Fiber To Thin Film Devices Patents (Class 385/49)
  • Patent number: 7302142
    Abstract: An optical assembly includes an optical component, a substrate, and a thin glass layer located at the interface between the optical component and the substrate. The substrate can be a metal, a semiconductor, a plastic, a shape memory material, or a metal layer deposited on a shape memory material element. The optical component can be an optical fiber having a single core or a multicore optical fiber. The optical component can be a lens and the substrate can be a tube.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: November 27, 2007
    Assignee: Andromis S.A.
    Inventors: Ramiro Conde, Christian Depeursinge
  • Patent number: 7301879
    Abstract: An optical print head for recording on a medium includes a plurality of lasers having laser emissions within a desired wavelength range, an optical fiber adapted to receive combined light from the plurality of lasers at a first end and to emit combined output light at a second end, and includes a hybrid optical element optically coupled to the second end of the optical fiber and adapted to focus the combined output light within the desired wavelength range on the medium.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: November 27, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Andrew L. Van Brocklin, Kuohua Wu, Vladek P. Kasperchik
  • Patent number: 7302119
    Abstract: An optical phase modulator comprising a plurality of non-polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layer of cladding material having higher indices of refraction than the core for non-guided mode, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of non-polarizing waveguide(s), a waveguide having a non-polarizing non-modulating region and a non-polarizing modulating region, coupler/splitter(s), electrode(s), a waveguide configuration including a first non-polarizing waveguide, a second polarizing waveguide and a third waveguide, and at least two optical fiber pigtails where one is coupled to a second and third waveguide.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: November 27, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley, Geoffrey A. Lindsay
  • Patent number: 7298941
    Abstract: An optoelectronic circuit including: an IC chip made up of a substrate in which an optical waveguide and a mirror have been fabricated, the substrate having a first lens formed thereon, wherein the mirror is aligned with the optical waveguide and the first lens is aligned with the mirror to form an optical path connecting the first lens, the mirror, and the optical waveguide; and an optical coupler including a second lens, the optical coupler affixed to the substrate and positioned to align the second lens with the first lens so as to couple an optical signal into or out of the optical waveguide within the IC chip.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: November 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Edward L. Palen, Gregory L. Wojcik, Lawrence C. West
  • Patent number: 7298945
    Abstract: A polarization splitting grating coupler (PSGC) connects an optical signal from an optical element, such as a fiber, to an optoelectronic integrated circuit. The PSGC separates a received optical signal into two orthogonal polarizations and directs the two polarizations to separate waveguides on an integrated circuit. Each of the two separated polarizations can then be processed, as needed for a particular application, by the integrated circuit. A PSGC can also operate in the reverse direction, and couple two optical signals from an integrated circuit to two respective orthogonal polarizations of one optical output signal sent off chip to an optical fiber.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: November 20, 2007
    Assignee: Luxtera, Inc.
    Inventors: Lawrence C. Gunn, III, Thierry J. Pinguet, Maxime J. Rattier, Jeremy Witzens
  • Patent number: 7292756
    Abstract: Optical interface assemblies are provided. The optical interface assemblies include a first portion having a plurality of optical waveguides. The first portion is configured for mating engagement with an optical fiber connector. A second portion is mated to the first portion. The second portion is configured for mating engagement with an electronic substrate that includes an embedded waveguide assembly. The first and second portions are further configured so as to align the plurality of optical waveguides, at a first end of the first portion, with a plurality of corresponding waveguide cores of the embedded waveguide assembly. The first and second portions are further configured so as to align the plurality of optical waveguides, at a second end of the first portion, with a plurality of corresponding optical fibers in the optical fiber connector. Also provided are electronic assemblies and methods for coupling optical fibers with electronic substrate embedded waveguides.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: November 6, 2007
    Assignee: Rohm and Haas Electronics Materials LLC
    Inventors: Matthew L. Moynihan, Bruno M. Sicard, Carl J. Colangelo, John P. Cahalen, Brian D. Amos, Kevin S. Horgan, John J. Fisher, David W. Sherrer
  • Patent number: 7289698
    Abstract: A multimode fiber system includes a transmitter for transmitting an optical signal and a receiver that receives the optical signal. At least one mode filter is coupled between the receiver and the transmitter and passes only a specific set of fiber modes from the transmitter to be received by the receiver. The at least one mode filter comprises a tapered core section that includes a double taper configuration joined at the narrowest regions and in which each end of the two tapers has dimensions compatible with the fiber at that end.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: October 30, 2007
    Assignee: Analog Devices, Inc.
