Particular Coupling Structure Patents (Class 385/39)
  • Patent number: 7907808
    Abstract: A self-written branched optical waveguide is formed. A laser beam 2 from a laser source (not shown) is focused with a lens 3 onto the face of incidence 10 of an optical fiber 1. The laser beam of an LP11 mode was emitted from the face of emergence 11, and “bimodal” light intensity peaks were arranged in the horizontal direction (1.A). A slide glass 4 coated with a photocurable resin gel 5 was placed horizontally (1.B). A single linear cured material 61 was formed as the LP11-mode laser beam was emitted from the face of emergence 11 of the optical fiber 1 (1.C). A branch portion 62 was then formed at a distance L from the face of emergence 11 of the optical fiber 1, which was followed by the growth of two cylindrical cured materials 63a and 63b. The two cylindrical cured materials 63a and 63b were linear branches, and formed an angle of about four degrees. An optical waveguide 60 thus formed was composed of cured materials 61, 62, 63a, and 63b (1.D).
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 15, 2011
    Assignees: Kabushiki Kaisha Totoya Chuo Kenkyusho, National University Corporation Shizuoka University Faculity of Engineering
    Inventors: Manabu Kagami, Tatsuya Yamashita, Masatoshi Yonemura, Naomichi Okamoto, Masahiro Tomiki
  • Publication number: 20110052120
    Abstract: Various embodiments of the present invention are directed to optical interconnects. In one embodiment of the present invention, an optical interconnect comprises a laser configured to output an optical signal and a laser-diode driver electronically coupled to the laser. The laser-diode driver induces the laser to output the optical signal in response to an electrical signal received by the laser-diode driver. The optical interconnect includes a diffractive optical element and a plurality of photodetectors. The optical interconnect is positioned to receive the optical signal and configured to split the optical signal into a plurality of optical signals, and each photodetector converts one of the plurality of optical signals into an electrical signal that is output on a separate signal line.
    Type: Application
    Filed: January 30, 2008
    Publication date: March 3, 2011
    Inventors: Michael Renne Ty Tan, Shih-Yuan Wang, Paul Kessier Rosenberg
  • Patent number: 7899286
    Abstract: An optical coupling device for coupling an optical signal propagating in an optical fiber or space to an optical waveguide includes a lower cladding layer formed on a substrate, an optical waveguide formed on the lower cladding layer such that the tip of the optical waveguide points to an end portion of the lower cladding layer, and having a tapered distal end portion, and an upper cladding layer continuously formed on the lower cladding layer and on the distal end portion of the optical waveguide from the end portion of the lower cladding layer to the distal end portion of the optical waveguide, and having a refractive index higher than that of the lower cladding layer. The upper cladding layer draws light having entered the end portion of the lower cladding layer toward the upper cladding layer, and couples the light to the distal end portion of the optical waveguide.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Haruhiko Yoshida
  • Publication number: 20110044581
    Abstract: A microoptical component for coupling a laser light to microresonators includes at least two microresonators, each having a form of an axially symmetric body disposed on a pedestal, and at least one waveguide for the laser light. The at least two microresonators are disposed on a first substrate having first side walls. The at least one waveguide is disposed on a second substrate having second side walls. The first side walls and the second side walls are fixedly joined.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 24, 2011
    Applicant: KARLSRUHER INSTITUT FUER TECHNOLOGIE
    Inventors: Tobias Grossman, Mario Hauser, Torsten Beck, Heinz Kalt, Christoph Vannahme, Timo Mappes
  • Patent number: 7894418
    Abstract: The present invention provides a mixed analog and digital chip-scale reconfigurable WDM network. The network suitably includes a router that enables rapidly configurable wavelength selective routers of fiber optic data. The router suitably incorporates photonic wavelength selective optical add/drop filters and multiplexers.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: February 22, 2011
    Assignee: The Boeing Company
    Inventors: William P. Krug, Harold Hager, Michael C. Hamilton, Axel Scherer
  • Patent number: 7889963
    Abstract: An optical waveguide device that is smaller in size and has higher impact resistance. The optical waveguide device (1) has a V-groove (14) formed in a groove forming surface (SF) at an end of a base board (10) where an optical waveguide section (11) is formed. An optical fiber element (22) is embedded by an adhesive layer (13) and connected to the base board (10) with an end of the optical fiber element (22) fitted in the V-groove (14).
