract: A low latency comparator circuit with a local clock circuit is disclosed. A comparator circuit configured to compare a first input signal to a second input signal. The comparator circuit includes at least one regenerative latch circuit having a first and second inputs configured to receive the first and second input signals, respectively. The comparator circuit further includes a clock circuit configured to generate and provide a clock signal exclusively to circuitry in the comparator circuit, including the at least one regenerative latch circuit. At least one output latch circuit coupled to the at least one regenerative latch circuit and configured to provide a first output signal indicative of a comparison of the first and second input signals.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: December 13, 2022
    Assignee: Apple Inc.
    Inventors: Mehrdad Heshami, Jafar Savoj
  • Patent number: 11514971
    Abstract: A memory controller includes a clock signal generator generating a clock signal; a first data receiving circuit receiving a serial signal having a plurality of logic values from a memory, using the serial signal to compensate for a phase error of the clock signal, and generating a phase-compensated clock signal as a first clock signal; and at least one second data receiving circuit receiving data from the memory, receiving the first clock signal from the first data receiving circuit, and using the first clock signal to recover the data.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: November 29, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kihwan Seong, Soomin Lee, Sanghune Park
  • Patent number: 11509411
    Abstract: The disclosure relates to method and system for correcting a clock skew in a slave device using a precision time protocol (PTP). The method includes determining an uplink delay and a downlink delay, based on at least two packet transactions in the PTP protocol and conducted between the slave device and a master device within a pre-defined accumulator time window. The method further includes determining a change in the uplink/downlink delay with respect to a reference uplink/downlink delay. The reference uplink/downlink delay correspond to a first pre-defined accumulator time window at a start of the slave device, or to a last pre-defined accumulator time window during a previous correction of the clock skew. The method further includes correcting the clock skew upon determining the change in the uplink delay to be about same in magnitude as and to be in opposite direction to the change in the downlink delay.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: November 22, 2022
    Assignee: Wipro Limited
    Inventor: Jimmy Vincent
  • Patent number: 11500770
    Abstract: According one embodiment, a memory device controlling method includes: receiving, by a first semiconductor memory, a read command transmitted from a controller; receiving, by a second semiconductor memory, a write command transmitted from the controller; reading, by the first semiconductor, data from the first semiconductor memory based on the read command, and transmitting, from the first semiconductor memory to the second semiconductor memory, the data and a control signal indicating that the data is output; and receiving, by the second semiconductor memory, the data at a timing based on the control signal transmitted from the first semiconductor memory without intermediation of the controller based on the write command and writing the received data into the second semiconductor memory.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: November 15, 2022
    Assignee: Kioxia Corporation
    Inventors: Kosuke Yanagidaira, Shouichi Ozaki
  • Patent number: 11489531
    Abstract: The invention relates to a device for synchronizing a periodic high frequency power signal (18) and an external reference signal (10). The device comprises a phase control circuit (100) and a digital oscillator circuit (130). The digital oscillator circuit (130) is connected to the phase control circuit (100). The digital oscillator circuit (130) comprises means for generating the periodic high frequency power signal (18) dependent on the control signal from the phase control circuit. The phase control circuit (100) is configured to determine a phase difference of the periodic high frequency power signal (18) and the external reference signal (10).
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: November 1, 2022
    Assignee: COMET AG
    Inventors: Manuel vor dem Brocke, Roland Schlierf, André Grede, Daniel Gruner
  • Patent number: 11469877
    Abstract: Some examples described herein provide an integrated circuit comprising an auxiliary clock and data recovery (CDR) circuitry. The CDR circuitry is configured to oversample an incoming data signal and generate a locked clock signal. The auxiliary CDR circuitry may comprise a phase-locked loop (PLL) configured to receive the incoming data signal and generate the locked clock signal. The PLL may comprise a phase detector (PD) configured to receive the incoming data signal and capture a number of samples of the incoming data signal in response to a number of adjacent clock signals and minimum data transition thresholds implemented by an intersymbol interference (ISI) filter, the minimum data transition thresholds identifying minimum data transitions in the incoming data signal.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: October 11, 2022
    Assignee: XILINX, INC.