    Inventor: Shrenik Deliwala
  • Patent number: 7289701
    Abstract: A platform for converting a signal between optical and electrical form and vice versa is provided. The platform includes a dielectric mount, a semiconductor light source and optical fibers. Some of these components are fabricated separately and then brought together in an integrated assembly together with a focusing lens. The platform permits the self-alignment of the optical fibers in a flip-chip vertical cavity surface emitting laser (VCSEL) array module package. The self-alignment of the optical fibers is achieved by the engineering of the geometrical dimensions of the platform. The techniques may be used to form large-scale integrated opto-electronic circuits and switching networks.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: October 30, 2007
    Assignee: SAE Magnetics (Hong Kong) Limited
    Inventors: Dennis Lam, Flora Ho, S. K. Lam, Franklin Tong
  • Patent number: 7287915
    Abstract: An optical device comprises an optical head and a package containing the optical head and having pins led outside. A V-groove is formed in one side of a glass substrate. On the other side, the glass substrate is secured to the base of the package. A PD array and the pins are electrically interconnected through a gold electrode pattern formed on a mounting face of a submount, through holes, electrode pads formed on the top of the submount, and wires.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: October 30, 2007
    Assignee: NGK Insulators, Ltd.
    Inventors: Masashi Fukuyama, Yasunori Iwasaki, Akiyoshi Ide, Takuhiro Tani
  • Patent number: 7283710
    Abstract: Optical fiber guides are provided outside a waveguide mounting region of a supporting substrate. Optical fibers are provided so as to be fitted in the optical fibers, respectively. In addition, end faces of the optical fibers and end faces to which a core of an optical waveguide is exposed are opposed and almost parallel to each other. Furthermore, the end face to which the core of the optical waveguide is exposed is provided so as to form an acute angle with a surface of the supporting substrate. Thus, tip ends of the optical fibers are not likely to be shifted from the core in a thickness direction of an optical waveguide device.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 16, 2007
    Assignee: Omron Corporation
    Inventors: Akihiko Sano, Shuichi Misumi, Eiichi Omura
  • Patent number: 7280760
    Abstract: An OADM includes optical input and output; first and second bandpass filters with a first pass band, optically coupled to the optical input and output, respectively; third and fourth bandpass filters with a second pass band, optically coupled to reflection ports of the first and second bandpass filters, respectively; first and second cascaded series of channel filter assemblies optically coupled to the transmission ports of the first and second bandpass filters, respectively, and third and fourth cascaded series of channel filter assemblies optically coupled to the transmission ports of the third and fourth bandpass filters, respectively. The OADM may be extended or upgraded so as to accommodate the throughput of additional channels or wavelengths by extending the number of filters within each cascaded series of bandpass filters, where the transmission ports of the additional bandpass filters are optically coupled to respective additional cascaded series of channel filter assemblies.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: October 9, 2007
    Assignee: Avanex Corporation
    Inventors: Li Zou, Giovanni Barbarossa
  • Patent number: 7269317
    Abstract: An optical apparatus comprises a substrate, first and second transmission optical elements on the substrate, and an optical component (such as an isolator) and focusing optical element(s) on the substrate between the transmission elements. Transmission elements may include planar waveguide(s) formed on the substrate and/or optical fiber(s) mounted in groove(s) on the substrate. The focusing element(s) may include: gradient-index (GRIN) segment(s) mounted on the substrate or spliced onto a fiber, a focusing segment(s) of a planar waveguide, ball lens(es), aspheric lens(es), and/or Fresnel lens(es). A dual-lens optical assembly comprises a pair of GRIN segments secured to a substrate in one or more grooves, and may be formed from a common length of GRIN optical medium. An optical component (such as an isolator) is positioned between the paired GRIN segments, and optical power is transmitted by the dual-lens assembly between planar waveguide(s) and/or fiber(s) through the optical component.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: September 11, 2007
    Assignee: Xponent Photonics Inc
    Inventors: Henry A. Blauvelt, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20070206902
    Abstract: An optical apparatus comprises: an optical fiber, an optical device on a substrate, a circuit board, and an electrical connection therebetween. The substrate has a groove for positioning the fiber for optical coupling with the optical device. A proximal segment of the fiber is secured to the substrate in the groove. The substrate is mounted on the circuit board, and a second segment of the fiber is secured to the circuit board. A method comprises: mounting on the circuit board the substrate with the optical device; establishing the electrical connection; securing the proximal fiber segment to the substrate in the groove; and securing the second fiber segment to the circuit board. Multiple substrates can be secured to a single piece of circuit board material, which can be divided into individual circuit boards after establishing electrical connections and securing optical fibers to the corresponding substrates and to the circuit board material.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 6, 2007