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: February 15, 2011
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Koki Sato
  • Publication number: 20110032967
    Abstract: A single-mode, etched facet distributed Bragg reflector laser includes an AlGaInAs/InP laser cavity, a front mirror stack with multiple Fabry-Perot elements, a rear DBR reflector, and a rear detector. The front mirror stack elements and the rear reflector elements include input and output etched facets, and the laser cavity is an etched ridge cavity, all formed from an epitaxial wafer by a two-step lithography and CAIBE process.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Inventors: Alex A. Behfar, Kiyofumi Muro, Christian B. Stagarescu, Alfred T. Schremer
  • Publication number: 20110033153
    Abstract: An apparatus for establishing an optical circuit path spanning a discontinuity in an optical channel supported by a first cable oriented about a first axis on a first side of the discontinuity and supported by a second cable section oriented about a second axis on a second side of the discontinuity includes: (a) a first coupling member coupled with the optical channel on the first side; (b) a first supporting member fixed with the first coupling member in an installed orientation in a clamping relation with the first cable section; (c) a second coupling member coupled with the optical channel on the second side; (d) a second supporting member fixed with the second coupling member in an installed orientation clamped with the second cable section; and (e) a connecting member optically coupling the first coupling member with the second coupling member to establish the optical circuit path.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Applicant: Boeing Company, a corporation of the state of Delaware, USA
    Inventors: Charles Eugene Morris, Thomas L. Weaver, Kirby J. Keller
  • Patent number: 7885497
    Abstract: An exemplary thin film transistor array substrate (200) includes a transparent substrate (261), a plurality of gate lines (201) and a plurality of data lines (202) formed at the transparent substrate, the gate lines and the data lines crossing each other thereby defining a plurality of pixel regions (230). Each of the pixel regions includes a storage capacitor (220). The storage capacitor includes a first capacitor and a second capacitor aligned along a direction generally perpendicular to the transparent substrate, and the first capacitor and the second capacitor are electrically connected in parallel.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: February 8, 2011
    Assignees: Innocom Technology (Shenzhen) Co., Ltd., Chimel Innolux Corporation
    Inventors: Tian-Yi Wu, Kai Meng
  • Publication number: 20110026881
    Abstract: A rubber member optically connects (a) an optical transmission medium or an optical component and (b) another optical transmission medium or another optical component by intervening between the (a) and the (b). An adhesive connecting member comprises a rubber member having a refractive index of 1.35 to 1.55 and an adhesive having a refractive index of 1.35 to 1.55.
    Type: Application
    Filed: March 24, 2009
    Publication date: February 3, 2011
    Inventors: Nobuhiro Hashimoto, Tomoki Furue, Makoto Gotou
  • Patent number: 7881573
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7881572
    Abstract: A system is provided for characterizing optical fibers carrying signal traffic. The system includes a transmitter, a variable optical attenuator (VOA), a receiver, and a computing device. The transmitter propagates an optical test signal along a channel of a fiber pathway. The VOA adjusts the attenuation of the optical test signal from an initial, greater attenuation to a subsequent, lesser attenuation. At the same time, the computing device monitors at least one other channel of the fiber pathway and identifies effects upon the other channel(s) from the optical test signal. The computing device may communicate with the VOA and with other components of the fiber pathway to direct adjustment of the signal strength. A maximum optical test signal strength may thus be achieved that does not negatively affect signal traffic on the other channels, and the fiber pathway may subsequently be tested using the achieved maximum optical test signal strength.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: February 1, 2011
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: Tiejun J. Xia
  • Patent number: 7880977
    Abstract: A rod lens is used for fitting in an endoscopes. The rod lens has a rod-shaped body which is made at least in a section of a flexible, transparent solid piece of plastic material.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: February 1, 2011
