Input/output Coupler Patents (Class 385/31)
  • Publication number: 20140036528
    Abstract: A light guiding plate includes: a light guiding substrate; and a plurality of optical scattering patterns positioned on a first surface of the light guiding substrate. The plurality of optical scattering patterns respectively includes a binder, a scattering particle and a semiconductor nanocrystal. A color of light emitted from the plurality of optical scattering patterns is substantially the same.
    Type: Application
    Filed: November 12, 2012
    Publication date: February 6, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Seung-Mo KIM, Dong Hoon KIM, Seung Hwan CHUNG, Young Jun CHOI, Jin Sung CHOI
  • Publication number: 20140036361
    Abstract: Disclosed is a light guiding valve apparatus comprising an optical valve, a two dimensional light source array and a focusing optic for providing large area collimated illumination from localized light sources. A stepped waveguide may be a stepped structure, in which the steps may be extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. A two dimensional array of viewing windows may be produced. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays with wide viewing freedom and low cross talk and near-eye displays that are substantially transparent.
    Type: Application
    Filed: May 17, 2013
    Publication date: February 6, 2014
    Applicant: REALD INC.
    Inventors: Graham J. Woodgate, Michael G. Robinson, Jonathan Harrold, Miller H. Schuck
  • Patent number: 8641296
    Abstract: Provided is an optical path change member including a holding member body formed of a transparent material. The holding member body includes: at least two rows of optical-fiber insertion holes which hold optical fibers inserted therein, such that the optical axes of the optical fibers are inclined with respect to an optical axis of the optical device, and a reflective inner surface which totally internally reflects light incident from the optical-fiber insertion holes to a surface of the holding member body configured to face an optical device on a board.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: February 4, 2014
    Assignee: Fujikura Ltd.
    Inventor: Akito Nishimura
  • Patent number: 8644661
    Abstract: A photonic integrated circuit comprises a plurality of optical waveguides. Some waveguides cross some other waveguides at respective crossing locations. Some waveguides have varying widths wherein a width of a waveguide at a respective crossing location is smaller than the wavelength of the optical signal.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 4, 2014
    Assignee: Alcatel Lucent
    Inventor: Christopher R. Doerr
  • Patent number: 8644654
    Abstract: The optical coupler module for converting and transmitting electrical/optical signals includes a semiconductor substrate, a first film, a second film, an electrical transmission unit, at least one signal conversion unit and an optical waveguide structure. The first film and the second film are formed on opposite surfaces of the semiconductor substrate. The signal conversion unit and the optical waveguide structure are disposed on opposite sides of the semiconductor substrate. The optical waveguide structure has a reflector and a waveguide body. The optical signal generated from the signal conversion unit sequentially passes the first film, the semiconductor substrate and the second film and enters the optical waveguide structure. Then, the optical signal is reflected by the reflector and transmitted in the waveguide body to be outputted. Alternatively, the optical signal is transmitted in a reverse direction from the optical waveguide structure to the signal conversion unit.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: February 4, 2014
    Assignee: National Central University
    Inventors: Mao-Jen Wu, Hsiao-Chin Lan, Yun-Chih Lee, Chia-Chi Chang, Hsu-Liang Hsiao, Chin-Ta Chen, Bo-Kuan Shen, Guan-Fu Lu, Yan-Chong Chang, Jen-Yu Chang
  • Patent number: 8644662
    Abstract: An optical connection structure which permits easy and automatic alignment between the optical axes of optical fibers and the optical axes of cores of an optical waveguide, and a production method which ensures that an optical waveguide for the optical connection structure can be efficiently produced with higher dimensional accuracy are provided. An over-cladding layer of the optical waveguide includes an extension portion provided in a longitudinal end portion thereof, and optical fiber fixing grooves are provided in the extension portion as extending along extension lines of cores coaxially with the cores and each having opposite ends, one of which is open in an end face of the extension portion and the other of which is closed. Optical fibers are fitted and fixed in the respective optical fiber fixing grooves. The over-cladding layer further includes a boundary portion (6) provided between the other closed ends of the optical fiber fixing grooves and the cores.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Kazunori Mune, Junichi Fujisawa, Yuichi Tsujita