    Inventors: Mayank Raj, Parag Upadhyaya
  • Patent number: 11467014
    Abstract: A fluid flow meter system for monitoring fluid flow through a lumen includes a first ultrasonic transducer configured to transmit one or more versions of a transmit (TX) signal through a fluid flowing within the lumen, and a second ultrasonic transducer configured to receive one or more respective receive (RX) signals. The fluid flow meter system includes an analog-to-digital converter (ADC) configured to sample, at a first frequency, the one or more RX ultrasonic signals and a processor configured to generate a fine resolution signal based on the one or more RX ultrasonic signals. The fine resolution signal is associated with a second sampling rate higher than the first sampling rate. The processor is also configured to compute a cross-correlation signal indicative of cross-correlation between the fine resolution signal and a waveform and determine an estimated fluid flow parameter based on the computed cross-correlation signal.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: October 11, 2022
    Assignee: StreamLabs, Inc.
    Inventor: Brian Gestner
  • Patent number: 11460878
    Abstract: According to one embodiment, an interface system includes a receiver, a first clock generator, a second clock generator, and a sampling circuit. The receiver is configured to receive a first clock and serial data from a host. The first clock generator includes a first voltage controlled oscillator (VCO) and is configured to generate a second clock on the basis of the first clock. The second clock generator includes a second voltage controlled oscillator (VCO) and is configured to generate a third clock on the basis of the serial data. The sampling circuit is configured to sample reception data on the basis of the third clock and the serial data.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: October 4, 2022
    Assignee: Kioxia Corporation
    Inventors: Toshitada Saito, Akihisa Fujimoto
  • Patent number: 11463093
    Abstract: Circuits, controllers, and techniques are provided for reducing non-linearities in a phase rotator. A circuit, according to one implementation, includes a single Phase-Locked Loop (PLL) circuit having a main path and a return path forming a feedback loop. The circuit also includes one or more phase rotators connected to an output of the single PLL circuit outside the feedback loop and one or more adaptable Look-Up Tables (LUTs) populated with operating code to be provided to the one or more phase rotators for defining operating characteristics of the one or more phase rotators. Furthermore, the circuit includes a control device configured to receive phase response characteristics from the one or more phase rotators. The control device is further configured to modify the operating code of the one or more adaptable LUTs based on the phase response characteristics to reduce non-linearities of the one or more phase rotators.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: October 4, 2022
    Assignee: Ciena Corporation
    Inventors: Jerry Yee-Tung Lam, Sadok Aouini, Naim Ben-Hamida
  • Patent number: 11456851
    Abstract: A clock data recovery circuit includes a phase locked loop (PLL), a code signal generator, and a clock and data generator. The PLL generates a plurality of reference clock signals of which frequencies are modulated. Each of the plurality of reference clock signals has a first profile that is periodically fluctuated. The code signal generator generates a first compensation code signal. The first compensation code signal has a second profile that is periodically fluctuated and is different from the first profile. The clock and data generator generates a recovered data signal by sampling an input data signal based on a clock signal, compensates a frequency modulation on the plurality of reference clock signals based on the first compensation code signal, and includes a phase interpolator that generates the clock signal based on the plurality of reference clock signals and the first compensation code signal.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: September 27, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hanseok Kim, Hobin Song, Jaehyun Park
  • Patent number: 11455927
    Abstract: The present disclosure relates to a data processing device, a data driving device, and a system for driving a display device, and more particularly, to a data processing device, a data driving device, and a system for speeding up data communication in a display device.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: September 27, 2022
    Assignee: SILICON WORKS CO., LTD.
