Particular Coupling Structure Patents (Class 385/39)
  • Patent number: 8036506
    Abstract: A tunable optical filter is formed by the longitudinal alignment of two opposing end sections of single-mode optical fibers. On at least one of the end sections is a collimator fiber section which is formed from a section of a graded-index, multimode optical fiber which is an odd number of quarter pitches long. The collimator fiber section has an angled end surface which joined to the reciprocally angled end surface of the at least one single-mode optical fiber end section. Piezoelectric material controls the separation between the first and second single-mode optical fiber end sections and sets the wavelengths of optical signals carried through the first and second single-mode optical fiber end sections.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 11, 2011
    Assignee: Lightwaves 2020, Inc.
    Inventor: Jing Jong Pan
  • Patent number: 8031990
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for multiplexing.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: October 4, 2011
    Inventors: Roderick A. Hyde, Edward K. Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20110235967
    Abstract: A light transmission assembly includes a light circuit board and a light transmission module. The board is embedded with waveguide layers, the waveguides layers includes core wires and shielding lays sandwiching the core wires, the waveguide layers defines a second light port portion of which the core wires defines vertical end faces. The light transmission module includes a base and a first light port portion projecting from a first face of the base, the first light port portion defines vertical end faces, the base defines a slanting surface at a second face opposite to the first face thereof. The first and second light port portions are aligned with each other when the light transmission module is coupled with light circuit board so that light lines go directly from the core wires through the light transmission module and reflect at the slant surface.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 29, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: YEN-CHIH CHANG, KE-HAO CHEN
  • Publication number: 20110235975
    Abstract: An optocoupler with a light guide defining element is presented. The light guide defining element has at least one cavity configured to define the shape of the light guide formed by a transparent encapsulant encapsulating the optical transmitter and receiver dies. The transparent encapsulant in liquid form may be injected into the cavity prior to a curing process to harden the encapsulant into a light guide with a predetermined shape. The cavity of the light guide element may be defined by a reflective surface having micro-optics formed thereon. A multichannel optocoupler with multiple transmitter and/or receiver dies having such light guide defining element is also presented. The light guide defining element may have a single cavity enveloping all the optical transmitter or receiver dies, or a multiple cavities by having a pair of transmitter and receiver dies inside each cavity.
    Type: Application
    Filed: November 12, 2010
    Publication date: September 29, 2011
    Applicant: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Thiam Siew Gary Tay, Maasi Gopinath
  • Publication number: 20110235974
    Abstract: An optocoupler with optical transmitter and receiver dies attached to a single conductive pad is presented. One of the optical transmitter and receiver dies may be attached directly to the conductive pad, while the other one of the optical transmitter and receiver dies may be attached to the conductive pad by means of three layers of materials comprising an isolation layer sandwiched between two attachment layers. A multi-channel optocoupler with multiple transmitter and/or receiver dies is also presented, in which one of the optical transmitter and receiver dies may be attached directly to the conductive pad. The other optical transmitter or receiver dies may be attached to the conductive pad by means of three layers of materials comprising an isolation layer sandwiched between two attachment layers.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 29, 2011
    Inventors: Thiam Siew Gary Tay, Gopinath Maasi
  • Patent number: 8027556
    Abstract: A coupling structure of waveguide including a line defect (LD) waveguide portion having an LD waveguide, an electromagnetic field distribution matching portion (EFDMP) connected between the LD waveguide portion and a first tapered portion, the first tapered portion connected with the EFDMP, and a thin line waveguide portion connected with the first tapered portion and having a thin line waveguide. The EFDMP has a matching portion LD as the LD of a columnar photonic crystal, and the matching portion LD is connected with the LD waveguide. The first tapered portion consists of a first thin wire core, and the first LD of a columnar photonic crystal arranged along at least one side of first thin line core. At least one of the first thin line core and the first LD is connected with the matching portion line defect. The thin line waveguide is connected with the first thin line core.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: September 27, 2011