  • Patent number: 8644660
    Abstract: Provided are an opto-electric hybrid board and a manufacturing method. The opto-electric hybrid board includes an optical waveguide unit and an electric circuit unit having an optical element mounted thereon. The optical waveguide unit includes socket portions for locating the electric circuit unit, which are formed on a surface of an undercladding layer and formed of the same material as a core. The socket portions are located at predetermined locations with respect to one end surface of a core. The electric circuit unit includes bent portions which are formed by bending a part of an electric circuit board so as to stand, for fitting into the socket portions. The bent portions are located at predetermined locations with respect to the optical element. The optical waveguide unit and the electric circuit unit are coupled in a state in which the bent portions fit into the socket portions.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: February 4, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Akiko Nagafuji, Yuichi Tsujita, Masayuki Hodono, Masami Inoue
  • Patent number: 8639068
    Abstract: An optical transmission module has an optical transmission path in which optical transmission is performed between a first circuit board and a second circuit board disposed opposite the first circuit board. The optical transmission path has a folded structure having a bending radius. A circumferential portion drawn by the bending radius is provided substantially perpendicular to board surfaces of the first circuit board and the second circuit board.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: January 28, 2014
    Assignee: OMRON Corporation
    Inventors: Hayami Hosokawa, Naru Yasuda, Kentaro Hamana
  • Patent number: 8639066
    Abstract: A fiber gas sensor including a core fiber comprising at least one Bragg grating region, a fiber cladding in contact with the core fiber along an entire length of the core fiber, and a sensing matrix structure disposed upon the outer surface of the fiber cladding along a portion of the length of the fiber cladding and surrounding the fiber Bragg grating region. The sensing matrix structure comprising a bonding layer disposed on the outer surface of the fiber cladding layer, a nano-structured trampoline matrix layer disposed on the outer surface of the bonding layer and a capping layer disposed on the outer surface of the matrix layer. The thermally modulated response amplitude of the fiber gas sensor is found to linearly depend upon the gas molecular weight, and can be directly used to determine heat specific capacity ratio of Cp/Cv.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 28, 2014
    Assignee: General Electric Company
    Inventor: Hua Xia
  • Patent number: 8639071
    Abstract: An apparatus for forming laser radiation. The apparatus can form the laser radiation such that the laser radiation can enter an optical fiber. The apparatus contains a first lens device for deflection and/or imaging or collimation of the laser radiation with respect to a first direction, and a second lens device for deflection and/or imaging or collimation of the laser radiation with respect to a second direction. The first and the second lens devices are provided in or on a component.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: January 28, 2014
    Assignee: LIMO PatentverwaltungGmbH & Co. KG
    Inventors: Lutz Aschke, Andreas Bayer, Udo Fornahl, Jens Meinschien, Thomas Mitra
  • Patent number: 8639067
    Abstract: The fabrication of an optical wiring board is performed in the following manner: A core member 13 for a mirror 22 is pattern-formed on a clad layer 11, and simultaneously, using the core member 13, each alignment mark pattern 14 is formed at any position on the clad layer 11. Further, with positioning in reference to each alignment mark 14, the core pattern 13 is subjected to physical cutting to form a bevel part and a concave part 23. Then, a metallic reflective film 18 is coated on the surface of the bevel part. Thereafter, with positioning in reference to each alignment mark 14, an optical wiring core pattern 20 is formed on the clad layer 11 adjacently to the mirror 22.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: January 28, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventor: Yasunobu Matsuoka
  • Publication number: 20140022820
    Abstract: A ring-shaped light guiding member includes a ring-shaped light guiding main body having a circumferential surface, and a light introducing portion formed on the circumferential surface. The light introducing portion includes a flat light incident surface perpendicularly connected to the circumferential surface and a curved side surface connected between the light incident surface and the circumferential surface. A backlight module using the ring-shaped light guiding member is also provided.
