Multilayer Structure (mixture) Patents (Class 385/131)
  • Patent number: 8805148
    Abstract: An electromagnetic device and method for fabrication includes a substrate and a layer of graphene formed on the substrate. A metallization layer is patterned on the graphene. The metallization layer forms electrodes such that when the graphene is excited by light, terahertz frequency radiation is generated.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Phaedon Avouris, Chun-Yung Sung, Alberto Valdes Garcia, Fengnian Xia
  • Patent number: 8805149
    Abstract: An optical waveguide device that uses a thin substrate having an electro-optical effect and a thickness of 10 ?m or less, in which slab propagation light that is reflected from an end face of the device is removed and thus deterioration in an operational characteristic is suppressed. The optical waveguide device includes: a thin substrate which has an electro-optical effect and thickness of 10 ?m or less, and in which an optical waveguide is formed; and a supporting substrate that is adhered to the thin substrate through an adhesion layer. An antireflective film is formed on a part of a side surface of the optical waveguide device.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 12, 2014
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Motohiro Takemura, Tetsuya Fujino, Takashi Shinriki
  • Patent number: 8798409
    Abstract: An optical communication system comprising first and second planar substrates and an alignment assembly. The first substrate of a semiconductor material, is located on a planar surface of a sub-mount and having a planar first edge. The second substrate of a different second material, is located on said planar surface of said sub-mount and having a planar second edge. The alignment assembly is located on said sub-mount, said alignment assembly including rigid standoff structures configured to fixedly vertically align said first and second edges above said sub-mount such that each optical output of one of said lasers is vertically aligned with the end of one of said light-guiding structures.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: August 5, 2014
    Assignee: Alcatel Lucent
    Inventors: Flavio Pardo, Mark Earnshaw
  • Publication number: 20140212104
    Abstract: Provided are an athermal waveguide and a method of manufacturing the same. The athermal waveguide includes: a substrate having a protruded region; a first material layer formed on the protruded region to counteract thermal expansion; and a second material layer formed on the first material layer a position corresponding to the protruded region and formed of a same base material as the protruded region.
    Type: Application
    Filed: July 25, 2013
    Publication date: July 31, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seong-ho CHO, Rakib Uddin MOHAMMAD
  • Patent number: 8787722
    Abstract: An optical waveguide contains a lower cladding layer, a patterned core layer, an upper cladding layer and an upper low elasticity layer, which are laminated in this order, in which a film formed by curing a resin composition for forming the upper low elasticity layer has a tensile elastic modulus of from 1 to 2,000 MPa at 25° C., and a cured film having a thickness of 110 ?m formed by curing a resin composition for forming the upper cladding layer has a total light transmittance of 90% or more. An optical waveguide that has good flexural resistance and good optical characteristics can be provided.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: July 22, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Toshihiko Takasaki, Masatoshi Yamaguchi, Toshihiro Kuroda, Tatsuya Makino, Masami Ochiai, Atsushi Takahashi
  • Patent number: 8781283
    Abstract: Embodiments of the invention relate to an electro-optic device comprising a first region of silicon semiconductor material and a second region of III-V semiconductor material. A waveguide of the optical device is formed in part by a ridge in the second region. An optical mode of the waveguide is laterally confined by the ridge of the second region and vertically confined by a vertical boundary included in the first region. The ridge structure further serves as a current confinement structure over the active region of the electro-optic device, eliminating the need for implantation or other structures that are known to present reliability problems during manufacturing. The lack of “voids” and implants in electro-optic devices according to embodiments of the invention leads to better device reliability, process repeatability and improved mechanical strength.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: July 15, 2014
    Assignee: Aurrion, Inc.
    Inventors: Alexander W. Fang, Gregory A. Fish, Steven C. Nicholes
  • Patent number: 8774582
    Abstract: “Hybrid photonic devices” describe devices wherein the optical portion—i.e., the optical mode, comprises both the silicon and III-V semiconductor regions, and thus the refractive index of the semiconductor materials and the refractive index of the bonding layer region directly effects the optical function of the device. Prior art devices utilize an optically compliant layer that is the same material as the III-V substrate; however, during the final sub-process of the bonding process, the substrates must be removed by acids. These acids can etch into the bonding layer, causing imperfections to propagate at the interface of the bonded material, adversely affecting the optical mode shape and propagation loss of the device. Embodiments of the invention utilize a semiconductor etch-selective bonding layer that is not affected by the final stages of the bonding process (e.g., substrate removal), and thus protects the bonding interface layer from being affected.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: July 8, 2014
    Assignee: Aurrion, Inc.