    Assignee: Karl Storz GmbH & Co. KG
    Inventors: Frank Lederer, Frank Fuerst, Matthias Huber, Juergen Rudischhauser
  • Patent number: 7876985
    Abstract: An optical rotating data transmission device comprises a first collimator arrangement for coupling-on first optical waveguides, a second collimator arrangement for coupling-on second optical waveguides, which is supported to be rotatable relative to the first collimator arrangement about a rotation axis, and a derotating element such as a Dove prism in a light path between the collimator arrangements. At least one collimator arrangement comprises a deflecting element which deflects light entering the device from optical waveguides positioned at an angle to the direction of the rotation axis to travel along the direction of the rotation axis, or deflects light traveling along the direction of the rotation axis to exit the device at an angle to the rotation axis towards optical waveguides.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: January 25, 2011
    Assignee: Schleifring und Apparatebau GmbH
    Inventors: Gregor Popp, Max Winkler
  • Patent number: 7876496
    Abstract: An integrated optical-amplification module includes a housing member, a first input optical terminal configured to receive an optical signal, a second input, optical terminal that can receive a pump light, and an output optical terminal that can output a combined optical signal comprising at least a portion of the optical signal and a portion of the pump light. The integrated optical-amplification module also includes an optical combiner fixedly installed relative to the housing member. The optical combiner can receive the pump light and the optical signal and an optical prism fixedly installed relative to the housing member. The optical combiner can merge the pump light and the optical signal to form the combined optical signal. The optical prism can direct at least a portion of the optical signal through free space to the optical combiner.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 25, 2011
    Assignee: Photop Technologies, Inc.
    Inventors: Youshan Jiang, Tao Liu
  • Patent number: 7876988
    Abstract: An optical fiber mounting waveguide device and a method for fabricating the same, which provide a low optical connection loss and a high productivity. An under cladding layer (3u), a core (4), and an over cladding layer (3o) are sequentially formed on a substrate (8) to constitute an optical fiber mounting waveguide device (1). An optical fiber mounting groove (2) for mounting an optical fiber (6) is formed on the optical fiber mounting waveguide device (1). An end surface (3a) of the over cladding layer (3o) faces to the optical fiber mounting groove (2). The core (4) and the under cladding layer (3u) are projected toward the optical fiber mounting groove (2) with respect to the end surface (3a) of the over cladding layer (3o).
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: January 25, 2011
    Assignee: Hitachi Cable, Ltd.
    Inventors: Hiroki Yasuda, Kouki Hirano, Takami Ushiwata
  • Patent number: 7869672
    Abstract: An optical assembly is formed with a silicon substrate having a first surface and a second surface confronting the first surface. A reflective coating is formed over the first surface. Multiple diffraction gratings are formed integrally within the second surface of the silicon substrate. An optical absorber is formed over the second surface between the diffraction gratings.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: January 11, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Goebel, Lawrence C. West, Gregory L. Wojcik
  • Patent number: 7869675
    Abstract: A light emitting device, in which an encapsulation resin is disposed at a space confined between an optical member and a mounting substrate. This encapsulation resin is possibly made free from a void-generation therein. In this light emitting device, the optical member can be precisely positioned. An electrode disposed outside a color conversion member is possibly free from an improper solder connection. A ring gate is formed on the top surface of the mounting substrate outside of the optical member, and acts to position the color conversion member. The ring gate acts to prevent an overflowing liquid encapsulation resin from flowing to the electrode provided. The ring gate is provided with a plurality of centering projections which are spaced circumferentially along its inner circumference to position the color conversion member.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: January 11, 2011
    Assignee: Panasonic Electric Works Co., Ltd.