    Inventors: Do Seok Kim, Yong Hwan Mun, Myung Yu Kim, Hyun Pyo Cho
  • Patent number: 11444626
    Abstract: A phase-locked loop (PLL) includes a phase-frequency detector (PFD) having a first PFD input, a second PFD input, and a PFD output. The PFD is configured to generate a first signal on the PFD output. The first signal comprises pulses having pulse widths indicative of a phase difference between signals on the first and second PFD inputs. A low pass filter (LPF) has an LPF input and an LPF output. The LPF input is coupled to the PFD output. A flip-flop has a clock input and a flip-flop output. The clock input is coupled to the LPF output. A lock-slip control circuit is coupled to the flip-flop output and to the first PFD input. The lock-slip control circuit is configured to determine phase-lock and phase-slip based at least in part on a signal on the flip-flop output.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: September 13, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shailesh Ganapat Ghotgalkar, Wei Fu, Venkatseema Das, Jiankun Hu
  • Patent number: 11444627
    Abstract: A system and method for accurately determining a distance between two network devices using a Channel Sounding application is disclosed. The network devices each guarantee a fixed phase relationship between the transmit circuit and the receive circuit. In one embodiment, this is achieved by incorporating the divider within the phase locked loop. The divider may have a reset, such that it can be initialized to a predetermined state. Further, by utilizing a divider disposed within the phase locked loop with a reset, the quadrature signal generator is guaranteed to output clocks for the transmit circuit and the receive circuit that have a constant phase relationship.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: September 13, 2022
    Assignee: Silicon Laboratories, Inc.
    Inventors: Rangakrishnan Srinivasan, Michael Wu, Francesco Barale, John Khoury, Aslamali A. Rafi
  • Patent number: 11444802
    Abstract: A circuit has a driver circuit with a slew-rate controller, an output stage and a monitoring circuit. The output stage is connected to a first bus line and to a second bus line, and the driver circuit is designed to control the output stage on the basis of a first logic signal in such a manner that a corresponding bus voltage is produced between the first bus line and the second bus line. The slew-rate controller is coupled to the driver circuit and is designed to set a slew rate of the driver circuit on the basis of an input signal. The monitoring circuit is designed to generate the input signal for the slew-rate controller, wherein the input signal indicates a higher slew rate during an arbitration phase of a data frame contained in the first logic signal than during a data transmission phase of the data frame.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: September 13, 2022
    Assignee: Infineon Technologies AG
    Inventor: Jens Repp
  • Patent number: 11437981
    Abstract: A temperature compensated, auto tunable, frequency locked loop oscillator includes, in one embodiment, an oscillator configured to generate a clock-signal with a frequency fclk based on a control voltage vc, and a frequency-to-voltage (f/v) converter coupled to the oscillator, which is configured to generate a first voltage vfb with a magnitude based on frequency fclk. A controller is also included and coupled between the oscillator and the f/v converter. The controller is configured to control the magnitude of the control voltage vc based on the first voltage vfb.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 6, 2022
    Assignee: NXP B.V.
    Inventors: Domenico Liberti, Neil Edward Birns, Andre Gunther, Rob Cosaro
  • Patent number: 11438134
    Abstract: Embodiments of this application disclose example phase detection methods, phase detection circuits, and clock recovery apparatuses. One example method includes receiving a first signal and deciding a (2M?1) level of the first signal to obtain a decision result, where the first signal is a (2M?1)-level signal, and M is a positive integer. A response amplitude parameter of a transmission channel can then be obtained. Clock phase information in the first signal can then be extracted based on the first signal, the decision result, and the response amplitude parameter. Output clock phase information can then be determined based on at least three decision results and at least three pieces of clock phase information in at least three symbol periods.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: September 6, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Yuchun Lu
  • Patent number: 11424903
    Abstract: A clock recovery circuit may include a first circuit to produce an output signal that is a logical combination of an edge detection signal and a clock signal. At least some transitions in the edge detection signal may correspond to transitions in a set of data signals. The clock recovery circuit may also include a second circuit to average the output signal to produce a voltage, and a third circuit to add a variable delay to the clock signal based on the voltage.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: August 23, 2022
    Assignee: Synopsys, Inc.