    Inventors: Matthew Jacob-Mitos, Gregory Alan Fish, Alexander W. Fang
  • Patent number: 8774571
    Abstract: An optical device includes a substrate and a first optical waveguide including a mesa. The mesa includes a first lower clad layer portion, a first core layer portion, and a first upper clad layer portion. The first lower clad layer portion, the first core layer portion, and the first upper clad layer portion are disposed in this order from the substrate side. The optical device also includes a first etch stop layer configured to stop etching when the first optical waveguide is formed. The first etch stop layer being laminated over the substrate. The first optical waveguide is laminated on the first etch stop layer.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 8, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Kazunori Shinoda, Shigeki Makino, Hideo Arimoto
  • Patent number: 8768110
    Abstract: Various exemplary embodiments relate to an optical isolator in an integrated optical circuit including: a first optical modulator configured to provide a first periodic phase modulation on an input optical signal; a second optical modulator configured to provide a second periodic phase modulation on the modulated optical signal; and an optical waveguide having a length L connecting the first optical modulator to the second optical modulator; wherein the phase difference between the first and second periodic phase modulation is ?/2, and wherein the length L of the optical waveguide causes a phase delay of ?/2 on an optical signal traversing the optical waveguide.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: July 1, 2014
    Assignee: Alcatel Lucent
    Inventor: Christopher R. Doerr
  • Patent number: 8768124
    Abstract: Devices, systems and techniques for directly coupling an optical slot waveguide to another optical waveguide without a taper waveguide region between the two optical waveguides.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 1, 2014
    Assignee: Georgetown University
    Inventors: Edward R. Van Keuren, Changbao Ma
  • Publication number: 20140169729
    Abstract: Provided are a waveguide with a reduced phase error and a photonics device including the same. The waveguide structure may include a lower clad, a core pattern with at least one bending region, on the lower clad, a beam deflecting pattern on the core pattern, and an upper clad covering the core pattern provided with the beam deflecting pattern. The beam deflecting pattern may be formed of a material, whose refractive index may be higher than that of the upper clad and may be lower than or equivalent to that of the core pattern, and the beam deflecting pattern has an increasing and decreasing width or an oscillating width, when measured along the bending region.
    Type: Application
    Filed: June 10, 2013
    Publication date: June 19, 2014
    Inventors: Jaegyu PARK, Sahnggi PARK, Gyungock KIM
  • Patent number: 8755662
    Abstract: An optical waveguide includes: a substrate; a first dielectric layer positioned on the substrate; a graphene layer including graphene formed on the first dielectric layer along the lengthwise direction of the substrate and for transmitting incident light through the graphene; and a second dielectric layer positioned on the first dielectric layer and the graphene layer.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 17, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Jin Tae Kim
  • Patent number: 8750666
    Abstract: An optical device having a plasmonic waveguide, in which the plasmonic waveguide has a layered structure of at least three layers that a ferromagnetic metal layer, a first dielectric layer, and a second dielectric layer are layered in this order, in which the first and second dielectric layers are layers that allow light to be transmitted therethrough, and in which a refractive index of the second dielectric layer is higher than a refractive index of the first dielectric layer; and an optical isolator, having the optical device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: June 10, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Vadym Zayets, Koji Ando, Hidekazu Saito, Shinji Yuasa
  • Patent number: 8737781
    Abstract: A method of manufacturing an optical waveguide, includes preparing a light path conversion component including a structure in which a protruding portion having a light path conversion inclined surface is covered with a metal layer and the metal layer serves as a light path conversion mirror, and a structural body in which a core layer is formed on a first cladding layer and an opening portion is provided in an end side of a light path of the core layer, arranging the light path conversion mirror of the light path conversion component in the opening portion of the core layer, and forming a second cladding layer covering the core layer, wherein a light path of a light that propagates through the core layer is converted toward a first cladding layer side by the light path conversion mirror.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Kazunao Yamamoto, Hideki Yonekura, Kenji Yanagisawa, Takanori Yamamoto