    Inventor: Youji Urano
  • Patent number: 7857525
    Abstract: An optical connector according to the present invention comprises a ferrule and a V-groove board connected to the ferrule, wherein a first optical fiber and a second optical fiber being butt jointed in a V-groove formed in the V-groove board so as to be interconnected; the second optical fiber is connected to the first optical fiber through a refractive index matching material of cross-link curing type applied to an end surface on the V-groove board side of the first optical fiber; and spaces are provided in the V-groove so as to relax stress loaded on the refractive index matching material of cross-link curing type.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Kanako Suzuki, Yoshihisa Kato, Noribumi Shiina, Kazumasa Ohsono, Tomoyuki Nisio
  • Publication number: 20100316331
    Abstract: Described herein are optical devices including resonant cavity structures. In one embodiment, an optical fiber includes: (1) an elongated core including an outer surface; (2) an inner reflector disposed adjacent to the outer surface of the core and extending substantially along a length of the core; (3) an outer reflector spaced apart from the inner reflector and extending substantially along the length of the core; and (4) an emission layer disposed between the outer reflector and the inner reflector and extending substantially along the length of the core, the emission layer configured to emit radiation that is guided within the optical fiber.
    Type: Application
    Filed: February 18, 2010
    Publication date: December 16, 2010
    Inventors: John Kenney, Jian Jim Wang, William Matthew Pfenninger, Nemanja Vockic, John Midgley
  • Patent number: 7851782
    Abstract: An example photodetector includes a waveguide structure having an active waveguide comprising an absorber for converting photons conveying an optical signal into charge carriers conveying a corresponding electrical signal; a carrier collection layer for transporting the charge carriers conveying the electrical signal; and a secondary waveguide immediately adjacent to the carrier collection layer, for receiving the photons to be detected, and which is evanescently coupled to the active waveguide.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: December 14, 2010
    Assignee: UCL Business PLC
    Inventors: Alwyn John Seeds, Cyril Renaud, Michael Robertson
  • Patent number: 7853103
    Abstract: A method comprises: forming an optical device on a device substrate; forming a first optical waveguide on the device or device substrate; forming a second, structurally discrete optical waveguide on a structurally discrete waveguide substrate; and assembling the optical device, first waveguide, or device substrate with the second waveguide or waveguide substrate. The device and first waveguide are arranged for transferring an optical signal between the device and the first waveguide. Upon assembly the first and second waveguides are positioned between the device and waveguide substrates and are relatively positioned for transferring the optical signal therebetween via optical transverse coupling. The first or second optical waveguide is arranged for transferring the optical signal therebetween via substantially adiabatic optical transverse coupling with the first and second waveguides so positioned.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 14, 2010
    Assignee: HOYA Corporation USA
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7853107
    Abstract: An optical fiber includes a cladding, a first core, and a second core. At least one of the first core and the second core is hollow and is substantially surrounded by the cladding. At least a portion of the first core is generally parallel to and spaced from at least a portion of the second core. The optical fiber includes a defect substantially surrounded by the cladding, the defect increasing a coupling coefficient between the first core and the second core.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: December 14, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Vinayak Dangui, Michel J. F. Digonnet, Gordon S. Kino
  • Patent number: 7853105
    Abstract: An optical assembly includes a waveguide assembly and an optical coupling element. The waveguide assembly includes a core, a cladding portion, and, preferably, at least two waveguide core fiducials, the at least two waveguide core fiducials and the core being lithographically formed substantially simultaneously in a substantially coplanar layer. The core and the at least two waveguide core fiducials are formed in a predetermined relationship with the cladding portion. The optical coupling element (for example, a lens array or mechanical transfer (MT) ferrule), includes an optical element and, preferably, at least two alignment features associated with the optical element, the at least two alignment features being mated with the at least two waveguide core fiducials to accurately position the optical element with respect to the core in an X-Y plane. A method of alignment is also provided.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Punit Chiniwalla, Philip C. D. Hobbs, Frank R. Libsch
  • Publication number: 20100310205
    Abstract: The present invention provides a hybrid coupling structure of a short range surface plasmon polariton and a conventional dielectric waveguide, including a dielectric substrate layer, a dielectric waveguide layer positioned on the said dielectric substrate layer, a coupling matching layer positioned on the said dielectric waveguide layer and a short range surface plasmon waveguide portion, formed on the said coupling matching layer, for conducting the short range surface plasmon polariton. The present invention also provides a coupling structure of a long range surface plasmon polariton and a dielectric waveguide, including a dielectric substrate layer, a dielectric waveguide layer, a coupling matching layer and a long range surface plasmon waveguide portion upward from below respectively.