    Assignee: NEC Corporation
    Inventor: Masatoshi Tokushima
  • Patent number: 8023782
    Abstract: Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 20, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Goebel, Lawrence C. West, Gregory L. Wojcik
  • Patent number: 8023776
    Abstract: A Mach-Zehnder type optical modulator includes an optical waveguide formed in an electro-optical substrate, an input section that inputs light to the optical waveguide, a plurality of branch modulation sections that generate branched input light, extend from the input section and modulate the branched input light, an interference photocoupler including a plurality of input ports and a plurality of output ports, the input ports being coupled to the branch modulation sections, and an output photocoupler including a plurality of input ports coupled to the output ports of the interference photocoupler and also including a plurality of output ports.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: September 20, 2011
    Assignee: Fujitsu Limited
    Inventor: Yukito Tsunoda
  • Patent number: 8021058
    Abstract: A method of forming a waveguide or an optical assembly includes molding a waveguide material, optionally in alignment with one or more optical components. The one or more optical components are aligned in a precision mold that is also used to form the waveguide. A cladding and encapsulation material can also be molded. The molded materials can be used to hold the components together in alignment in a single assembly. A connector structure can be molded as part of the assembly or can be prefabricated and incorporated into the molded assembly to facilitate connecting the assembly to other components without requiring active alignment or polishing of optical fiber ends.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: September 20, 2011
    Inventors: Kenneth Noddings, Daniel Marshall Andrews, Thomas Alan Bishop, Michael Anthony Olla
  • Patent number: 8019185
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: June 1, 2008
    Date of Patent: September 13, 2011
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 8014644
    Abstract: An optical waveguide comprising a core and a clad characterized in that a desired part is heated and transited to machining strain release state, the part transited to the machining strain release state is curved with a specified bending radius and transited to machining strain state. That part of the optical waveguide is heated to a temperature within a range between the bending point and softening point and transited to machining strain state. The optical waveguide is an optical fiber having the outer diameter not shorter than 50 ?m. The optical waveguide has the outer diameter not shorter than ten times of the mode field diameter of the optical waveguide. The optical waveguide has a bending radius of 5.0 mm or less and difference equivalent of refractive index &Dgr;1 between the core and clad falls within a range of 0.8-3.5%.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 6, 2011
    Assignee: The Furukawa Electric Co., Ltd
    Inventors: Masahito Morimoto, Masao Shinoda
  • Patent number: 8014643
    Abstract: Disclosed herein is a photonic crystal waveguide inlet structure for improving coupling efficiency of a strip waveguide and a photonic crystal waveguide. The photonic crystal waveguide inlet structure includes an inlet region of the photonic crystal waveguide. The photonic crystal waveguide includes photonic crystals in which air holes are arranged in a triangle lattice shape in a dielectric, and a hybrid waveguide in which at least one of the air holes is removed, the hybrid waveguide spacing the inlet region apart from the strip waveguide.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 6, 2011
    Assignee: Inha-University Industry Partnership Institute
    Inventors: Beom-Hoan O, Dong-Jin Lee
  • Publication number: 20110211790
    Abstract: A method for producing the optical coupler includes mounting a first conversion element on an upper surface of a first terminal plate, mounting a second conversion element on an upper surface of a second terminal plate, supplying a translucent primary mold resin in a fluidized state to the upper surfaces of the first terminal plate and the second terminal plate such that the first conversion element and the second conversion element are covered with the primary mold resin, curing the primary mold resin while inverting vertically the first terminal plate and the second terminal plate to retain the primary mold resin in a state in which the primary mold resin hangs from the first terminal plate and the second terminal plate, and covering a surface of the primary mold resin with a secondary mold resin having a refractive index lower than that of the primary mold resin.