    Type: Application
    Filed: November 28, 2012
    Publication date: January 23, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: LI-YING WANG HE
  • Patent number: 8632261
    Abstract: An opto-electronic device assembly adapted for mounted on a mother board includes a case and opto-electronic devices. The case has multiple cavities opening forwards and downwards. Each opto-electronic device includes an optical engine module and an electrical socket. The optical engine module includes an optical engine, an optical transmission interface and an electrical transmission interface with electrical pads. The electrical socket has a plurality of terminals with one ends contacting with PCB and another opposite ends contacting with the electrical pads. Each electrical transmission interface is removeably assembled in the electrical sockets to complete electrical connection between the substrate and the mother board. The opto-electrical devices are received in the cavities in a condition that the optical transmission interfaces exposes to a front open of the case.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 21, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Jim Zhao, Yuan-Chieh Lin, An-Jen Yang, Pei Tsao, Yin-Tse Kao, Ashish Raheja
  • Patent number: 8634683
    Abstract: A method of manufacturing an optical waveguide device, includes obtaining an optical waveguide by forming sequentially a first cladding layer, a core layer, and a second cladding layer on a substrate, forming a groove portion including a light path conversion inclined surface and a sidewall surface which intersects with it, and the groove portion dividing the second cladding layer and the core layer, on both end sides of the optical waveguide respectively, forming selectively a metal layer on the light path conversion inclined surface and the sidewall surface of the groove portion, forming a protection insulating layer sealing the metal layer on the optical waveguide, and obtaining a light path conversion mirror that the metal layer is formed on the light path conversion inclined surface, by forming a concave portion which penetrates the core layer from the protection insulating layer to remove the metal layer formed on the sidewall surface of the groove portion.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: January 21, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Kenji Yanagisawa
  • Patent number: 8634691
    Abstract: Variable optical attenuator (VOA) formed by disposing upon a substrate a waveguide, a p-type region and an n-type region about the waveguide, and an epi-silicon region disposed upon the waveguide, the VOA responsive to a bias current to controllably inject carriers into the waveguide to attenuate thereby optical signal propagating through the waveguide.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 21, 2014
    Assignee: Alcatel Lucent
    Inventors: Mark P. Earnshaw, Mahmoud S. Rasras
  • Patent number: 8634686
    Abstract: An automatic optical coupling device that uses liquid to couple focused light into a light-guide is described. The liquid moves within a chamber or layer via the thermocapillary effect in order to automatically track and couple a moving spot of focused light. Also provided is the application of these coupling devices in an array feeding into a common light-guide, optical designs to improve the performance of these arrays, and the application of such arrays to light collection.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: January 21, 2014
    Assignee: Glint Photonics, Inc.
    Inventor: Peter Kozodoy
  • Publication number: 20140016898
    Abstract: An optical waveguide connector for transmitting light from a laser emitter and to a photo receiver on a circuit board, including a base section having a receiving passageway; a planar waveguide received in the receiving passageway; and a light guide device coupling to the planar waveguide; wherein the planar waveguide has an input waveguide core corresponding to the laser emitter and an output waveguide core corresponding to the photo receiver; wherein the planar waveguide has a smooth front face, the input waveguide core and the output waveguide core extending to the front face; and wherein the light guide device comprises a first reflector proximal to the front face and a second reflector distal from the front face, the second reflector turns the light from the laser emitter toward the input waveguide core, and the first reflector turns the light from the output waveguide core toward the photo receiver.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 16, 2014
    Inventors: GENN-SHENG LEE, JIA-HAU LIU
  • Publication number: 20140009762
    Abstract: A measurement assembly (12) that directs a light beam (32) at a surface (16, 56) comprises a light source (20) and a fiber optic array (22). The light source (20) emits the light beam (32) that is directed at the surface (16, 56). Subsequently, the light beam (32) is reflected off of the surface (16, 56) to create a reflected beam (58). The fiber optic array (22) has a first array end (33B) that receives the reflected beam (58). Additionally, the fiber optic array (22) includes a primary fiber (234) and at least one auxiliary fiber (238) that is positioned substantially adjacent to the primary fiber (234) at the first array end (33B). A detector assembly (28) is coupled to the fiber optic array (22) to detect any light from the reflected beam (58) in the primary fiber (234) and the at least one auxiliary fiber (238).