    Type: Application
    Filed: December 16, 2009
    Publication date: December 9, 2010
    Applicants: Rohm Co., Ltd., Tsinghua University
    Inventors: Fan Liu, Rui-Yuan Wan, Yi-Dong Huang, Xue Feng, Wei Zhang, Jiang De Peng, Yoshikatsu Miura, Daisuke Niwa, Dai Ohnishi
  • Patent number: 7848602
    Abstract: Provided are a waveguide structure and an arrayed waveguide grating structure. The arrayed waveguide grating structure includes an input star coupler, an output star coupler, and a plurality of arrayed waveguides optically connecting the input star coupler and the output star coupler. Each of the arrayed waveguides includes at least one section having a high confinement factor and at least two sections having a relatively low confinement factor. The sections of the arrayed waveguides having a high confinement factor have the same structure.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: December 7, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Duk-Jun Kim, Jung-Ho Song, Jong-Moo Lee, Junghyung Pyo, Gyung-Ock Kim
  • Publication number: 20100303412
    Abstract: An optical transmission module has a light-emitting element, a light-receiving element, and an optical path for optically coupling the light-emitting element and the light-receiving element, and transmitting a optical signal. The optical path has a core part, a clad part surrounding the core part, and a support board for supporting the optical path itself and the light-receiving element. A resin part formed of resin having a refractive index higher than air outside the optical path is arranged at a part of a surface area of the clad part along an optical transmission direction to which optical signals are transmitted. The resin part has an inclined surface in which the surface on the opposite side of the clad part is tilted relative to the optical transmission direction. The inclined surface forms an acute angle with the surface of the clad part at the opposite side of the light-receiving element in the resin part.
    Type: Application
    Filed: January 17, 2008
    Publication date: December 2, 2010
    Applicant: OMRON CORPORATION
    Inventors: Toshiaki Okuno, Junichi Tanaka, Hiroto Nozawa, Naru Yasuda, Hayami Hosokawa
  • Patent number: 7844148
    Abstract: A linear member (10) comprises a first layer (30) and a second layer (40), the second layer being arranged around the first layer. The second layer comprises a series of annular grooves (60). The material for the second layer is substantially stronger than the material for the first layer.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: November 30, 2010
    Assignee: Miniflex Limited
    Inventors: Peter David Jenkins, Daniel Owen Jenkins
  • Patent number: 7843986
    Abstract: To prevent the property of an optical filter from being changed even if there is a change in a gap of directional couplers generated due to variations in manufacturing conditions so as to improve the yield. A tunable laser device includes a PLC and an SOA. The PLC includes: optical waveguides; an optical filter; a loop mirror; thin-film heaters; and asymmetrical MZIs. Optical coupling parts within the PLC are formed with the asymmetrical MZIs, so that there is no change generated in the property of the optical filter even if there is a change generated in a gap of the directional couplers due to variations in the manufacturing conditions. Therefore, the yield can be improved.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: November 30, 2010
    Assignee: NEC Corporation
    Inventor: Hiroyuki Yamazaki
  • Patent number: 7839575
    Abstract: Substrate-guided relays that employ light guiding substrates to relay images from sources to viewers in optical display systems. The substrate-guided relays are comprised of an input coupler, an intermediate substrate, and an output coupler. In some embodiments, the output coupler is formed in a separate substrate that is coupled to the intermediate substrate. The output coupler may be placed in front of or behind the intermediate substrate, and may employ two or more partially reflective surfaces to couple light from the coupler. In some embodiments, the input coupler is coupled to the intermediate substrate in a manner that the optical axis of the input coupler intersects the optical axis of the intermediate substrate at a non-perpendicular angle.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: November 23, 2010
    Assignee: Microvision, Inc.