    Type: Application
    Filed: January 28, 2011
    Publication date: September 1, 2011
    Applicant: OMRON CORPORATION
    Inventor: Tetsuro Kubota
  • Patent number: 8009939
    Abstract: A fiberoptic system for clearance detection between rotating and stationary turbomachinery components is presented. The system comprises an optical fiber probe comprising a plurality of optical fibers, at least one of the optical fibers comprising a transmission fiber and at least one of the optical fibers comprising a signal fiber; a light source for providing light through the transmission fiber towards a target; filters for receiving light from the signal fibers, at least two of the filters for filtering different wavelengths; and at least one photodetector for receiving filtered light from the filters.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 30, 2011
    Assignee: General Electric Company
    Inventors: Danian Zheng, Peter John Eisenzopf, Kevin Thomas McCarthy, Roy Paul Swintek, Norman Arnold Turnquist, Hua Xia
  • Patent number: 8009958
    Abstract: An optical sight is provided and may include a housing, at least one optic supported by the housing, and an illumination device associated with the at least one optic that selectively supplies the at least one optic with light. The illumination device may include a first fiber associated with a first light source and a second fiber associated with a second light source. A coupler may join the first fiber and the second fiber and may supply the at least one optic with light from at least one of the first light source and the second light source.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: August 30, 2011
    Assignee: Trijicon, Inc.
    Inventors: Darin W. Schick, Thomas K. Maciak, Kian Siong Lim
  • Publication number: 20110206322
    Abstract: A method and system for implementing high-speed electrical interfaces between semiconductor dies in optical communication systems are disclosed and may include communicating electrical signals between an electronics die and an optoelectronics die via coupling pads which may be located in low impedance points in Tx and Rx paths. The electrical signals may be communicated via one or more current-mode, controlled impedance, and/or capacitively-coupled interfaces. The current-mode interface may include a cascode amplifier stage split between source and drain terminals of transistors on the dies. The controlled-impedance interfaces may include transmission line drivers on a first die and transmission lines on a second die. The capacitively-coupled interfaces may include capacitors formed by contact pads on the dies. The coupling pads may be connected via one or more of: wire bonds, metal pillars, solder balls, or conductive resin. The dies may comprise CMOS and may be coupled in a flip-chip configuration.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Inventors: Daniel Kucharski, John Andrew Guckenberger, Thierry Pinguet, Sherif Abdalla
  • Patent number: 8005329
    Abstract: A combined structure of optical waveguides with high accuracy can be easily materialized by arranging cutout sections 11a and 12a for half-lap joint in a light-emitting sided-optical waveguide and a light-receiving sided-waveguide to combine both of the cutout sections by a half-lap joint 13. This enables to significantly reduce time for minor adjustments after assembling.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Nitto Denko Corporation
    Inventor: Yusuke Shimizu
  • Patent number: 8000569
    Abstract: A fibre optic transmission application, in particular, an optical device that can be incorporated into telecommunications equipment as well as into test and measurement equipment with reduced insertion loss, reduced crosstalk effects and reduced height, with increased versatility in the implementation of optical functions other than multiplexers and demultiplexers. Relates to components, modules, equipments and instruments such as multiplexers, demultiplexers, routers, channel monitors, and tunable filters that encompass such optical devices.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: August 16, 2011
    Assignee: Yenista Optics
    Inventors: Michiel Jacobus Van Der Keur, Alain Poudoulec
  • Patent number: 8000564
    Abstract: Provided are a photoelectric conversion module for direct optical interconnection and a method of manufacturing the same, wherein an optical element array is bonded to a side surface of an IC board having a semiconductor chip mounted thereon and an optical waveguide array is bonded to one end of the optical element array having the other end bonded to the IC board to be optically connected to the optical element array, thereby improving the efficiency of optical coupling between optical elements and optical waveguides, and wherein since the optical coupling between the optical elements and the optical waveguides is realized on the same plane between the optical waveguides having the same array as the optical elements, multi-channel optical coupling can be facilitated to enable easy implementation of an optical design.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: August 16, 2011
    Assignee: Korea Electronics Technology Institute
    Inventor: Young Min Im
  • Patent number: 8000007