  • Patent number: 8721969
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light source and a waveguide. The waveguide comprises a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further comprises a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 13, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Patent number: 8718415
    Abstract: Optical devices with versatile spectral attributes are provided that are implemented with one or more modulated and homogeneous layers to realize leaky-mode resonance operation and corresponding versatile spectral-band design. The first and/or higher multiple evanescent diffraction orders are applied to excite one or more leaky modes. The one- or two-dimensional periodic structure, fashioned by proper distribution of materials within each period, can have a resulting symmetric or asymmetric profile to permit a broadened variety of resonant leaky-mode devices to be realized. Thus, the attributes of the optical device permit, among other things, adjacent, distinct resonance frequencies or wavelengths to be produced, convenient shaping of the reflection and transmission spectra for such optical device to be accomplished, and the wavelength resonance locations to be precisely controlled so as to affect the extent to which the leaky modes interact with each other.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 6, 2014
    Assignee: University of Connecticut
    Inventors: Robert Magnusson, Yiwu Ding
  • Patent number: 8718432
    Abstract: A method for forming a tapered region in a first layer of a first material is disclosed. The method comprises forming an accelerator layer of a second material on the first layer and forming a mask layer disposed on the accelerator layer. The accelerator layer is exposed to a first etch that removes the second material in a first region and laterally etches the accelerator layer along a second region to expose the first layer in the second region to the first etch. Since the time for which the first layer is exposed to the first etch in the second region is based on the progress of the lateral etch of the accelerator layer, the first etch tapers the first layer in the second region.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: May 6, 2014
    Assignee: Octrolix BV
    Inventors: Rene Gerrit Heideman, Marcel Hoekman
  • Patent number: 8701998
    Abstract: Periodic high-index-contrast photonic crystal (PhC) structures such as two-dimensional arrays of air holes in dielectric slabs inhibit light propagation in bands of frequencies and confine light in dislocations where the lattice periodicity is broken. The present invention is a conceptually different approach to photon localization in PhC structures. The disclosed design concept introduces structural perturbations uniformly throughout the fabricated crystal by deliberately changing the shape or orientations of elements that form the lattice. Optimized introduction of such random structural perturbations produces optical nanocavities with ultra-small modal volumes and high quality (Q) factors of over 250,000. Applications of such disordered photonic crystal structures are disclosed for optical sensing systems and random nano-lasers.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: April 22, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Frank Vollmer, Juraj Topolancik
  • Publication number: 20140105556
    Abstract: A method for forming a waveguide having a thin-core region, a thick-core region, and a transition region of tapered thickness between them is disclosed. The method comprises forming a lower core layer of a first material on a lower cladding, forming a thin central core layer of a second material on the first core layer, forming an upper core layer of the first material on the central core layer, and etching the upper core layer in an etchant such that it is removed from the thin-core region and its thickness monotonically changes from its as-deposited thickness to extinction across the transition region, where the central core layer protects the lower core layer from exposure to the etchant.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: Octrolix BV
    Inventors: Rene Gerrit Heideman, Arne Leinse
  • Patent number: 8693817
    Abstract: The present invention describes a microresonator that can be used as a 1:f variable coupler in a unit cell. It is described how a cascade of unit cells can be used to form a tunable, higher-order RF-filter with reconfigurable passbands. The disclosed filter structure can be utilized for the narrowband channelization of RF signals that have been modulated onto optical carriers. It is also disclosed how to utilize add/drop capabilities of the contemplated microdisks to confer connectivity and cascading in two dimensions. The present invention can conveniently provide a wavelength division multiplexing router, where an array of unit cells as provided herein can form a programmable optical switching matrix, through electronic programming of filter parameters.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 8, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Willie N. Ng, Brian N. Limketkai, Robert R. Hayes, Daniel Yap, Peter Petre