    Inventors: Henry A. Blauvelt, Albert M. Benzoni, Gerald C. Byrd
  • Patent number: 7266278
    Abstract: In a communication system using a sheet-shaped light guide (91), which includes particles for scattering light in a sheet-shaped optical medium and propagates signal light incident from one end face of the sheet-shaped light guide to the other end face side while scattering the signal light by the particles, when the sheet-shaped light guide (91) is connected with optical fibers (21 to 24, and 31 to 34) the diameters of which are larger than the thickness of the light guide, the optical fibers (21 to 24, and 31 to 34) and the sheet-shaped light guide (91) are joined with tapered light guides (92) interposed therebetween, the tapered light guide becoming thinner from the optical fiber side thereof to the sheet-shaped light side thereof.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: September 4, 2007
    Assignee: Fujifilm Corporation
    Inventor: Osamu Iwasaki
  • Patent number: 7263260
    Abstract: A method for precisely aligning a first optical component to a second optical component that is coupled to a substrate. At least one of a number of coupling elements is modified to attach the first optical component to the substrate. An optical coupling quality of the first optical component to the second optical component is determined. At least one of the modified coupling elements that couples the first optical component to the substrate is micro-manipulated to precisely align the first optical component with the second optical component and improve the optical coupling quality.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: August 28, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Rajminder Singh, Michael Powers
  • Publication number: 20070196051
    Abstract: A substrate for forming passive elements in chip type has a top surface, a thickness, multiple parallel grooves, multiple through holes and multiple chip regions. The parallel grooves are formed on the top surface of the substrate. The through holes are formed between and across two adjacent parallel grooves, and each through hole is separated from other through holes and has smooth inner walls. The chip regions are defined between adjacent through holes and parallel grooves and are arranged in a matrix.
    Type: Application
    Filed: December 15, 2006
    Publication date: August 23, 2007
    Applicant: WALSIN TECHNOLOGY CORP.
    Inventors: Shiow-Chang Luh, Chun-Hsiung Kuo
  • Patent number: 7260285
    Abstract: An optical module with flexible substrate that improves high-frequency characteristics. A flexible substrate 30 is formed with a top wiring layer 32 and a bottom wiring layer 34 formed on both surfaces of a polyimide layer 33, where the top wiring layer 32 has a plurality of wiring patterns 32a that electrically connect the leads 11 of the optical module 10 to the drive circuit of a circuit board 50, and the bottom wiring layer 34 is located on the entire surface of one side of the polyimide layer 33 so that it is electrically insulated from the wiring patterns 32a, is electrically connected to the ground of the circuit board 50, and is electrically connected to at least the leads 11 and, depending on its relationship with the wiring patterns 32a, to the stem 12 of the optical module 10 at a specified position of a stub region 34a having stub structure.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: August 21, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Kazuhiro Mitamura, Isao Watanabe, Hidenori Itoh
  • Patent number: 7257297
    Abstract: An optical communication module in which an incident or emergent end of an optical fiber can be easily and precisely aligned with a light-emitting element or a light-receiving element. The optical communication module includes a base block that has a first surface and a second surface located opposite to the first surface, a microelement such as a light emitting element or a light-receiving element that contacts the first surface. The second surface includes an optical-fiber guide hole, and the microelement contacting the first surface and an optical-fiber received in the optical-fiber guide hole are separated by an intervening portion of the base block.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: August 14, 2007
    Assignee: Seiko Epson Corporation
    Inventor: Takayuki Kondo
  • Publication number: 20070183718
    Abstract: Provided is an optical module including a light source for generating an optical signal, a waveguide for waveguiding the optical signal, a photodetector for detecting the optical signal, a first reflecting mirror on the light source for reflecting the optical signal generated by the light source to a side of the waveguide, and a second reflecting mirror on the photodetector for reflecting an optical signal emitted from the waveguide in a vertical downward direction. The photodetector detects an optical signal reflected by the second reflecting mirror.