    Abstract: A polarization filter utilizing Brewster's angle. The polarization filter includes a stimulus receiving body having more than one facet. At least two of the more than one facet being arranged at Brewster's angle (relative to the plane of polarization of the incident stimulus) and positioned in different radial orientations (relative to the incident stimulus) which are adapted to provide differential transmission or reflection of polarized electro-magnetic radiation coming from a common source.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: August 16, 2011
    Inventor: James Plant
  • Publication number: 20110194816
    Abstract: An optical fiber is designed to transmit high-power laser radiation. The optical fiber includes a fiber core, and an inner fiber cladding surrounding the fiber core, where the inner fiber cladding is configured to carry the laser radiation in the fiber core. The optical fiber also includes a first outer fiber cladding surrounding the inner fiber cladding. The first outer fiber cladding has a capillary-free longitudinal section and has a smaller refractive index than the refractive index of the inner fiber cladding. The optical fiber includes an outermost fiber cladding surrounding the first outer fiber cladding. The outermost fiber cladding has scattering centers that surround the capillary-free longitudinal section, where the scattering centers scatter laser radiation emerging from the inner fiber cladding through the first outer fiber cladding along the capillary-free section.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 11, 2011
    Applicant: TRUMPF LASER GMBH + CO. KG
    Inventors: Malte Kumkar, Rudolf Huber
  • Patent number: 7995883
    Abstract: Disclosed are an optical waveguide and a bi-directional light transceiver, in which a wavelength selective filer is provided in the core of the optical waveguide to divide bi-directional signals, so that manual alignment of optical components are easily achieved and thus a small bi-directional light transceiver is realized and transmission/reception efficiency of light is enhanced.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 9, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sei-hyoung Lee, Hyun-seo Kang, Jai-sang Koh
  • Patent number: 7991251
    Abstract: A filter element includes a first glass substrate having a pair of parallel surfaces and a band pass filter arranged on one of the parallel surfaces, a pair of single-crystal substrates (Si wafers) each including a primary surface formed with a depression having an inclined surface with respect to the primary surface occupying at least one half of the opening of the depression, and a second glass substrate having an optical element. The primary surfaces of the single-crystal substrate pair are bonded to a pair of the surfaces of the glass substrate. The depressions are faced through the glass substrate and surround the band pass filter. By this configuration, the filter element can be mass produced with a high accuracy and a low cost by the wafer-level process.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 2, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Shohei Hata, Naoki Matsushima, Toshiaki Takai, Yukio Sakigawa, Satoshi Arai
  • Patent number: 7986861
    Abstract: An optical fiber connector has a first ferrule holding an end of a first optical fiber, a first fiber stub connected to the first ferrule, a second ferrule holding an end of a second optical fiber, and a second fiber stub connected to the second ferrule. The first fiber stub enlarges the beam diameter of light transmitted through the first optical fiber, and produces the collimated light. The second fiber stub reduces the beam diameter of the collimated light, and leads the converging light into the second optical fiber. The first and second fiber stubs are detachably connected inside a connection sleeve across a predetermined gap. First and second GI fibers contained in the first and second fiber stubs satisfy L1?L2 and L1+L2?½ pitch, wherein L1 and L2 represent the lengths of the first and second GI fibers, and one pitch is a sinusoidal period of the light transmitted therethrough.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: July 26, 2011
    Assignee: Fujifilm Corporation
    Inventor: Shinichi Shimotsu
  • Patent number: 7985028
    Abstract: According to an optical fiber splicing technique in which optical fibers F11 and F12 respectively connected to optical members 3 and 4 of an optical member unit are connected by fusion splicing, the plurality of optical fibers F11 and F12 and a looped turn-around fiber F21 are positioned facing each other and connected by fusion splicing, to connect the plurality of optical fibers F11 and F12 with each other.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: July 26, 2011
    Assignee: Fujitsu Limited
    Inventor: Fumio Aoki
  • Publication number: 20110176771
    Abstract: Provided herein are photonic devices configured to display photonic band gap structure with a degenerate band edge. Electromagnetic radiation incident upon these photonic devices can be converted into a frozen mode characterized by a significantly increased amplitude, as compared to that of the incident wave. The device can also be configured as a resonance cavity with a giant transmission band edge resonance. In an exemplary embodiment, the photonic device is a periodic layered structure with each unit cell comprising at least two anisotropic layers with misaligned anisotropy. The degenerate band edge at given frequency can be achieved by paper choice of the layers' thicknesses and the misalignment angle. In another embodiment, the photonic device is configured as a waveguide periodically modulated along its axis.