    Inventors: Christian Dean DeJong, Karlton D. Powell, Mark O. Freeman, Joshua O. Miller
  • Patent number: 7835417
    Abstract: An apparatus and method are disclosed for decreasing the spectral bandwidth of a semiconductor laser, such as a vertical cavity surface emitting laser.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 16, 2010
    Assignee: Octrolix BV
    Inventors: Rene Gerrit Heideman, Edwin Jan Klein
  • Patent number: 7835606
    Abstract: In an optical multiplexing/demultiplexing device are arranged in parallel and disposed on a substrate. The optical multiplexing/demultiplexing device is disposed with three or more Mach-Zehnder interferometers between the first and second optical input/output ports. The optical multiplexing/demultiplexing device divides, by wavelength, multiplexed light comprising first light and second light whose wavelengths are different and which are input to one of the first optical input/output ports and outputs the multiplexed light from each of the second optical input/output ports. The absolute value of an optical path difference ?L of each the Mach-Zehnder interferometers is constant. The optical multiplexing/demultiplexing device includes one or more each of a pair of two successive Mach-Zehnder interferometers where the sum of their optical path differences becomes +2?L or ?2?L and a pair of two successive Mach-Zehnder interferometers where the sum of their optical path differences becomes 0.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 16, 2010
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Patent number: 7835598
    Abstract: A method and apparatus for monitoring one or more environmental parameters using interferometric sensor(s), a cross-correlator, a two-dimensional photosensitive array and optical focusing means are described. The method and apparatus allows for near simultaneous monitoring of the parameter(s) of interest.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 16, 2010
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Richard L. Lopushansky, Larry A. Jeffers, John W. Berthold
  • Patent number: 7835604
    Abstract: The present invention provides a fiber Bragg grating element which is simply configured and capable of obtaining a high cut-off amount exceeding 40 dB in a wide range. A fiber Bragg grating element of the present invention has a plurality of gratings formed in an optical waveguide having a core and a cladding around the core thereby to perform high rejection filtering on an input optical signal over a desired bandwidth˜ the gratings being formed with a grating pitch between adjacent two of the gratings increasing toward a center in a longitudinal direction of the optical waveguide.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 16, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yasuo Uemura, Kazuhiko Kashima, Toshiyuki Inukai
  • Patent number: 7826697
    Abstract: A system and method of asymmetrical fiber or waveguide spacing comprising, in general, an asymmetrical fiber concentrator array (FCA), wherein an offset in the front face spacing of the output waveguides relative to the input waveguides functions to reduce or eliminate the introduction of static back reflection, and static in-to-in crosstalk into a fiber by an optical switch, but does not impose the cost, complexity, and insertion loss penalties brought about by additional components.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: November 2, 2010
    Assignee: Olympus Corporation
    Inventors: Harry W. Presley, Michael L. Nagy
  • Publication number: 20100272395
    Abstract: An optical apparatus comprises: a waveguide substrate; three planar optical waveguides formed on the substrate, each comprising a transmission core and cladding; a laser positioned to launch its optical output to propagate along the first waveguide; a photodetector positioned to receive an optical signal propagating along the second waveguide; and a lateral splitter core formed on the substrate for (i) transferring a first fraction of laser optical output propagating along the first waveguide to the second waveguide, and (ii) transferring a second fraction of the laser optical output propagating along the first waveguide to the third waveguide.
    Type: Application
    Filed: July 7, 2010
    Publication date: October 28, 2010
    Inventors: David W. Vernooy, Joel S. Paslaski
  • Patent number: 7822304
    Abstract: A laser beam multiplexer capable of easily multiplexing a plurality of laser beams is provided. A laser beam multiplexer includes a multiplexing element having a hollow portion with a sectional elliptical shape, in which the multiplexing element includes: a plurality of light-incident apertures guiding laser beams from outside toward one of two focal points of the hollow portion, a reflective layer arranged on a wall surface of the hollow portion, and multiplexing a plurality of incident laser beams while reflecting the plurality of laser beams, and a light-emitting aperture guiding laser beams multiplexed by the reflective layer toward outside.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventor: Shoji Hirata
  • Patent number: 7817893
    Abstract: A fiber wrap and a method of rotating the fiber wrap without twisting a data cable are disclosed. The fiber wrap includes a sun gear, a sun cylinder coupled to the sun gear, a planetary gear in contact with the sun gear, a planetary cylinder coupled to the planetary gear, an outer housing in contact with the planetary gear, and a data cable coupled to the sun cylinder, the planetary cylinder, and the outer housing. The maximum bend radius of the data cable is determined by the equation: 2 ? ?? ? ? D ? ? G ? ? D ? c ? wherein ? is optical wavelength and ? ? ? D ? ? G ? ? D = 0.5 ? C s ? ( r R 2 ) 2 ? ? ? ? L c - 0.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: October 19, 2010
    Assignee: Associated Universites, Inc.