    Type: Application
    Filed: October 23, 2006
    Publication date: August 9, 2007
    Inventors: Yu-Dong Bae, In-Kuk Yun
  • Publication number: 20070183720
    Abstract: A first optical device has an optical fiber mount with an optical fiber disposed thereon, and an optical demultiplexer for demultiplexing a portion of an optical signal beam transmitted through the optical fiber, as a demultiplexed optical signal beam, and guiding the demultiplexed optical signal beam out of the optical fiber. The optical fiber has a first tapered surface for emitting the demultiplexed optical signal beam therethrough. The first tapered surface is inclined at an angle ?1 of at least 1° to an optical axis of the optical fiber. The distance (h) between the optical axis of the optical fiber and the first tapered surface is progressively greater along the direction in which the optical signal beam travels through the optical fiber.
    Type: Application
    Filed: January 30, 2007
    Publication date: August 9, 2007
    Applicant: NGK Insulators, Ltd.
    Inventors: Akiyoshi Ide, Yasunori Iwasaki
  • Patent number: 7254300
    Abstract: An optical module includes a semiconductor optical device, an optical fiber, a ferrule, and a mounting component. The optical fiber is optically coupled to the semiconductor optical device. The ferrule holds the optical fiber. The mounting component includes a first support groove for supporting the ferrule and a second support groove for supporting the optical fiber. The semiconductor optical device is mounted on the mounting component. The first and second support grooves are sequentially arranged in a direction of a predetermined axis. The second support groove has one end and the other end. The depth of the second support groove decreases from the one end toward the other end. With such a structure, the optical module allows the optical fiber to be positioned with high accuracy onto the mounting component.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: August 7, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Mitsuaki Nishie, Yoshiki Kuhara
  • Patent number: 7254301
    Abstract: An optical module comprises: a sub-mount 1, having four photodiodes 12 and two guide grooves 10 disposed on an optical element mounting surface 16; a fiber fixing member 2, having four V-grooves 21, four concave mirrors 22, and two guide rails 20 disposed on an optical fiber fixing surface 26; and four optical fibers 3, fixed to the fiber fixing member 2. With this optical module, the sub-mount 1 and fiber fixing member 2 are aligned and fixed by the fitting together of the guide grooves 10 and guide rails 20. A passive alignment type optical module that enables mass production and cost reduction is thus realized.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: August 7, 2007
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Yasuji Hoshino, Takashi Iida, Yoshihisa Warashina, Kei Tabata
  • Patent number: 7251386
    Abstract: Photonic interconnect reconfigurably couples integrated circuits such as microprocessor, memory or other logic components. Detector, modulator, broad-band coupler and waveguide elements provide transmit and receive capability on CMOS substrate. Computer-implemented design software and reusable component library automate photonic and circuit design and simulation for manufacturability.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: July 31, 2007
    Assignee: Luxtera, Inc
    Inventors: Alexander G. Dickinson, Lawrence C. Gunn, III, Andrew Shane Huang, Philip M. Neches
  • Patent number: 7241059
    Abstract: The present invention is to provide an optical assembly having a sleeve with a good inserting/extracting performance for the ferrule and made of less count of parts. The optical assembly of the invention provides a sleeve, which receives the ferrule with an optical fiber and makes the optical coupling between the optical fiber and an optical device installed in the assembly. The sleeve comprises first and second portions. The first portion provides a slit, while the second portion provides a flange for the sleeve to be positioned. The sleeve of the invention is formed by the molding of amorphous metal containing Cu, Ni, Al, and Zr.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 10, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Satoshi Yoshikawa
  • Patent number: 7242823
    Abstract: An optical transmission board is provided. The optical transmission board includes an optical transmission channel, a retention board for retaining the optical transmission channel and circuit patterns. The circuit patterns are formed on the retention board and a part of the circuit patterns is used as an electric circuit. The optical transmission channel is positionally regulated by the part of the circuit patterns.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: July 10, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Karashima, Seiichi Nakatani, Yasuhiro Sugaya, Toshiyuki Asahi, Takashi Ichiryu
  • Patent number: 7239765