    Type: Application
    Filed: June 20, 2013
    Publication date: January 9, 2014
    Inventor: Daniel Gene Smith
  • Patent number: 8625153
    Abstract: A multi-dimensional data registration integrated circuit is configured for driving array-arrangement devices. The array-arrangement devices comprise a plurality of first hierarchy sets, each which comprises a plurality of second hierarchy sets. The multi-dimensional data registration integrated circuit comprises a first hierarchy address selection circuit, a second hierarchy address selection circuit and a data supply circuit. The first hierarchy address selection circuit scans the first hierarchy sets, and selects a unit of the first hierarchy sets to activate it. The second hierarchy address selection circuit scans the second hierarchy sets. The data supply circuit writes a plurality of data into each designated unit of the second hierarchy sets according to the scanning sequence of the second hierarchy address selection circuit.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 7, 2014
    Assignee: National Tsing Hua University
    Inventors: Fan Gang Tseng, Jian Chiun Liou
  • Patent number: 8625942
    Abstract: An efficient grating coupler for a semiconductor optical mode includes a tapered edge to couple light between waveguide modes constrained by differing waveguide thicknesses. An optical circuit or laser has a waveguide in a rib or strip waveguide section that is of different height (e.g., having different vertical constraints) than a waveguide section that has a grating coupler through which light passes off-circuit. The tapered edge can couple light between the two waveguide sections with very low loss and back-reflection. The low loss and minimal back-reflection enables testing of the photonics circuit on a wafer level, and improved performance through the grating coupler.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: January 7, 2014
    Assignee: Intel Corporation
    Inventors: Yun-Chung N. Na, Haisheng Rong
  • Publication number: 20140002820
    Abstract: An optical module of a micro spectrometer with tapered slit and slit structure thereof. The optical module includes an input section and a micro diffraction grating. The input section includes a slit structure, which receives a first optical signal and outputs a second optical signal travelling along a first optical path. The slit structure includes a substrate and a slit, which penetrates through the substrate and has a gradually reduced dimension from a first surface of the substrate to a second surface of the substrate. The micro diffraction grating, disposed on the first optical path, receives the second optical signal and separates the second optical signal into a plurality of spectrum components travelling along a second optical path.
    Type: Application
    Filed: April 29, 2010
    Publication date: January 2, 2014
    Applicant: OTO PHOTONICS, INC.
    Inventor: Cheng-Hao Ko
  • Patent number: 8617300
    Abstract: The invention relates to a filtering media having a photocatalytic action which has a thickness of at least 2 mm, which is homogeneous and which is devoid of orifice apparent to the naked eye, comprising a felt of inorganic fibers, the fibers of which are coated with a coating comprising a catalyst having a photocatalytic action, said felt exhibiting a weight per unit area of between 30 and 80 g/m2, said coating representing 5 to 80% of the weight of said media, said media exhibiting a gas pressure drop of less than 150 Pa at 1 m/s in unpleated condition. This media is intended to be incorporated in a purifier of gas, such as air, furthermore comprising a system for illuminating said media with UV radiation. The media exhibits an excellent purification efficiency and a very low pressure drop.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 31, 2013
    Assignee: Saint-Gobain Quartz S.A.S.
    Inventors: Jean-Paul Riviere, Paul Sargood, Laurent Molins
  • Patent number: 8620120
    Abstract: A photonic integrated circuit (410) is described comprising at least one signal processing circuit (110). The signal processing circuit (110) comprises at least one input coupling element (120) for coupling incident light from a predetermined incoupling direction into the photonic integrated circuit (410), and at least one output coupling element (130) for coupling light out of the photonic integrated circuit (410) into an outcoupling direction. The relation between the incoupling direction and the outcoupling direction is different from a relation according to the law of reflection and the incoupling direction and the outcoupling direction are substantially the same. Furthermore, an optical sensor probe (400) comprising such a photonic integrated circuit (410) is disclosed.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: December 31, 2013
    Assignees: IMEC, Universiteit Ghent
    Inventors: Roel Baets, Wim Bogaerts, Katrien De Vos, Stijn Scheerlinck
  • Patent number: 8620131
    Abstract: A variable optical attenuator includes a collimating unit that collimates an incident light beam, a polarization splitting member that separates the collimated light beam into a first polarized light beam having a first polarization and a second polarized light beam having a second polarization, a birefringence control unit through which the first and second polarized light beams pass, the birefringence control unit including a liquid crystal cell having a birefringence is controlled by a voltage or current, wherein the birefringence of the liquid crystal cell is substantially zero when no voltage or current is applied thereto, and a reflection member that reflects the first and second polarized light beams output from the birefringence control unit. The variable optical attenuator has high stability, high precision, and low volume.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 31, 2013
    Assignee: INLC Technology, Inc.
    Inventor: Seong Woo Suh
  • Publication number: 20130343704
    Abstract: Disclosed herein are techniques, methods, structures and apparatus for optically coupling optical waveguides and optical structures exhibiting different widths in which In which a focusing reflector is used to optically couple a relatively wide optical waveguide to a relatively narrow optical waveguide. An exemplary method according to the present disclosure comprises the steps of: providing the first waveguide that is 5 or more wavelengths in width; providing the second waveguide that is 3 or less wavelengths in width; coupling light emanating from the first waveguide to the second waveguide through the effect of a slab waveguide having a curved edge.