    Type: Application
    Filed: February 1, 2011
    Publication date: July 21, 2011
    Inventors: Aleksandr Figotin, Ilya M. Vitebskiy
  • Publication number: 20110176770
    Abstract: In one embodiment, an apparatus may include an optical fiber that may have a surface non-normal to a longitudinal axis of a distal end portion of the optical fiber. The surface may define a portion of an interface configured to redirect electromagnetic radiation propagated from within the optical fiber and incident on the interface to a direction offset from the longitudinal axis. The apparatus may also include a doped silica cap that may be fused to the optical fiber such that the surface of the optical fiber may be disposed within a cavity defined by the doped silica cap.
    Type: Application
    Filed: November 17, 2010
    Publication date: July 21, 2011
    Inventors: Jeffrey W. Zerfas, Richard P. Tumminelli
  • Patent number: 7983519
    Abstract: A photonic connection includes a first fiber and a second fiber. The first fiber has a core with a first predetermined pattern defined on or in a facet thereof, and the second fiber has a core with a second predetermined pattern defined on or in a facet thereof. The second predetermined pattern is complementary to the first predetermined pattern such that the first fiber or the second fiber fits into another of the second fiber or the first fiber at a single orientation and position.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: July 19, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Theodore I. Kamins, Wei Wu, Shih-Yuan Wang, Philip J Kuekes, Michael Tan
  • Patent number: 7978943
    Abstract: In one or more embodiments, an optical fiber coupler for coupling pump radiation into a rectangular optical fiber includes a fiber section and a pump fiber. The fiber section includes a core having a high aspect ratio cross-section and an interface section. The core is positioned in contact with first and second signal claddings to form reflective boundaries at fast-axis boundaries of the core. The pump fiber is side coupled to the fiber section via the interface section, and configured to couple the pump radiation into the fiber section.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: July 12, 2011
    Assignee: Raytheon Company
    Inventors: David Alan Rockwell, Vladimir V. Shkunov, Joshua Nathan Wentlandt
  • Patent number: 7978942
    Abstract: A system and method for compensating for non-uniform illumination from a light guide for a display in an electronics device is provided. The system comprises: a memory device storing a data representing a first compensation pattern for generation on the display to block light from a first portion of the light guide relative to light from a second portion of the light guide; a first module to incorporate the stored representation into an image to be displayed on the display; and a second module to generate the image with the stored representation for display on the display. In the system, when the first module generates the first compensation pattern on the display, the first compensation pattern aligns with the first and second portions to reduce an intensity of light from a light source passing through the first compensation pattern from the first portion relative to an intensity of light passing through the first compensation pattern from the second portion from the light source.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: July 12, 2011
    Assignee: Research in Motion Limited
    Inventors: James Robinson, Marc Drader, Michael Purdy
  • Publication number: 20110141757
    Abstract: All solid photonic bandgap optical fiber comprising a core region and a cladding region is disclosed. The cladding region surrounding the core region includes a background optical material having a first refractive index and elements arranged in a two-dimensional periodic structure. In one embodiment, each of the elements comprises a center part and peripheral part having a higher refractive than the central part. In other embodiments, each element comprises a plurality of rods having a higher refractive index higher than the fist, the rods of each element arranged in a circle or polygon. Light transmission apparatus and methods of using the fiber are also disclosed.