  • Patent number: 8693835
    Abstract: A method for transferring a thin layer from a lithium-based first substrate includes proton exchange between the first substrate and a first electrolyte, which is an acid, through a free face of the first substrate so as to replace lithium ions of the first substrate by protons, in a proportion between 10% and 80%, over a first depth e1. A reverse proton exchange between the first substrate and a second electrolyte, through the free face is carried out so as to replace substantially all the protons with lithium ions over a second depth e2 smaller than the first depth e1, and so as to leave an intermediate layer between the depths e1 and e2, in which intermediate layer protons incorporated during the proton exchange step remain. The depth e2 defines a thin layer between the free face and the intermediate layer. A heat treatment is carried out under conditions suitable for embrittling the intermediate layer and the thin film is separated from the first substrate at the intermediate layer.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: April 8, 2014
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, S.O.I. Tec Silicon on Insulator Technologies
    Inventors: Aurélie Tauzin, Jean-Sébastien Moulet
  • Publication number: 20140092626
    Abstract: The optical waveguide sheet of the present invention is an optical waveguide sheet for use in an edge-lit backlight unit of a liquid crystal display unit of laptop computers having a housing thickness of no greater than 21 mm, and includes an optical waveguide layer containing a polycarbonate-based resin as a principal component; and a protective layer laminated on the back face of the optical waveguide layer, the protective layer containing an acrylic resin as a principal component, wherein an average thickness of the optical waveguide sheet is no lower than 250 ?m and no greater than 600 ?m. An average thickness of the protective layer is preferably no less than 10 ?m and no greater than 100 ?m, and a relative refractive index of the protective layer with respect to the optical waveguide layer is preferably no greater than 0.95.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: KEIWA INC.
    Inventors: Hironori NAKASHIMA, Akira FURUTA
  • Publication number: 20140092627
    Abstract: The optical waveguide sheet of the present invention is for use in an edge-lit backlight unit of a liquid crystal display unit of laptop computers having a housing thickness of no greater than 21 mm, and includes: an optical waveguide layer containing a polycarbonate-based resin as a principal component; and a hard coat layer laminated on the back face side of the optical waveguide layer, an average thickness of the optical waveguide sheet being no greater than 600 ?m. An average thickness of the hard coat layer is preferably from 2 ?m to 20 ?m. The optical waveguide sheet preferably further includes a lower refractive index layer that is laminated on the back face of the optical waveguide layer and has a refractive index lower than that of the optical waveguide layer, and the hard coat layer is preferably laminated on the back face of the lower refractive index layer.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Applicant: KEIWA INC.
    Inventors: Hironori NAKASHIMA, Akira FURUTA
  • Patent number: 8676017
    Abstract: A light control element includes three or more silicon thin-film layers (522, 524, 526) placed on a first dielectric layer (521), second dielectric layers (523, 525) placed between the three or more silicon thin-film layers (522, 524, 526), and a third dielectric layer (529) placed to surround the silicon thin-film layers and the second dielectric layers. The three or more silicon thin-film layers are arranged to partially overlap with one anther. In the part where the silicon thin-film layers overlap, the second dielectric layers are placed between the silicon thin-film layers. In the three or more silicon thin-film layers, the silicon thin-film layers adjacent to each other have different conductivity types.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: March 18, 2014
    Assignee: NEC Corporation
    Inventor: Yutaka Urino
  • Patent number: 8660387
    Abstract: An athermal ring optical modulator includes a first clad layer, a ring optical resonator, a second clad layer, an input-output optical waveguide, a first conduction type region, and a second conduction type region. The ring optical resonator has a rib optical waveguide with a convex portion formed on a semiconductor slab layer. The semiconductor slab layer is formed on the first clad layer. The second clad layer covers an upper side of the rib optical waveguide. The input-output optical waveguide couples optically with the ring optical resonator. The first and second conduction type regions are formed in the semiconductor slab layer inside and outside the ring optical resonator, respectively. In addition, the second clad layer includes a material having a negative thermo-optical coefficient. The semiconductor slab layer outside the convex portion is thinner than the semiconductor slab layer inside the convex portion.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuo Suzuki, Mizunori Ezaki