    Type: Application
    Filed: June 26, 2013
    Publication date: December 26, 2013
    Inventor: Christopher DOERR
  • Patent number: 8611710
    Abstract: An optical collector includes an optical input for incoupling light from multiple incoming optical waveguides into the collector and an optical output for outcoupling light from the collector into an outgoing optical waveguide. The collector includes an optical body having a base portion in which the optical input including at least two coupling points is arranged, and a tip portion in which the optical output including a second coupling point is arranged, wherein the first coupling points each include an optical input cross-sectional area and the second coupling point comprises an output cross-sectional area, and wherein the output cross-sectional area is smaller than the total of all input cross-sectional areas. The optical body of the collector can be cone-shaped and may include a hollow cone.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: December 17, 2013
    Assignee: GAPI Technische Produkte GmbH
    Inventor: Dieter Meller
  • Patent number: 8611711
    Abstract: An optoelectronic transmission device includes a base, a first optical fiber, a second optical fiber, an optical signal source, a light detector, a carrier, and a monocrystalline-silicon reflector. The first optical fiber transmits first light. The second optical fiber transmits second light. The optical signal source emits the first light. The light detector receives and converts the second light into electrical signals. The carrier has a first through hole and a second through hole. The first optical fiber is received in the first through hole. The second optical fiber is received in the second through hole. The monocrystalline-silicon reflector is positioned on the base and covers the light detector and the optical signal source. The monocrystalline-silicon reflector internally totally reflects the first light from the optical signal source to the first optical fiber and internally totally reflects the second light from the second optical fiber to the light detector.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: December 17, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: I-Thun Lin
  • Patent number: 8611709
    Abstract: An embodiment of the invention provides a coupled waveguide photo detector device. Optically, the device includes an input waveguide. An output waveguide is coupled to the input waveguide with a nonuniform coupling coefficient in a coupling section. An absorber is included in the coupling section to convert an absorbed portion of optical radiation into photo current. The location of absorber and the optical radiation intensity pattern in the coupling section are set to control the maximum intensity of output power absorbed by the output waveguide to be within a predetermined limit that avoids saturation. The absorber is also part of a transmission line collector which has a phase and group velocity to match those of the optical wave in the coupling section such that currents collected by the transmission line collector add in phase as the optical wave propagates in the output waveguide.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: December 17, 2013
    Assignee: The Regents of the University of California
    Inventors: William S. C. Chang, Paul K. L. Yu
  • Patent number: 8611708
    Abstract: An optical assembly is provided that can mitigate thermal damage that could otherwise occur in the region near where the optical fiber emerges from a high-power optical device package. The optical assembly includes an optical medium to guide stray light, along the fiber axis but substantially outside of the fiber core, from the interior to the exterior of a housing. The assembly further includes a transition region external to the housing, where at least one optical mode guided by the optical medium transitions to at least one optical mode confined by a polymer coating as a guided mode of the cladding. In embodiments, the optical medium is provided by the fiber cladding together with overlying materials of relatively low refractive index that help to confine the stray light within the cladding.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: December 17, 2013
    Assignee: LGS Innovations LLC
    Inventor: Jon W. Engelberth
  • Publication number: 20130330038
    Abstract: A coherent mixer includes a substrate including a principal surface, the principal surface having a first area and a second area; a multi-mode interference device provided on the first area of the substrate; a light-receiving device provided on the second area of the substrate, the light-receiving device including a plurality of waveguide-type photodiodes; a first input waveguide optically coupled to the multi-mode interference device; a second input waveguide optically coupled to the multi-mode interference device; a plurality of optical waveguides optically coupling the multi-mode interference device to the plurality of waveguide-type photodiodes; and a protective layer covering the first and second areas of the substrate, the protective layer covering the plurality of waveguide-type photodiodes. The protective layer has an opening in the first area of the substrate. In addition, the multi-mode interference device has a surface that is at least partially exposed at the opening of the protective layer.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 12, 2013
    Inventor: Yutaka ONISHI
  • Patent number: 8606058
    Abstract: A solid core, multi-channel optical coupler comprising an elongate mixer body having an input end, an output end and sidewalls forming a length of the mixer body, where the input end is configured for coupling to a plurality of input channels providing an optical signal for transmission through the mixer body, and a plurality of output tapers coupled to the output end. Each of the output tapers has a reception area adjacent the output end of the mixer body for receiving a portion of the optical signal transmitted through the mixer body. Furthermore, the reception area of each output taper is variable to vary the intensity of the optical signal received by the output taper.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Huei Pei Kuo, Michael Renne Ty Tan, Robert G. Walmsley, Shih-Yuan (SY) Wang, Paul Kessler Rosenberg
  • Publication number: 20130322819
    Abstract: A fiber optical coupler comprises a bundle of optical fibers configured to couple light from a multiplicity of input light sources to an output port, each of the fibers comprising a multimode fiber having a core region and a cladding region surrounding the core region. The bundle has first and second axial sections arranged in tandem and adiabatically coupled to one another via a transition zone that includes an optical interface. Within the first section, the ratio of the cross-sectional core area of each of at least some of the fibers to the total cross-sectional area of each of those fibers is given by R1, and within the second section, the ratio of the cross-sectional core area of each of at least some of the fibers to the total cross-sectional area of each of those fibers is given by R2>R1, where R2 is substantially constant along the axial length of the second section.