    Abstract: An optical phase modulator comprising a plurality of polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layers of cladding materials having higher indices of refraction than the core for non-guided mode, at least one electrode coupled to at least one waveguide including a modulating polarizing region, at least one waveguide having a non-modulating region and a modulating region, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of polarizing waveguide(s), a waveguide having a non-modulating region and a modulating region, coupler/splitter(s), electrode(s), and a waveguide configuration including a first polarizing waveguide, a second polarizing waveguide and a third polarizing waveguide
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: July 3, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley, Geoffrey A. Lindsay
  • Patent number: 7239767
    Abstract: A packaging apparatus for optical interconnection on an optical PCB includes a first substrate with a via hole formed therethrough and in which an optical waveguide is formed, an optical interconnection block having a reflective plane on its lower end inserted into the via hole, a second substrate flip-bonded to an upper surface of the first substrate, and an optically active element flip-bonded to a lower surface of the second substrate and aligned for optical communication.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: July 3, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Su Kim, Hyo-Hoon Park, Han-Seo Cho, Byung-Sup Rho, Sun-Tae Jung
  • Patent number: 7236680
    Abstract: Samples are taken of radiation throughput intensities while a radiation supplying, first element advances along a dithering displacement path, where the displacement path is spaced slightly away from but extends adjacent to an initial position of the first element and while a reference radiation signal is coupled radiatively between the first element and a counterpart, radiation receiving, second element. Those samples that are seen to be the greatest (Imaxc) are identified. From this information, a determination is made of at least the approximate direction, if not the approximate length of an optimization vector which separates the initial position of the first element from a radiative coupling, new position having a greater coupling efficiency. The first element is automatically moved according to the optimization vector so as to be at or substantially close to the new radiative coupling position.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: June 26, 2007
    Assignee: Pi (Physik Instrumente) L.P.
    Inventor: Scott C. Jordan
  • Patent number: 7233723
    Abstract: An optoelectronic assembly includes an optical lens element (OLE) coupled to a substrate. The substrate includes a transducer, a standing structure on the transducer, a transducer lens supported by the standing structure over the transducer, and alignment features. The OLE includes an OLE lens and co-alignment features that couple with the alignment features on the optoelectronic assembly. When the substrate is coupled to the OLE, the transducer lens is aligned with the OLE lens.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: June 19, 2007
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: James Howard Williams, Brenton Arthur Baugh, Robert H. Yi, Robert Edward Wilson, Kendra Jolene Gallup
  • Patent number: 7228013
    Abstract: A polymer phase modulator having a plurality of polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layer of cladding material having higher indices of refraction than the core for non-guided mode, at least one waveguide having a non-modulating polarizing region, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of polarizing waveguide(s) and non-polarizing waveguide(s), a waveguide having a polarizing non-modulating region and a non-polarizing modulating region, coupler/splitter(s), electrode(s), and a waveguide configuration including a first polarizing waveguide, a coupler/splitter including a plurality of splitter ports, a second polarizing waveguide and a third polarizing waveguide.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 5, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley
  • Patent number: 7223025
    Abstract: An optical device assembly comprises a substrate with a component and fiber groove thereon. A segment of optical fiber is engaged with the fiber groove, which positions the fiber segment for optical coupling with a component on the substrate. A fiber retainer maintains the fiber segment in engagement with the groove. The fiber retainer may be secured to the substrate with adhesive means. Recessed regions formed on the substrate/retainer are filled with adhesive means, forming retaining members. Alternatively, the fiber retainer comprises a resilient member engaged with the device substrate and biased so as to urge the fiber segment into the groove. The resilient member may be variously configured and/or adapted for enhancing engagement of the fiber segment with the fiber groove. Either embodiment may include a housing, which may be variously configured and/or adapted for engaging a mating fiber-optic connector, providing fiber pigtail(s), mechanical splicing, and so forth.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: May 29, 2007
    Assignee: Xponent Photonics Inc.