    Inventor: Marcin Pawel Kowalewski
  • Patent number: 11418205
    Abstract: In accordance with an embodiment, a method of operating a fractional-N phase locked loop (FN-PLL) includes: dividing a first clock signal using a multi-modulus divider (MMD) based on a modulus control signal to form a frequency-divided clock signal, where the first clock signal is based on an output clock of the PLL; generating the modulus control signal based on a divider control input value using a delta-sigma modulator (DSM); and when a fractional portion of the divider control input value is within a first range of values, and repeatedly removing a first number of clock cycles from the first clock signal before dividing the first clock signal using the MMD, where the first number of clock cycles is a non-integer number of clock cycles.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: August 16, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Andreas Schwarz, Dmytro Cherniak, Luigi Grimaldi
  • Patent number: 11411309
    Abstract: A system comprises local oscillator spur suppression circuitry, local oscillator generator circuitry), and beamforming circuitry. The local oscillator spur suppression circuitry is operable to generate a phase adjustment value. The local oscillator generator circuitry is operable to generate a local oscillator signal at a determined phase equal to a reference phase offset by the phase adjustment value. The beamforming circuitry is operable to receive the phase adjustment value, and generate a beamforming coefficient to be applied to a signal that is to be upconverted by the local oscillator signal and transmitted via an antenna element of a phased array, wherein the generation of the beamforming coefficient is based on the phase adjustment value and a location of the antenna element within the phased array.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: August 9, 2022
    Assignee: MaxLinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 11362800
    Abstract: Methods and systems are described for receiving a reference clock signal and a phase of a local oscillator signal at a dynamically-weighted XOR gate comprising a plurality of logic branches, generating a plurality of weighted segments of a phase-error signal, the plurality of weighted segments including positive weighted segments and negative weighted segments, each weighted segment of the phase-error signal having a respective weight applied by a corresponding logic branch of the plurality of logic branches, generating an aggregate control signal based on an aggregation of the weighted segments of the phase-error signal, and outputting the aggregate control signal as a current-mode output for controlling a local oscillator generating the phase of the local oscillator signal, the local oscillator configured to induce a phase offset into the local oscillator signal in response to the aggregate control signal.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: June 14, 2022
    Assignee: KANDOU LABS, S.A.
    Inventor: Armin Tajalli
  • Patent number: 11356971
    Abstract: In a wireless communication system including a plurality of wireless base stations, the wireless base stations other than the uppermost wireless base station among the plurality of wireless base stations each determine a frame timing on the basis of synchronization timing information received from the upper wireless base station, and the wireless base stations other than the lowermost wireless base station among the plurality of wireless base stations each notify the lower wireless base station of the synchronization timing information.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: June 7, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yuji Miyake, Tetsuya Aoyama
  • Patent number: 11349523
    Abstract: A device comprises a clock source configured to provide a spread-spectrum modulated clock signal and a control signal associated with the spread-spectrum modulated clock signal. The device also comprises a circuitry configured to receive the spread-spectrum modulated clock signal, to receive the control signal, and to sample a data signal in accordance with the spread-spectrum modulated clock signal and the control signal.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: May 31, 2022
    Assignee: Intel Corporation
    Inventors: Chee Kiang Goh, Mario Traeber
  • Patent number: 11349466
    Abstract: A delay circuit includes a first delay line suitable for delaying a first clock by a delay value that is adjusted based on a delay control code; a delay control circuit suitable for comparing a phase of the first clock delayed through the first delay line with a phase of a second clock to generate the delay control code; and a second delay line having, based on a delay control code, a delay value corresponding to a half of the delay value of the first delay line.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: May 31, 2022
    Assignee: SK hynix Inc.
    Inventors: Ji Hwan Park, Jun Il Moon, Byung Kuk Yoon, Myeong Jae Park
  • Patent number: 11337154
    Abstract: A receiver (30) for providing an activation signal (54) to transition a device from a dormant state to an operative state. The receiver includes a sensor (32), a super regenerative oscillator, SRO, circuit (34), and a processing device (36, 38). The sensor is one of an optical sensor, an acoustic sensor, and a magnetic field sensor, and generates detector signals (40) based on wireless signals (28) received from an external source (18). The SRO circuit is electrically coupled to the sensor to receive the detector signals, and electrically oscillates with a constant SRO frequency and with a SRO amplitude (As) that changes when a carrier frequency of the detector signal substantially matches the SRO frequency. The processing device monitors the SRO amplitude in time, and generates the activation signal when a temporal characteristic (Sc) of the monitored SRO amplitude matches a predetermined reference pattern (52).