  • Patent number: 8655134
    Abstract: Provided herein are photonic devices configured to display photonic band gap structure with a degenerate or a split band edge. Electromagnetic radiation incident upon these photonic devices can be converted into a frozen mode characterized by a significantly increased amplitude, as compared to that of the incident wave. The device can also be configured as a resonance cavity with a giant transmission band edge resonance. In an exemplary embodiment, the photonic device is a periodic layered structure with each unit cell comprising at least two anisotropic layers with misaligned anisotropy. The degenerate or split band edge at a given frequency can be achieved by proper choice of the layers' thicknesses and the misalignment angle. In another embodiment, the photonic device is configured as a waveguide periodically modulated along its axis.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: February 18, 2014
    Assignee: The Regents of the University of California
    Inventors: Aleksandr Figotin, Ilya M. Vitebskiy
  • Patent number: 8649645
    Abstract: There is provided an optical waveguide comprising an optical core having transverse sides, the optical core extending along a curved path; an optical cladding on the transverse sides of the optical core, wherein the distribution of the optical cladding on the transverse sides of the optical core is asymmetric about the centre of the core.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 11, 2014
    Assignee: Xyratex Technology Limited
    Inventor: Richard C. A. Pitwon
  • Publication number: 20140029295
    Abstract: A display device includes a housing, a frame bonded to the housing, and a display module. The display module includes a back cover bonded to the frame, a light guide plate (LGP), a support element, a display panel, and an optical film set. The LGP is supported on the back cover and has a light exiting surface and an opposite back surface. At least two sides of the LGP's back surface are adhered on the back cover, and the LGP is made of glass. The support element and display panel are supported respectively on the LGP and support element. The optical film set is between the display panel and LGP. A hybrid LGP includes a first light guide sub-plates and a second light guide sub-plate. The second light guide sub-plate is stacked on and bonded to the first light guide sub-plate.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: YOUNG LIGHTING TECHNOLOGY INC.
    Inventors: Chun-Chung Hsiao, Shih-Chang Chen, Cheng-Tsung Li, Tzeng-Ke Shiau
  • Patent number: 8639067
    Abstract: The fabrication of an optical wiring board is performed in the following manner: A core member 13 for a mirror 22 is pattern-formed on a clad layer 11, and simultaneously, using the core member 13, each alignment mark pattern 14 is formed at any position on the clad layer 11. Further, with positioning in reference to each alignment mark 14, the core pattern 13 is subjected to physical cutting to form a bevel part and a concave part 23. Then, a metallic reflective film 18 is coated on the surface of the bevel part. Thereafter, with positioning in reference to each alignment mark 14, an optical wiring core pattern 20 is formed on the clad layer 11 adjacently to the mirror 22.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: January 28, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventor: Yasunobu Matsuoka
  • Patent number: 8639065
    Abstract: The system includes a light-transmitting medium positioned on a base. The light-transmitting medium included a ridge and a slab region. The ridge extends upward from the slab region and defines a portion of a waveguide on the base. The waveguide is configured to guide a light signal through the device. The device also includes an avalanche effect light sensor positioned on the base and configured to detect the presence of the light signal. The light sensor includes a light-absorbing medium positioned on the ridge of the light-transmitting medium such that the light signal is coupled from the light-transmitting medium into the light-absorbing medium. The light-transmitting includes a charge layer located at an interface of the light-transmitting medium and the light-absorbing medium. A multiplication region is formed in the slab regions of the light-transmitting medium such that the multiplication region receives charge carriers from the charge layer during the operation of the light sensor.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: January 28, 2014
    Assignee: Kotura, Inc.