    Type: Application
    Filed: September 21, 2011
    Publication date: December 5, 2013
    Applicant: OFS FITEL, LLC
    Inventors: William R. Holland, William J. Strachan
  • Publication number: 20130322818
    Abstract: A coupling device for physically and optically coupling an input/output end of an optical fiber for routing optical signals, to and from optical receiver and/or transmitter. The coupling device includes a structured reflective surface that functions as an optical element that directs light to/from the input/output ends of the optical fiber by reflection, and an optical fiber retention groove structure that positively receives the optical fiber in a manner with the end of the optical fiber at a defined distance to and aligned with the structured reflective surface. The open structure of the structured reflective surface and fiber retention structure lends itself to mass production processes such as precision stamping. The coupling device can be attached to an optical transmitter and/or receiver, with the structured reflective surface aligned to the light source in the transmitter or to the detector in the receiver, and adapted in an active optical cable.
    Type: Application
    Filed: March 5, 2013
    Publication date: December 5, 2013
    Applicant: NANOPRECISION PRODUCTS, INC.
    Inventor: Nanopresicion Products, Inc.
  • Publication number: 20130322822
    Abstract: An attachable optical component is aligned with a base optical component. The attachable optical component has a mounting surface interfacing with the base optical component and an exposed surface opposed to the mounting surface. Laser light is directed to the exposed surface of the attachable optical component for delivery to the mounting surface. The attachable optical component guides and homogenizes the laser light delivered to the mounting surface and uniformly heats a bonding feature between the mounting surface and the base optical component.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Brent C. Roeger, Karim Tatah
  • Publication number: 20130322820
    Abstract: An optical fiber for a lighting device comprises: a coupling section that exhibits at least one coupling surface for coupling of light in the optical fiber; a fiber-optics section that extends along a main fiber-optics line that is limited by at least one main fiber-optics surface extending along the main fiber-optics line and such that the light can be conducted along the main fiber-optics line, starting from the coupling section, by internal total reflection at the main fiber-optics surface; and a plurality of decoupling components. Each decoupling component is disposed on the main fiber-optics surface such that light from the optical fiber can be fully decoupled by a respective light-emitting surface of the optical fiber assigned thereto. The decoupling components on the main fiber-optics surface are disposed such that they are offset along the main fiber-optics line. A fiber-optics device comprises first and second ones of the optical fiber.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventors: Hubert Zwick, Hermann Kellermann
  • Publication number: 20130315533
    Abstract: An optoelectronic device is disclosed. The optoelectronic device may be employed as a single or multi-channel opto-coupler that electrically isolates one circuit from another circuit. The opto-coupler may include one or more premolded cavities with a light-coupling medium contained therein. Walls of the one or more premolded cavities advantageously help shape the light-coupling medium during manufacture, therefore, resulting in a light path with controlled shape and dimensions.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: AVAGO TECHNOLOGIES ECBU IP (SINGAPORE) PTE. LTD.
    Inventors: Gary Tay, Dominique Ho
  • Publication number: 20130315534
    Abstract: A system and method are provided for using bubble structures to control the extraction of light from a waveguide top surface. The method determines a maximum angle (?) of light propagation through a waveguide medium relative to a first horizontal direction parallel to a waveguide top surface. A plurality of bubble structures is provided having a refractive index less than the waveguide medium. The bubble structures have a base, and sides formed at an acute angle upwards with respect to the base. The bubble structure bases are separated by gap (W), have a height (H), and have a top separated from a waveguide top surface by a space (h). The method varies the gap (W), the height (H), and the space (h). In response, the intensity of light extraction at even the maximum angle (?) of light propagation, can be controlled from the waveguide top surface.