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: May 17, 2022
    Inventor: Dennis Van Weeren
  • Patent number: 11333708
    Abstract: An apparatus and method for providing a phase noise built-in self test (BIST) circuit are disclosed herein. In some embodiments, a method and apparatus for forming a multi-stage noise shaping (MASH) type high-order delta sigma (??) time-to-digital converter (TDC) are disclosed. In some embodiments, an apparatus includes a plurality of first-order ?? TDCs formed in an integrated circuit (IC) chip, wherein each of the first-order ?? TDCs are connected to one another in a MASH type configuration to provide the MASH type high-order ?? TDC, wherein the MASH type high-order ?? TDC is configured to measure the phase noise of a device under text (DUT).
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: May 17, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mao-Hsuan Chou, Ya-Tin Chang, Ruey-Bin Sheen, Chih-Hsien Chang
  • Patent number: 11283588
    Abstract: A physical layer transceiver for a serial data channel includes receiver circuitry having a local clock. Received signals arrive on the channel according to a remote clock. Clock-data recovery circuitry aligns the local clock with the remote clock by correcting phase and frequency error between the local and remote clocks. The clock-data recovery circuitry includes digital phase error detection circuitry operating according to a digital clock to detect phase error between the local and remote clocks, analog phase rotation circuitry to correct the detected phase error, distribution circuitry to divide the detected phase error into multiple phase error steps, and an analog clock source configured to provide the local clock to the analog phase rotation circuitry, and to provide to the distribution circuitry a distribution clock that is slower than the local clock, to correct the local clock by at least one step during one digital clock period.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: March 22, 2022
    Assignee: Marvell Asia Pte, Ltd.
    Inventors: Khitish Chandra Behera, Seid Alireza Razavi Majomard, Ragnar Hlynur Jonsson
  • Patent number: 11283437
    Abstract: A method determines a pin-to-pin delay between clock signals having integrally related frequencies. The method includes generating a delay code corresponding to a delay between a first signal edge of a first clock signal received by a first node of an integrated circuit and a second signal edge of a second clock signal received by a second node of the integrated circuit. The delay code is based on a first time code corresponding to the first signal edge, a second time code corresponding to the second signal edge, a first skew code, a second skew code, and a period of the first clock signal or the second clock signal. The first clock signal has a first frequency, the second clock signal has a second frequency, and the second frequency is integrally related to the first frequency.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 22, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Daniel Weyer, Raghunandan Kolar Ranganathan
  • Patent number: 11277822
    Abstract: Computer readable media, methods, and apparatuses for location estimation using multi-user multiple-input multiple-output in a wireless local-area network are disclosed. An apparatus is disclosed comprising processing circuitry configure to: encode a fine timing measurement (FTM) initiate (FTI) frame, the FTI frame comprising M0 message uplink resource allocations for a plurality of responders to transmit M0 messages to the HE STA. The processing circuitry further configured to configure the HE STA to transmit the FTI frame to the plurality of responders, and decode M0 messages from the plurality of responders in accordance with the M0 message uplink resource allocations, where the M0 messages are to be received at the HE STA at times T2 in accordance with multi-user multiple-input multiple-output (MU-MIMO). The processing circuitry further configured to acknowledge the M0 messages to be transmitted at a time T3, and decode M1 messages comprising a corresponding time T1 and time T4.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: March 15, 2022
    Assignee: Intel Corporation
    Inventors: Ganesh Venkatesan, Chittabrata Ghosh
  • Patent number: 11271706
    Abstract: A signal is transmitted at a high speed in a direction opposite to a transmitting direction of a main large-capacity channel. A first transmitting unit transmits a first signal including a clock component to an external device through a transmission path as a differential signal. A second transmitting unit superimposes a second signal including a clock component on the transmission path as an in-phase signal to transmit to the external device. A state notifying unit communicates with the external device through a pair of differential transmission paths included in the transmission path and notifies the external device of a connection state of its own device by a DC bias potential of at least one of the pair of differential transmission paths.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: March 8, 2022
    Assignee: SONY CORPORATION
    Inventors: Kazuaki Toba, Gen Ichimura
  • Patent number: 11265140
    Abstract: Methods and systems are described for receiving N phases of a local clock signal and M phases of a reference signal, wherein M is an integer greater than or equal to 1 and N is an integer greater than or equal to 2, generating a plurality of partial phase error signals, each partial phase error signal formed at least in part by comparing (i) a respective phase of the M phases of the reference signal to (ii) a respective phase of the N phases of the local clock signal, and generating a composite phase error signal by summing the plurality of partial phase error signals, and responsively adjusting a fixed phase of a local oscillator using the composite phase error signal.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: March 1, 2022
    Assignee: KANDOU LABS, S.A.