    Type: Application
    Filed: February 23, 2009
    Publication date: June 16, 2011
    Inventors: Toshiki Taru, Jonathan Knight, Tim Birks, David Bird
  • Publication number: 20110142397
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Application
    Filed: November 8, 2010
    Publication date: June 16, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J.F. Digonnet, Gordon S. Kino
  • Patent number: 7961995
    Abstract: An electrically modulated plasmonic junction generates surface plasmons from an electrical signal from an electrical source, with the tunnel junction having a contact with a tapered end forming the junction in a gap between the contact and a substrate, with the gap serving to translate electrical signals into surface plasmons that are in turn translated into emitted photons communicated externally through a transmissive oxide, so that the junction can function as an electrically controlled light emitter preferably built as a nano-scale broadband optical emitter whose output wavelength can be electrically tuned over hundreds of nanometers, can be directly modulated at high speeds, and can have improved efficiencies compared to standard silicon optical sources, and the junction can also operate in a reserve mode for light detection.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 14, 2011
    Assignee: The Aerospace Corporation
    Inventors: Josh A. Conway, Andrew D. Stapleton
  • Patent number: 7961994
    Abstract: An optical device includes a first waveguide having an end portion configured to receive an optical signal, the optical signal having a fundamental mode; a second waveguide having an end portion spaced from the end portion of the first waveguide; and a cladding layer surrounding the first and second waveguides. The first waveguide is configured such that the optical signal undergoes multimode interference to focus the fundamental mode at the end portion of the second waveguide.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: June 14, 2011
    Assignee: Infinera Corporation
    Inventors: Wei Chen, Brent E. Little
  • Patent number: 7957616
    Abstract: A method of producing an optical connecting component in which three-dimensional electric wiring can be easily and accurately performed, and the optical connecting component are provided. A positioning projection 58 disposed on a second slide core 56 for positioning a core pin 54 disposed on a first slide core 55 is fitted in a positioning hole 34 disposed in a lead frame 30. The lead frame 30 is disposed in the vicinity of a lead pattern 31, so that the lead pattern 31 can be insert-molded while being positioned in an accurate position with respect to the second slide core 56. Therefore, it is possible to easily perform three-dimensional electric wiring in an accurate position.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 7, 2011
    Assignees: Sumitomo Electric Industries, Ltd., Nihon Tsusin Denzai, Ltd.
    Inventors: Wataru Sakurai, Kazuhito Saito, Tomomi Sano
  • Patent number: 7957617
    Abstract: An optical device that comprises an input waveguide, an output waveguide, a high-Q resonant or photonic structure that generate slow light connected to the input waveguide and the output waveguide, and an interface, surface or mode volume modified with at least one material formed from a single molecule, an ordered aggregate of molecules or nanostructures. The optical device may include more than one input waveguide, output waveguide, high-Q resonant or photonic structure and interface, surface or mode volume. The high-Q resonant or photonic structure may comprise at least one selected from the group of: microspherical cavities, microtoroidal cavities, microring-cavities, photonic crystal defect cavities, fabry-perot cavities, photonic crystal waveguides.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: June 7, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Frank Vollmer, Juraj Topolancik
  • Patent number: 7956701
    Abstract: A method for the contactless transmission of at least one differential signal between a transmitter and a receiver given the existence of at least one common-mode noise signal, which has a low frequency in comparison with at least one signal to be transmitted, is provided. The suppression of at least one common-mode noise signal within the receiver a ground reference potential assigned to the receiver is separated into two ground reference potentials decoupled from one another. At least one common-mode noise signal may be suppressed by a filter unit at the input of a receive amplifier of the receiver.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: June 7, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Markus Hemmerlein, Helmut Repp
  • Patent number: 7957614
    Abstract: A suspension board with circuit includes a circuit board containing a metal supporting board, an insulating pattern formed on the metal supporting board, and a conductive pattern formed on the insulating pattern; an optical waveguide disposed on the circuit board; and a positioning portion provided on the circuit board in order to position the optical waveguide with respect to the circuit board.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: June 7, 2011
    Assignee: Nitto Denko Corporation