    Type: Application
    Filed: May 31, 2012
    Publication date: November 28, 2013
    Inventors: Jiandong Huang, Apostolos T. Voutsas
  • Patent number: 8594474
    Abstract: A Mach-Zehnder wavelength division multiplexer (WDM) is provided. The WDM has a short length with flat passband and low crosstalk. Since passband is flattened, crosstalk is reduced and length of the WDM is shortened, the WDN can be used for optical communication and optical interconnection in a single chip.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 26, 2013
    Assignee: National Central University
    Inventors: Hung-Chih Lu, Jen-Inn Chyi
  • Patent number: 8594503
    Abstract: An optical device for optically multiplexing or demultiplexing light of different predetermined wavelengths is provided, the optical device comprising at least one first waveguide (11) and at least one second waveguide (12) formed on a substrate (10), wherein the at least one first waveguide and the at least one second waveguide intersect at an intersection, comprising a diffraction grating structure (13) formed at the intersection. There exists a first wavelength or wavelength band travelling within the first waveguide (11) exciting the grating structure and being diffracted an angle corresponding to an outcoupling direction and there exists a second wavelength or wavelength band, different from the first wavelength or wavelength band, travelling within the second waveguide (12) exciting the grating structure and being diffracted at an angle corresponding to the same outcoupling direction.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: November 26, 2013
    Assignees: IMEC, Universiteit Gent, Genexis B.V.
    Inventors: Gunther Roelkens, Dries Van Thourhout, Roel Baets, Gerard Nicolaas van den Hoven
  • Patent number: 8588564
    Abstract: A confocal optical system comprising a scanning fiber is provided. The scanning fiber is a single-mode fiber of which a first end is shaped as a curved surface. The scanning fiber transmits illumination light to the first end. The illumination light is emitted toward an observation area. The illumination light emanates from the first end. The illumination light emanates from the first end striking a target area within the observation area. The first end receives at least one of reflected light and fluorescence from the target area. The reflected light is the illumination light reflected from the target area. The fluorescence is induced at the target area by illumination from the illumination light.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: November 19, 2013
    Assignee: Hoya Corporation
    Inventor: Satoshi Karasawa
  • Patent number: 8588560
    Abstract: An optical 90-degree hybrid circuit includes a first demultiplexing optical coupler having two or more first input ports and two or more first output ports, a second demultiplexing optical coupler having two or more second input ports and two or more second output ports, two first arm waveguides connected to the first output ports, two second arm waveguides connected to the second output ports, a 90-degree phase shift section installed in one of the four arm waveguides, a first optical coupler and a second optical coupler connected to the first arm waveguides and the second arm waveguides, a first optical waveguide for connecting an optical splitter and the first input ports, and a second optical waveguide for connecting the optical splitter and the second input ports, wherein an optical length of the first optical waveguide is different from that of the second optical waveguide.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 19, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yohei Sakamaki, Takashi Goh, Toshikazu Hashimoto, Yusuke Nasu, Kuninori Hattori, Hiroshi Takahashi
  • Patent number: 8588563
    Abstract: A projected artificial magnetic mirror (PAMM) waveguide includes a substrate, metal patches, a metal backing, multiple dielectric materials, and a waveguide area. The metal patches are on a first layer of a substrate and the metal backing is on a second layer of the substrate. The first dielectric material is between the first and second layers of the substrate. The metal patches are electrically coupled to the metal backing to form an inductive-capacitive network that substantially reduces surface waves along a surface of the substrate within a given frequency band. The second dielectric material juxtaposed to the metal patches, where the waveguide area is between the second and third dielectric materials and includes the surface of the substrate. The inductive-capacitive network, the second dielectric material, and/or the third dielectric material facilitate confining an electromagnetic signal within the waveguide area.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: November 19, 2013
    Assignee: Broadcom Corporation
    Inventors: Nicolaos G. Alexopoulos, Chryssoula A. Kyriazidou
  • Patent number: 8588566
    Abstract: According to the electronic apparatus and cellular phone of the present invention, in an optical waveguide forming body of a flexible cable, an air layer is provided in a deforming section which experiences bending deformation as a result of the movement of a second body relative to a first body (either a pivoting or sliding movement), and the position of this air layer becomes located on the outer circumferential side of a core when the deforming section undergoes bending deformation. As a result of this, it is possible to ensure sufficient flexibility and to also achieve a sufficient improvement in the folding endurance of the core portion for this optical waveguide forming body to be utilized in practical applications. Moreover, it is possible to suppress light loss and achieve high-speed, large-capacity transmissions even when the optical waveguide forming body of a flexible cable experiences bending deformation due to the relative movement of the second body relative to the first body.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Mutsuhiro Matsuyama, Koji Choki, Tetsuya Mori, Kei Watanabe
  • Publication number: 20130301986
    Abstract: Spacer resin pattern layer which precisely aligns a light-emitting element or a light-receiving element relative to both a waveguide pattern layer and electrical circuit pattern layer from the semiconductor wafer level. A substratum of resin having a through-hole provided for electrical communication with an electrical circuit pattern layer is formed on a semiconductor wafer. A truncated cone-shaped three-dimensional reflective surface is formed to guide the emitted light towards or received light from a waveguide pattern layer. A metal film is deposited planarly in a predetermined range from the center when positioned relative to the position of the through-hole. A truncated cone-shaped mold is stamped in the center. By modifying the direction of the light using this tapered structure, the precision tolerance is increased and optical loss is reduced.