    Inventor: Armin Tajalli
  • Patent number: 11245406
    Abstract: A clock product includes a first phase-locked loop circuit including a first frequency divider. The first phase-locked loop circuit is configured to generate a first clock signal tracking a first reference clock signal and a second reference clock signal. The first phase-locked loop circuit is controlled by a first divide value and a first divide value adjustment based on the first reference clock signal. The clock product includes a circuit including a second frequency divider. The circuit is configured to generate a second clock signal based on the first clock signal, a second divide value, and a second divide value adjustment. The second clock signal tracks the second reference clock signal. The second divide value adjustment is based on the first divide value adjustment and opposes the first divide value adjustment.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: February 8, 2022
    Assignee: Silicon Laboratories Inc.
    Inventors: Harihara Subramanian Ranganathan, Xue-Mei Gong, James D. Barnette, Nathan J. Shashoua, Srisai Rao Seethamraju
  • Patent number: 11239849
    Abstract: A locked-loop circuit includes phase synchronization circuitry to synchronize a DCO clock phase to a reference clock phase. Sampling circuitry sequentially samples the reference clock with each of N sampling clocks having offset phases, a first one of the N sampling clocks comprising a master sampling clock. Edge detection logic accumulates phase information from the multiple sampling clocks and determines, based on the accumulated phase information, whether any of the sampling clocks other than the master sampling clock correspond to edge detection signals that occurred early with respect to a rising edge of the master sampling clock. Index logic generates index values for any of the determined early edge detection signals. The index logic transfers the generated index values to a master phase transfer logic unit. Phase adjust logic adjusts the master clock phase based on a selected one of the generated index values.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: February 1, 2022
    Assignee: Movellus Circuits Inc.
    Inventor: Frederick Christopher Candler
  • Patent number: 11237249
    Abstract: A wireless system includes a local oscillator (LO) signal generation circuit, a receiver (RX) circuit, and a calibration circuit. The LO signal generation circuit generates an LO signal according to a reference clock. The LO signal generation circuit includes an active oscillator. The active oscillator generates the reference clock, wherein the active oscillator includes at least one active component, and does not include an electromechanical resonator. The RX circuit generates a down-converted RX signal by performing down-conversion upon an RX input signal according to the LO signal. The calibration circuit generates a frequency calibration control output according to a signal characteristic of the down-converted RX signal, and outputs the frequency calibration control output to the LO signal generation circuit. The LO signal generation circuit adjusts an LO frequency of the LO signal in response to the frequency calibration control output.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: February 1, 2022
    Assignee: MEDIATEK INC.
    Inventors: Tzu-Chin Lin, Chih-Ming Hung, Jui-Lin Hsu, Chao-Ching Hung, Bao-Chi Peng
  • Patent number: 11233518
    Abstract: A clock recovery circuit a first phase-locked loop (PLL) circuit configured to perform a coarse phase fixing operation on a test data signal by using a first reference clock signal, the test data signal having a prescribed pattern, and a second PLL circuit configured to perform a fine phase fixing operation on the test data signal, subsequently to the coarse phase fixing operation. The second PLL circuit may be configured to perform the fine phase fixing operation on the test data signal by selectively using at least two selection reference clock signals among a plurality of second reference clock signals that are delayed from the first reference clock signal by a unit phase, in a training mode, having a phase difference of N times the unit phase, where N is an integer equal to or greater than 2.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 25, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Geumyoung Tak
  • Patent number: 11196534
    Abstract: Described are apparatus and methods for low power clock generation in multi-channel high speed devices. In implementations, a multi-channel data processing device includes a low frequency clock generation and distribution circuit configured to generate and distribute a 1/N sampling frequency (FS)(FS/N) clock, wherein N is larger or equal to 8, and multiple data processing channels connected to the low frequency generation and distribution circuit. Each data processing channel including input ports associated with different operating frequency clocks, and a channel local clock generation circuit comprising multipliers associated with some of the input ports, each multiplier configured to multiply the FS/N frequency clock to locally generate an operating frequency clock associated with an input port of the input ports.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: December 7, 2021
    Assignee: Ciena Corporation
    Inventors: Mahdi Parvizi, Yuriy Greshishchev, Naim Ben-Hamida, Douglas Stuart McPherson
  • Patent number: 11196430
    Abstract: In one embodiment, a phase lock loop circuit includes a control circuit, wherein the control circuit is configured to input an estimation having a second frequency and a second phase. The second frequency is selected from a range of frequencies including a first frequency from an acquired signal. A numerically controlled oscillator is coupled to the control circuit, wherein the control circuit is configured to control an output response of the numerically controlled oscillator. The numerically controlled oscillator is configured to receive the estimation from the control circuit and generate an output signal in response to the estimation. A phase detector is coupled to the control circuit and the numerically controlled oscillator, wherein the phase detector is configured to compare the first signal and the output signal and produce a comparison output, the comparison output indicative of a phase difference between the first signal and the estimation.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: December 7, 2021
    Assignee: Honeywell International Inc.