    Inventors: Ning-Ning Feng, Shirong Liao, Dawei Zheng, Dazeng Feng
  • Patent number: 8632261
    Abstract: An opto-electronic device assembly adapted for mounted on a mother board includes a case and opto-electronic devices. The case has multiple cavities opening forwards and downwards. Each opto-electronic device includes an optical engine module and an electrical socket. The optical engine module includes an optical engine, an optical transmission interface and an electrical transmission interface with electrical pads. The electrical socket has a plurality of terminals with one ends contacting with PCB and another opposite ends contacting with the electrical pads. Each electrical transmission interface is removeably assembled in the electrical sockets to complete electrical connection between the substrate and the mother board. The opto-electrical devices are received in the cavities in a condition that the optical transmission interfaces exposes to a front open of the case.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 21, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Jim Zhao, Yuan-Chieh Lin, An-Jen Yang, Pei Tsao, Yin-Tse Kao, Ashish Raheja
  • Patent number: 8630517
    Abstract: A polarization-independent optical multiplexer/demultiplexer with wide passbands has a core including an input optical waveguide, an input slab optical waveguide connected to the input optical waveguide, a waveguide array connected to the input slab optical waveguide, an output slab optical waveguide connected to the waveguide array, a pair of multimode couplers connected to the output slab optical waveguide, and a pair of output optical waveguides connected to the multimode couplers. The multimode couplers are dimensioned so that as both TE and TM polarized light propagates through them, the phase difference between the fundamental and second-order modes changes by an odd multiple of pi radians.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: January 14, 2014
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Publication number: 20140010509
    Abstract: An optical device having a plasmonic waveguide, in which the plasmonic waveguide has a layered structure of at least three layers that a ferromagnetic metal layer, a first dielectric layer, and a second dielectric layer are layered in this order, in which the first and second dielectric layers are layers that allow light to be transmitted therethrough, and in which a refractive index of the second dielectric layer is higher than a refractive index of the first dielectric layer; and an optical isolator, having the optical device.
    Type: Application
    Filed: January 22, 2013
    Publication date: January 9, 2014
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventor: National Institute of Advanced Industrial Science and Technology
  • Patent number: 8624876
    Abstract: A display device having an optical sensing frame, including a display panel; at least one waveguide unit arranged at two adjacent sides of the display panel, the waveguide unit having a stacked structure, the stacked structure including a light-emitting layer, and a light-receiving layer to receive reflected light, and a plurality of retroreflectors arranged at opposing sides of the waveguide unit.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: January 7, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Byung-Chun Yu, Min-Ho Sohn, Hyung-Uk Jang
  • Publication number: 20130343715
    Abstract: Single heterogeneous crystals are described that contain multiple regimes, adjacent regimes varying from one another with regard to function. Also disclosed is a hydrothermal epitaxial growth process that can be utilized to form the single heterogeneous crystals. The single heterogeneous crystals can exhibit enhanced performance when used as a laser gain medium as compared to previously known single crystals and multi-crystal constructs. The heterogeneous single crystal can be utilized for thin disk lasers and can minimize the thermal distortion effects at high powers. The heterogeneous crystal can also serve as an embedded waveguide.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 26, 2013
    Inventors: Joseph Kolis, Colin McMillen
  • Patent number: 8615151
    Abstract: A lightguide arrangement including a substantially thin, lightguide for transporting and coupling light. At least one light source is coupled to the lightguide. A plurality of micro-optic surface relief forms are arranged on the lightguide. The lightguide is configured to produce one or more active indicative and/or decorative illumination effects via interaction between the one or more light sources and the plurality of micro-optic surface relief forms. A keypad assembly including the lightguide and uses of lightguide constructions.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: December 24, 2013
    Assignee: Modilis Holdings LLC
    Inventor: Kari Rinko
  • Patent number: 8611716
    Abstract: A channeled substrate for forming integrated optical devices that employ optical fibers and at least one active optical component is disclosed. The channeled substrate includes a substrate member having an upper surface one or more grooves formed therein, and a transparent sheet. The transparent sheet, which is preferably made of thin glass, is fixed to the substrate member upper surface to define, in combination with the one or more grooves, one or more channels. The channels are each sized to accommodate an optical fiber to allow for optical communication through the transparent sheet between the active optical component and the optical fibers. Channeled substrates formed by molding and by drawing are also presented. Integrated optical devices that employ the channeled substrate are also disclosed.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 17, 2013