    Inventors: Albert M. Benzoni, Joel S. Paslaski, Peter C. Sercel
  • Patent number: 7224870
    Abstract: A method of producing a PLC based optical component comprising: defining a waveguide; etching a notch thereby defining a facet of the waveguide; and cutting a trench in front of the notch, the cutting being accomplished subsequent to the etching, whereby at least a portion of the trench is displaced from the facet by the notch. The invention also provides for a PLC based optical component comprising: a substrate; a waveguide deposited above the substrate, the waveguide exhibiting a facet; a notch etched in front of the facet of the waveguide; and a trench cut in front of the notch.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: May 29, 2007
    Assignee: Lambda Crossing
    Inventors: Moti Margalit, Gideon Rogovsky, Eitan Avni
  • Patent number: 7224855
    Abstract: An optical multiplexing device includes an optical element having at least one set of diffractive elements, and an optical reflector. The reflector routes, between first and second optical ports, that portion of an optical signal transmitted by the diffractive element set. The diffractive element set routes, between first and multiplexing optical ports, a portion of the optical signal that is diffracted by the diffractive element set. More complex optical multiplexing functionality(ies) may be achieved using additional sets of diffractive elements, in a common optical element (and possibly overlaid) or in separate optical elements with multiple reflectors. Separate multiplexing devices may be assembled with coupled ports for forming more complex devices. The respective portions of an optical signal transmitted by and reflected/diffracted from the diffractive element set typically differ spectrally.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: May 29, 2007
    Assignee: LightSmyth Technologies Inc.
    Inventors: Dmitri Iazikov, Thomas W. Mossberg, Christoph M. Greiner
  • Patent number: 7221828
    Abstract: A module for an optical wavelength division multiplexing communication includes semiconductor lasers emitting lights of wavelengths, a support member on which the semiconductor lasers are mounted, an optical fiber to which the lights emitted from the semiconductor lasers are incident, and a component that positions the optical fiber with respect to the support member and fixes the optical fiber thereto.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: May 22, 2007
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Hideo Nakayama, Takeshi Nakamura, Akira Sakamoto, Akemi Murakami
  • Patent number: 7212714
    Abstract: This disclosure concerns optical components such as optical signal transmitter ports. One example of an optical signal transmitter port includes a nose body of single piece construction that has a bendable portion configured to facilitate alignment of an optical axis of the nose body with an optical axis of an optical signal associated with the optical signal transmitter port. The optical signal transmitter port further includes an optical source assembly having an optical signal housing within which is disposed an optical emitter such as a laser. The optical signal housing is partially received within the nose body.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 1, 2007
    Assignee: Finisar Corporation
    Inventor: Martin Wisecarver
  • Patent number: 7212711
    Abstract: A fiber optic module is provided that effectively reduces a returned light and is manufactured by a low time and cost consuming process and electronic equipment. The fiber optic transceiver module includes a block that includes an optical waveguide and a guide that is provided to one end of the optical waveguide and is a concave portion into which an optical fiber is inserted, and a micro tile-like element that includes a light emitting element or a light receiving element is attached to the block. A light emitting part of the light emitting element or a light receiving part of the light receiving element is disposed so as to face the other end of the optical waveguide. The optical waveguide includes a branch having a blind end.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: May 1, 2007
    Assignee: Seiko Epson Corporation
    Inventor: Takayuki Kondo
  • Patent number: 7209610
    Abstract: A light receiving element module includes a stem which signal pins penetrate; a base which is fixed in a direction perpendicular to the stem; a cap member which has a light passing-through hole and is fixed to the stem; a spherical lens which is inserted into the light passing-through hole and condenses signal light emitted from the optical fiber; a parabolic mirror which is arranged on the base and reflects the signal light condensed by the spherical lens at approximately a right angle; a light detecting element which is arranged on the base and detects the signal light reflected by the parabolic mirror and converts the signal light into an electrical signal; and a trans-impedance amplifier which is arranged on the base in proximity to the light detecting element and amplifies the electrical signal produced by the light detecting element.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: April 24, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Kiyohide Sakai