    Inventors: Jun Ishii, Hitoki Kanagawa, Toshiki Naito
  • Publication number: 20110123154
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Applicant: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Publication number: 20110116744
    Abstract: A 2-to-1 POF optical coupler, a bi-directional link that employs the coupler, and methods for performing 2-to-1 optical coupling are provided, wherein the 2-to-1 POF optical coupler is configured to provide a carefully-selected amount of cross-sectional overlap at the interface between the end face of a main POF or POF pigtail and the end face of the coupler. The amount of overlap is selected to ensure that optical coupling losses are reduced and optical efficiency is increased in both directions in a bi-directional optical communications links. Consequently, signal integrity is improved, limitations on link length are relaxed, and overall link performance is improved while, at the same time, overall link costs are reduced.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Applicant: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Nikolaus W. Schunk
  • Patent number: 7945132
    Abstract: An optical apparatus comprises: a waveguide substrate; three planar optical waveguides formed on the substrate, each comprising a transmission core and cladding; a laser positioned to launch its optical output to propagate along the first waveguide; a photodetector positioned to receive an optical signal propagating along the second waveguide; and a lateral splitter core formed on the substrate for (i) transferring a first fraction of laser optical output propagating along the first waveguide to the second waveguide, and (ii) transferring a second fraction of the laser optical output propagating along the first waveguide to the third waveguide.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: May 17, 2011
    Assignee: HOYA Corporation USA
    Inventors: David W. Vernooy, Joel S. Paslaski
  • Patent number: 7945127
    Abstract: An optical interconnect is provided which may allow flexible high-bandwidth interconnection between chips, eliminate the need for optical alignment between the optoelectrical (OE) die and waveguide during assembly because the OE die is at least partially embedded inside the waveguide (lower cladding layer, upper cladding layer, and core layer), eliminate the need for handling the optical interconnect at OEM, and not impact current substrate and motherboard technology.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 17, 2011
    Assignee: Intel Corporation
    Inventor: Daoqiang Lu
  • Patent number: 7936955
    Abstract: A waveguide and resonator are formed on a lower cladding of a thermo optic device, each having a formation height that is substantially equal. Thereafter, the formation height of the waveguide is attenuated. In this manner, the aspect ratio as between the waveguide and resonator in an area where the waveguide and resonator front or face one another decreases (in comparison to the prior art) thereby restoring the synchronicity between the waveguide and the grating and allowing higher bandwidth configurations to be used. The waveguide attenuation is achieved by photomasking and etching the waveguide after the resonator and waveguide are formed. In one embodiment the photomasking and etching is performed after deposition of the upper cladding. In another, it is performed before the deposition. Thermo optic devices, thermo optic packages and fiber optic systems having these waveguides are also taught.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Guy T. Blalock, Howard E. Rhodes, Vishnu K. Agarwal, Gurtej Singh Sandhu, James S. Foresi, Jean-Francois Viens, Dale G. Fried
  • Publication number: 20110091157
    Abstract: A multi-chip module (MCM), which includes a three-dimensional (3D) stack of chips that are coupled using optical interconnects, is described. In this MCM, disposed on a first surface of a middle chip in the 3D stack, there are: a first optical coupler, an optical waveguide, which is coupled to the first optical coupler, and a second optical coupler, which is coupled to the optical waveguide. The first optical coupler redirects an optical signal from the optical waveguide to a first direction (which is not in the plane of the first surface), or from the first direction to the optical waveguide. Moreover, the second optical coupler redirects the optical signal from the optical waveguide to a second direction (which is not in the plane of the first surface), or from the second direction to the optical waveguide. Note that an optical path associated with the second direction passes through an opening in a substrate in the middle chip.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 21, 2011
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Jin Yao, Xuezhe Zheng, Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 7929816
    Abstract: In one aspect, an illumination structure includes a substantially non-fiber waveguide, which itself includes a discrete in-coupling region for receiving light, a discrete propagation region for propagating light, and a discrete out-coupling region for emitting light.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 19, 2011
    Assignee: Oree, Inc.