    Assignee: Corning Incorporated
    Inventors: Jeffery Alan DeMeritt, Richard Robert Grzybowski, Brewster Roe Hemenway, Jr., James Scott Sutherland
  • Patent number: 8611756
    Abstract: A lasing cavity can provide a substantial portion of a path over which data, messages, communication signals, or other information travels from a sender to a recipient. The lasing cavity can support light amplification by stimulated emission of radiation. The sender can be coupled to an input port of the lasing cavity, while the recipient can be coupled to an output port of the lasing cavity. The sender can input information at the input port via applying energy to the lasing cavity, removing energy from the lasing cavity, perturbing the lasing cavity, lengthening the lasing cavity, shortening the lasing cavity, or otherwise inducing a cavity change or a dynamic response. The recipient can receive the information via monitoring the lasing cavity at the output port for changes or responses caused by the sender at the input port.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: December 17, 2013
    Assignee: Cirrex Systems, LLC
    Inventor: Michael L. Wach
  • Patent number: 8606056
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method therefor. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon, the electric circuit unit being coupled to the optical waveguide unit. The optical waveguide unit includes notch portions for locating the electric circuit unit, which is formed in portions of at least one of an undercladding layer and an overcladding layer, and the notch portions are located and formed at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions, which fit into the notch portions, and the bent portions are located and formed at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled to each other under a state in which the bent portions fit into the notch portions.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: December 10, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Yuichi Tsujita, Masayuki Hodono, Akiko Nagafuji, Masami Inoue, Mayu Takase
  • Patent number: 8606060
    Abstract: The present invention is a method and an apparatus for dynamic manipulation and dispersion in photonic crystal devices. In one embodiment, a photonic crystal structure comprises a substrate having a plurality of apertures formed therethrough, a waveguide formed by “removing” a row of apertures, and a plurality of pairs of lateral electrical contacts, the lateral electrical contact pairs extending along the length of the waveguide in a spaced-apart manner. The lateral electrical contact pairs facilitate local manipulation of the photonic crystal structure's refractive index. Thus, optical signals of different wavelengths that propagate through the photonic crystal structure can be dynamically manipulated.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Sharee J. McNab, Martin P. O'Boyle, Yurii A. Vlasov
  • Publication number: 20130315547
    Abstract: A photoacoustic detection device including a nanophotonic circuit including a first chip on which is formed at least one optical waveguide and in which is formed a set of cavities defining a Helmholtz resonator; at least one optical source capable of emitting an optical signal in a given wavelength range, capable of being modulated at an acoustic modulation frequency, this source being attached to the first chip; a second chip forming a cap for said cavities and including acoustic sensors; and electronic circuits for processing the output of the acoustic sensors formed in the first or the second chip. Further, an optical waveguide comprising, on a silicon substrate, a silicon germanium core with a variable germanium concentration along a direction perpendicular to the substrate, said core being covered with a cladding silicon layer.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 28, 2013
    Applicant: Commissariat à L'énergie Atomique et aux énergies Alternatives
    Inventors: Mickael Brun, Sergio Nicoletti, Bertrand Parvitte, Virginie Zeninari
  • Patent number: 8588557
    Abstract: An optical waveguide is provided comprising a non-solid core layer surrounded by a solid-state material, wherein light can be transmitted with low loss through the non-solid core layer. A vapor reservoir is in communication with the optical waveguide. One implementation of the invention employs a monolithically integrated vapor cell, e.g., an alkali vapor cell, using anti-resonant reflecting optical waveguides, or ARROW waveguides, on a substrate.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 19, 2013
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 8574468
    Abstract: A benzo-fused-heterocyclic elongated dye having a superior molecular hyperpolarizability and yet having an acceptably-low optical absorbance of light near 1550 nm in wavelength, which is an important optical communication band for telecommunication applications.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 5, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Matthew C. Davis, Andrew P. Chafin, Geoffrey A. Lindsay
  • Patent number: 8574467
    Abstract: A benzo-fused-heterocyclic elongated dye having a superior molecular hyperpolarizability and yet having an acceptably-low optical absorbance of light near 1550 nm in wavelength, which is an important optical communication band for telecommunication applications.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 5, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Matthew C. Davis, Andrew P. Chafin, William Lai, Geoffrey A. Lindsay