  • Patent number: 7203391
    Abstract: An optical module 100 comprises a substrate 110 at which V-shaped groove 110a and 110b are formed through etching to extend along directions perpendicular to each other and a cube-type wavelength division multiplexer 150 that allows light to be transmitted or reflected on a 90° angle depending upon the wavelength of the light, lens elements 140a and 140b constituted of silicon, a light emitting element 120 that emits light to be directed to the outside via a lens element and the wavelength division multiplexer and a light receiving element 130 that receives incoming light from the outside via the wavelength division multiplexer and a lens element, all disposed on the substrate. The components, which contribute to miniaturization of the module, can be mounted all together on a single substrate and thus, the mass productivity is greatly improved and the module can be offered at a more affordable price.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: April 10, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Masahiro Uekawa, Takeshi Takamori, Hironri Sasaki
  • Patent number: 7203398
    Abstract: An optical module having an integral optical waveguide with waveguide ports at each end. The optical waveguide receives an input light beam through a first waveguide port. The input light beam passes through the waveguide and is emitted from the second waveguide port, where it is reflected by the reflective surface. After being reflected by the reflective surface, the input light beam can be directed onto the surface of a DMD array, where the input light beam can be selectively reflected in a particular direction. The reflective surface may also comprise a diffractive grating, thereby enabling wavelength selective switching. In addition, the reflective surface may comprise a generally concave surface that converts a diverging input light beam into a generally collimated light beam, thereby facilitating more accurate selection and switching by the DMD array.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: April 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Elisabeth Marley Koontz, Donald A. Powell
  • Patent number: 7198411
    Abstract: A method is provided to precisely mount an optical device and an optical fiber without manual alignment. A tapered through-hole is provided in a substrate to house the optical device whose optical transmission point substantially coincides with a geometrical center. The optical transmitter having a larger diameter than a diameter of the optical device is further inserted in the tapered through-hole housing the optical device.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: April 3, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Eiichi Fujii, Tomoko Koyama
  • Patent number: 7200289
    Abstract: An optical waveguide monitor equipped with an output light monitor having a decreased restriction in the dimensions and form thereof, a high reliability and a low production cost includes an optical waveguide element (having a plurality of surface waveguide portions, a connecting portion for converging and connecting the surface waveguide portions and an output light-outputting waveguide portion connected to the connecting portion each formed on a dielectric substrate plate; an output light optical fiber connected to an output end of the output light-outputting waveguide portion, a reinforcing capillary for reinforcing a connection between the optical waveguide element and the output light optical fiber and a monitoring light receiving means, wherein the reinforcing capillary has a hole or groove for containing and supporting the output light optical fiber therein, a connecting face thereof bonded to an output end face of the substrate, and a terminal surface opposite to the connecting face, to thereby enable
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: April 3, 2007
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Manabu Yamada, Norikazu Miyazaki, Tokutaka Hara
  • Patent number: 7200295
    Abstract: The present invention provides a self-contained optical hybrid IC (OHIC) package for optical side-coupling to an optical waveguide of a printed wiring board (PWB). The OHIC package comprises an integrated circuit (IC) package. It also comprises a self-contained optical subassembly (OSA) having an optical coupling facet and being adapted to be bonded to the integrated circuit (IC) package, wherein the OSA comprises an optoelectronic device and an optical channel, the optoelectronic device being optically coupled to the optical channel, the optical channel relaying light between the optoelectronic device and the optical coupling facet, wherein the OSA is mechanically and electrically bonded to the IC package to thereby provide an electrical coupling between the optoelectronic device and the IC package and enable the optical side-coupling to the optical waveguide via the optical coupling facet. The invention also provides a method for creating the OHIC package.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: April 3, 2007
    Assignee: Reflex Photonics, Inc.