    Type: Application
    Filed: April 16, 2013
    Publication date: November 14, 2013
    Inventors: Daiju Nakano, Masao Tokunari, Kazushige Toriyama, Yutaka Tsukada
  • Publication number: 20130301014
    Abstract: A substrate guided relay includes multiple output couplers and multiple light valves positioned between the substrate and the output couplers. The number of light valves may be equal to the number of output couplers, or may be more or less than the number of output couplers. The light valves may be enabled sequentially, or may be enabled based on the position of a user's eye. The light valves may include liquid crystal material.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Applicant: MICROVISION, INC.
    Inventors: Christian Dean DeJong, Markus Duelli
  • Patent number: 8577191
    Abstract: A transceiver comprising a CMOS chip and a plurality of semiconductor lasers coupled with the CMOS chip may be operable to communicate optical source signals from the plurality of semiconductor lasers into the CMOS chip. The source signals may be used to generate first optical signals that may be transmitted from the CMOS chip to optical fibers. Second optical signals may be received from the optical fibers and converted to electrical signals for use by the CMOS chip. The optical source signals may be communicated from the semiconductor lasers into the CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the CMOS chip. The first optical signals may be communicated from the CMOS chip via optical couplers, which may comprise grating couplers.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 5, 2013
    Assignee: Luxtera Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Publication number: 20130287338
    Abstract: The present invention relates generally to optical waveguides for the transmission of electromagnetic energy. The present invention relates more particularly to optical couplers for coupling optical fibers, and methods for making them. One aspect of the present invention is an optical coupler for use with a polarization-maintaining input optical fiber and a polarization-maintaining output optical fiber.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 31, 2013
    Inventors: Imtiaz Majid, Chih-Hao Wang, Kanishka Tankala
  • Patent number: 8571362
    Abstract: An optical device includes a first region interfaced with a second region. The first region includes one or more surfaces that are formed using electron-beam lithography and the second region includes one or more surfaces that are formed using photolithography. A component crosses the interface and includes a first portion located in the first region and a second portion located in the second region. The component includes a light-signal carrying region that constrains light signals. The first portion includes a first taper that expands the light-signal carrying region as the component approaches the interface and the second portion includes a second taper that expands the light-signal carrying region as the component approaches the interface.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: October 29, 2013
    Assignee: Mellanox Technologies Ltd.
    Inventor: Po Dong
  • Publication number: 20130279849
    Abstract: Apparatuses, systems, and methods for micro-ring optical resonators are provided. An example of a micro-ring optical resonator apparatus includes an array of input waveguides with each input waveguide optically coupled to an array of micro-rings, an output waveguide operatively associated with each of the micro-rings, and a scattering object operatively associated with each of the micro-rings, wherein the scattering object is connected to the output waveguide.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Inventors: Charles M. Santori, Marco Fiorentino, Zhen Peng, David A. Fattal, Andrei Faraon, Raymond G. Beausoleil
  • Publication number: 20130279850
    Abstract: The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the ?-factor) over large areas, contrary to the conventional wisdom that the ?-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
    Type: Application
    Filed: February 19, 2013
    Publication date: October 24, 2013
    Inventors: Jorge Bravo-Abad, John D. Joannopoulos, Marin Soljacic