  • Patent number: 8559779
    Abstract: A composite article comprises a substantially transparent matrix and at least one substantially transparent organic fiber embedded within the matrix. The matrix and the organic fiber may have substantially equivalent refractive indices within a wavelength band of interest.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 15, 2013
    Assignee: The Boeing Company
    Inventors: Michael P. Kozar, Mark S. Wilenski
  • Patent number: 8554026
    Abstract: A light transmission assembly includes a light circuit board and a light transmission module. The board is embedded with waveguide layers, the waveguides layers includes core wires and shielding lays sandwiching the core wires, the waveguide layers defines a second light port portion of which the core wires defines vertical end faces. The light transmission module includes a base and a first light port portion projecting from a first face of the base, the first light port portion defines vertical end faces, the base defines a slanting surface at a second face opposite to the first face thereof. The first and second light port portions are aligned with each other when the light transmission module is coupled with light circuit board so that light lines go directly from the core wires through the light transmission module and reflect at the slant surface.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 8, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Yen-Chih Chang, Ke-Hao Chen
  • Patent number: 8554040
    Abstract: A planar lightwave circuit is provided which can be easily fabricated by an existing planar-lightwave-circuit fabrication process, which can lower the propagation loss of signal light and which can convert inputted signal light so as to derive desired signal light. A planar lightwave circuit having a core and a clad which are formed on a substrate, has input optical waveguide(s) (111) which inputs signal light, mode coupling part (112) for coupling a fundamental mode of the inputted signal light to a higher-order mode and/or a radiation mode, or mode re-coupling part (113) for re-coupling the higher-order mode and/or the radiation mode to the fundamental mode, and output optical waveguide(s) (114) which outputs signal light. The mode coupling part or the mode re-coupling part is an optical waveguide which has core width and/or height varied continuously.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: October 8, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Takashi Saida, Yohei Sakamaki, Toshikazu Hashimoto, Tsutomu Kitoh, Hiroshi Takahashi, Masahiro Yanagisawa, Senichi Suzuki, Yasuhiro Hida, Motohaya Ishii, Munehisa Tamura
  • Patent number: 8554041
    Abstract: Disclosed is inexpensive optical waveguide for an optical connector which is accurately positioned across the width of cores when inserted in and fixed in an optical waveguide fixing through hole of a ferrule to provide low optical coupling loss when connected, an optical connector using the same, and a method of manufacturing the same. An optical waveguide for an optical connector includes cores, an under cladding layer, and an over cladding layer. The strip-shaped optical waveguide has a longitudinal end portion configured to be fixed in a predetermined through hole provided in a ferrule of an optical connector. The cores are formed on the under cladding layer by a photolithographic method. The over cladding layer is formed with respect to the positions of the cores or positioning alignment marks by a photolithographic method. The over cladding layer covers the cores, and the under cladding layer including crosswise end surfaces thereof.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: October 8, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Kazunori Mune, Junichi Fujisawa, Yuichi Tsujita
  • Patent number: 8545543
    Abstract: This invention may be implemented as a microstructure probe for delivering light of variable color and/or power, via a set of integrated lightguides, from an optical source (or set of sources) to regions spatially arranged 3-dimensionally, with a length scale of microns to millimeters. In exemplary embodiments of this invention, a microstructure probe comprises many lightguides and is adapted to be inserted into neural or other tissue. The lightguides run in parallel along at least a portion of the axis of the probe. The probe may deliver light to many points along the axis of insertion of the probe. This invention may be implemented as an array of two or more such probes (each of which comprises multiple lightguides). This array may be used to deliver light to neural tissue in a complex 3D pattern.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: October 1, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Anthony Zorzos, Clifton Fonstad, Edward Boyden, Jacob Bernstein
  • Publication number: 20130240737
    Abstract: Concatenated distributed feedback lasers having novel waveguides are disclosed. The waveguides allow for coupling of the laser beam between active and passive waveguide structures and improved device design and output efficiency. Methods of making along with methods of using such devices are also disclosed.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 19, 2013
    Applicant: CORNING INCORPORATED
    Inventors: Catherine Genevieve Caneau, Feng Xie, Chung-En Zah