    Inventors: Norman Gerard Tarleton, Chuck Croker, Lee K. Strandjord
  • Patent number: 11184145
    Abstract: According to an embodiment, a receiver is described comprising an input configured to receive a digital input signal and a digital filter configured to deliver a filtered digital output signal and to deliver stability information wherein the digital filter is configured to enter or stay in a transition state after a transition at the input signal, leave the transition state when the input signal is considered being stable, update the output signal when leaving the transition state and deliver the stability information indicating transitions at the input signal during transition state.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: November 23, 2021
    Assignee: Infineon Technologies AG
    Inventors: Achim Vowe, Jens Barrenscheen, Ning Chen, Cristina Sanchez
  • Patent number: 11146277
    Abstract: A clock generator receives first and second clock signals, and input representing a desired frequency ratio. A comparison is made between frequencies of an output clock signal and the first clock signal, and a first error signal represents the difference between the desired frequency ratio and this comparison result. The first error signal is filtered. A comparison is made between frequencies of the output clock signal and the second clock signal, and a second error signal represents the difference between the filtered first error signal and this comparison result. The second error signal is filtered. A numerically controlled oscillator receives the filtered second error signal and generates an output clock signal. As a result, the output clock signal has the jitter characteristics of the first input clock signal over a useful range of jitter frequencies and the frequency accuracy of the second input clock signal.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: October 12, 2021
    Assignee: Cirrus Logic, Inc.
    Inventor: John P. Lesso
  • Patent number: 11133920
    Abstract: A display device including: a timing controller outputting a reference clock signal and a data packet, wherein the data, packet includes a clock signal embedded in a data signal; a clock and data recovery (CDR) circuit receiving the reference clock signal and the data packet; and a display panel displaying an image based on the data packet, wherein, when the CDR circuit receives the reference clock signal, a frequency band of the reference clock signal is detected using a first internal clock signal, a parameter associated with jitter characteristics of the clock and data recovery circuit is adjusted according to the detected frequency band, and a second internal clock signal is output by adjusting a frequency of the first internal clock signal and when the CDR circuit receives the data packet, the data signal and a clock signal synchronized with the data signal are recovered from the data packet.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: September 28, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jungpil Lim, Kyungho Ryu, Kilhoon Lee, Hyunwook Lim
  • Patent number: 11132939
    Abstract: A display system includes a number (M) of scan line units, a number (N) of channel line units, a number (R) of light emitting arrays connected to the scan line units and the channel line units, and a number (L) of shared driving circuits, where M?1, N?1, R?1, and L is equal to a maximum of M and N when M?N, and is equal to M otherwise. Each shared driving circuit is operable to generate or not to generate a scan driving output, and is operable to generate or not to generate a channel driving output. Each of a number (M) of the shared driving circuits is for providing the scan driving output to a respective scan line unit. Each of a number (N) of the shared driving circuits is for providing the scan driving output to a respective scan line unit.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 28, 2021
    Assignee: MACROBLOCK, INC.
    Inventors: Hung-Lin Yen, Shun-Ching Hsieh