    Inventors: Silversun Sturgis, Nathan Joseph Gomes, Pengbo Shen
  • Publication number: 20100260454
    Abstract: A missile defense system (20) for aircraft includes a laser (12) for generating infrared light, a turret (22) that can direct the light toward a missile to blind its infrared sensors, and an optical fiber (14) for delivering the light to the turret (22). The system (20) includes a coupling device (10) for directing the light from the laser (12) into the optical fiber (14). The coupling device (10) includes a light-guiding assembly (24) with one or more lenses or other optical devices to direct the light into the optical fiber (14). The coupling device (10) also isolates the input end of the optical fiber (14) from the environment with an optically-transparent window (26) and provides a way to use a different light-guiding assembly (24) with different lasers (12). The window (26) isolates the end of the fiber (14) from any contaminants in the environment to keep the optical fiber (14) relatively clean, and thereby provide a suitable surface for the light to enter the fiber (14).
    Type: Application
    Filed: April 10, 2009
    Publication date: October 14, 2010
    Applicant: RAYTHEON COMPANY
    Inventors: James P. Mills, Anthony Vinson Damommio, Michael P. Schaub, Eero H. Ala, Nicholas D. Trail, Gregory P. Hanauska, Clifton J. Charlow
  • Patent number: 7813603
    Abstract: An optical component including an acceptance fiber, e.g. a photonic crystal fiber, for propagation of pump and signal light, a number of pump delivery fibers and a reflector element that reflects pump light from the pump delivery fibers into the acceptance fiber. An optical component includes a) a first fiber having a pump core with an NA1, and a first fiber end; b) a number of second fibers surrounding the pump core of the first fiber, at least one of the second fibers has a pump core with an NA2 that is smaller than NA1, the number of second fibers each having a second fiber end; and c) a reflector element having an end-facet with a predetermined profile for reflecting light from at least one of the second fiber ends into the pump core of the first fiber.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: October 12, 2010
    Assignee: NKT Photonics A/S
    Inventor: Thomas Nikolajsen
  • Patent number: 7813604
    Abstract: An optical apparatus comprises: a waveguide substrate; three planar optical waveguides formed on the substrate, each comprising a transmission core and cladding; a laser positioned to launch its optical output to propagate along the first waveguide; a photodetector positioned to receive an optical signal propagating along the second waveguide; and a branched splitter core formed on the substrate for (i) transferring a first fraction of laser optical output propagating along the first waveguide to the second waveguide, and (ii) transferring a second fraction of the laser optical output propagating along the first waveguide to the third waveguide.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: October 12, 2010
    Assignee: HOYA Corporation USA
    Inventors: David W. Vernooy, Joel S. Paslaski
  • Publication number: 20100254656
    Abstract: An optical waveguide comprising a cladding and a core embedded in the cladding. An equivalent refractive index of the core changes unevenly along a light propagation direction by changing physical dimensions of the core.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 7, 2010
    Applicant: FUJIKURA LTD
    Inventors: Ning GUAN, Kensuke OGAWA
  • Patent number: 7809229
    Abstract: An optical device wherein an optical waveguide is formed on a dielectric substrate, the optical device includes an input part and an output part where the optical waveguide and corresponding optical fibers are connected. A stress layer is provided for at least one of the input part and the output part. The stress layer applies a stress to the optical waveguide so that an index of refraction of the optical waveguide is reduced.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: October 5, 2010
    Assignee: Fujitsu Limited
    Inventor: Takashi Shiraishi
  • Patent number: 7805048
    Abstract: Sideways emission enhancements are described for light emitting diode (LED) lighting solutions having a wide variety of applications. While a typical LED lighting device has a substantial portion of its light emitted near a normal to the semiconductor photonic chip emitting the light, the present approach may suitable provide a compact, easily manufacturable device with good thermal design characteristics and a changed emission pattern without changing the horizontal mounting plane of the semiconductor photonic chip.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: September 28, 2010
    Assignee: Cree, Inc.