    Inventors: Noam Meir, Eran Fine
  • Patent number: 7929589
    Abstract: Optical resonators and optical devices based on optical resonators that implement diffractive couplers for coupling light with the optical resonators.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: April 19, 2011
    Assignee: OEwaves, Inc.
    Inventors: Vladimir Ilchenko, Anatoliy Savchenkov, Lutfollah Maleki
  • Patent number: 7916982
    Abstract: An integrated fiber optic switch based on the magneto-optic effect of magnetic materials suitable for optical fiber networks is presented. The switch is based on the Faraday Effect exhibited by magneto-optic materials. The all-fiber magneto-optic switch has a beam splitter at the input that splits an incoming signal into orthogonal polarized paths. Each path has at least one magneto-optic Faraday rotator (MOFR) controlled by a field. When the field is present, the polarization of the optical beam changes, thereby turning the switch on or off. A beam coupler couples the orthogonal polarized paths at the output of the all-fiber magneto-optic switch. The switch is constructed in the Mach-Zehnder configuration, utilizing two 3 dB couplers, isolators and MOFRs fabricated on silicon-on-insulator.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: March 29, 2011
    Assignee: Iowa State University Research Foundation
    Inventors: Rashmi Bahuguna, Mani Mina, Robert J. Weber
  • Patent number: 7912331
    Abstract: Passive optical components may be used to tap the optical power, e.g., from fibers of a wavelength switch system. The passive optical components are realized by a standard photonics light-wave circuit (PLC) integrated to the fiber collimator array of the wavelength switch system. The PLC includes multiple waveguide paths that optically couple optical signals from one or more fiber ports to one or more corresponding free space optical component ports. Optical signals traveling through these waveguide paths are tapped by one or more optical taps and coupled to one or more corresponding tap ports. Each optical tap is located such that an optical signal is tapped after it is coupled into one of the waveguide paths.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 22, 2011
    Assignee: Capella Photonics, Inc.
    Inventor: Long Yang
  • Publication number: 20110064360
    Abstract: An optical element includes a first and a second layer in a first and a second region respectively in light propagating direction; a first and a second core layer above the first and the second layers respectively; a top layer above the first and the second core layer, the first and the second core layer extend in succession in the light propagating direction, a first projecting section exposes a side of the first core layer is in the first region, a second projecting section exposes at least part of a side of the second core layer is in the second region, a bottom section of the first projecting section is positioned below the bottom surface of the first core layer and the second core layer, and a bottom section of the second projecting section is positioned higher than the bottom section of the first projecting section.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 17, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Seok-Hwan JEONG
  • Patent number: 7907806
    Abstract: When a waveguide of second signal light outputted from a first optical coupler intersects a waveguide of first local light outputted from a second optical coupler, a waveguide of a first signal light outputted from the first optical coupler and a waveguide of a second local light outputted from the second optical coupler are each provided with a loss compensation intersecting waveguide that compensates for loss that occurs when the waveguide of the second signal light outputted from the first optical coupler intersects the waveguide of the first local light outputted from the second optical coupler.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 15, 2011
    Assignee: NEC Corporation
    Inventor: Hiroyuki Yamazaki