    Inventors: Ban P. Loh, Nicholas Medendorp
  • Publication number: 20100239248
    Abstract: An apparatus includes one or more optical de-interleavers. Each optical de-interleaver includes an optical component having a first pair of optical input and output ports and a second pair of optical input and output ports and a 1×2 optical coupler. Each optical output port of the optical component is optically connected to a corresponding optical port of the 1×2 optical coupler. The optical component is constructed to operate as a first optical filter for light propagating between the optical ports of the first pair and is constructed to operate as a second optical filter for light propagating between the optical ports of the second pair. The first and second optical filters have substantially regularly spaced and interleaved passbands.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Inventor: Christohper Richard Doerr
  • Patent number: 7801394
    Abstract: A luminometer is provided comprising a waveguide sample holder and one or more detectors. The waveguide sample holder may include a hollow region to hold the sample. The waveguide sample holder can be made of material that guides emission light to a bottom end of the waveguide sample holder. One or more detectors may be provided which detect the emission light coming out of the bottom of the waveguide sample holder. A fluorometer/photometer is also provided that comprises a waveguide sample holder, one or more excitation light sources, and one or more optical detectors. The waveguide sample holder has a hollow region to hold the sample. The excitation light is introduced at an angle or perpendicular to one surface of the waveguide sample holder. The waveguide sample holder is made of material that can guide emission light to the bottom end of the waveguide sample holder. There are one or more detectors that detect the emission light coming out of the bottom of the waveguide sample holder.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: September 21, 2010
    Assignee: Creatv Microtech, Inc.
    Inventors: Cha-Mei Tang, Platte T. Amstutz, III
  • Patent number: 7794159
    Abstract: A beam coupler assembly for a fiber laser is disclosed. The assembly includes a housing having a sidewall with an interior surface, an exterior surface, a first end and a second end. A first seal extending from the interior surface of the tubular housing and dividing the housing into a first section and a second section is also provided. The first section and second section are environmentally isolated from one another. However, the first seal is substantially optically neutral. An input collimator unit received within the first end of the sidewall of the housing and into the first section and is releasably coupled thereto. An output collimator unit received within the second end of the sidewall of the housing and into the second section and is also releasably coupled thereto.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: September 14, 2010
    Inventors: Yuri Grapov, William D. Jones, Michael M. DiGiantommaso
  • Patent number: 7792407
    Abstract: A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: September 7, 2010
    Assignee: AT&T Intellectual Property II
    Inventors: Mark D. Feuer, Nicholas J. Frigo
  • Publication number: 20100220957
    Abstract: An optical module includes an emitter-side mounting substrate, a receiver-side mounting substrate and an external waveguide substrate. The mounting substrate is provided with a waveguide having a core and a pair of fitting recesses. The external waveguide substrate is provided with an external waveguide having a core, a pair of fitting tabs and a lap joint portion. As the fitting tabs are fitted into the respective fitting recesses, the mounting substrate and the external waveguide substrate are joined together, the two cores are aligned with each other, and the lap joint portion is positioned to overlap the mounting substrate.
    Type: Application
    Filed: June 26, 2008
    Publication date: September 2, 2010
    Applicant: PANASONIC ELECTRIC WORKS CO., LTD.
    Inventors: Nobuyuki Asahi, Makoto Nisimura, Nobuyuki Miyagawa, Hiroyuki Yagyu, Yuichi Uchida, Yutaka Kinugasa, Tadahiro Yamaji, Takuya Matsumoto
  • Patent number: RE41744
    Abstract: A probe for use in Raman spectroscopy that can be inserted into a chemical vessel through a small diameter fitting while maximizing the amount of Raman shifted radiation collected and minimizing spurious effects.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: September 21, 2010
    Assignee: Axiom Analytical, Inc.
    Inventor: Walter M. Doyle