    Inventors: David R. Rolston, Tomasz Maj, Richard Mainardi, Shao-Wei Fu, Gary Moskovitz
  • Patent number: 7195402
    Abstract: An optical device comprises a PD array and a submount. Anode electrodes and cathode electrodes are disposed as a gold electrode pattern on a surface of the PD array facing the submount and a common cathode electrode and anode electrodes associated with respective channels are disposed as a gold electrode pattern on a mounting surface of the submount. The gold electrode pattern on the PD array and the gold electrode pattern on the submount are electrically connected to each other by a conductive layer. A gap between the PD array and the mounting surface of the submount includes a first gap corresponding to active layers and a second gap around the first gap, the first and second gaps comprising air.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: March 27, 2007
    Assignee: NGK Insulators, Ltd.
    Inventors: Masashi Fukuyama, Yasunori Iwasaki, Akiyoshi Ide
  • Patent number: 7192201
    Abstract: The present invention provides an optical transmitting module or optical transmitting sub-assembly in which an inductor for de-coupling the bias circuit of the semiconductor laser diode is built. The laser diode is mounted on the side surface of the block provided on the stem, while the inductor is installed on the lead, which is secured by the stem, such that one electrode of the inductor is in contact to the lead and the other electrode of the inductor is connected to an electrode of the laser diode. The electrode of the laser diode is also connected to the other lead. Thus, the electrode of the laser diode is connected to two leads, one of which is through the inductor.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: March 20, 2007
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiyoshi Kato, Hisao Go, Eiji Tsumura, Akihiro Moto, Toshiaki Kihara
  • Patent number: 7189011
    Abstract: An optoelectronic assembly (300) includes a laser (102) for emitting light along a main optical path. Beam splitters (110, 114) split a proportion of light from the main optical path and the split light is guided by optical light guides (310) to a photodiode array (302). The light guides (310) are mouldable and substantially rigid and can be co fabricated as a single assembly including fiducials to facilitate positioning on a substrate (124) of the assembly (300). By having the array (302) adjacent the periphery of the substrate (124), wirebonds (308) need only be provided directly from the array (302) to a feed-through (130), and electrical tracks on the substrate and ceramic blocks for mounting the photodiodes are eliminated, as is individual placement of the ceramic blocks on the substrate.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: March 13, 2007
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Andrew Harker
  • Patent number: 7190863
    Abstract: A solid light pipe arrangement with reduced Fresnel-reflection losses includes a light pipe with a solid core comprising a polymer. An optically clear substrate has first and second sides with an anti-reflective coating on at least one side. The substrate is adhered to an end-face of the core of the light pipe by adhesive material so as to create an optically clear interface between the substrate and the end-face that passes more than about 96 percent of transmitted light. A preferred method of applying an anti-reflective coating to an end-face of a core of a solid, polymeric light pipe comprises diverting uncrosslinked polymer used for forming a light pipe core, and using the diverted polymer as adhesive material between a substrate with at least one antireflective coating and the end-face of a light pipe having the same polymeric components, in the same proportions, as the diverted polymer.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: March 13, 2007
    Assignee: Fiberstars, Inc.
    Inventors: Gregory P. Frankiewicz, Roger F. Buelow, II, Chris H. Jenson, John M. Davenport, Dave Bina
  • Patent number: 7184630
    Abstract: The present invention relates to an optical coupling module for optically coupling an optical fiber with an optical waveguide, and a method of fabricating the optical coupling module. In an optical coupling module for optically coupling an optical network with a planar lightwave circuit (PLC), an etched groove for disposition of the optical fiber and an etched groove for mounting of the optical waveguide are exposed using a mask having mask patterns that are aligned with each other, and then anisotropically etched. By doing so, the two grooves can be precisely aligned with each other at one time, compared with a conventional method in which an exposure process is carried out two or more times. Accordingly, an inexpensive structure having high optical coupling efficiency upon manual alignment can be obtained.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: February 27, 2007
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Young Se Kwon, Bun-Joong Kim
  • Patent number: 7183581
    Abstract: An optical transmission module that can be produced more easily and uses a shorter wiring pattern connecting the driving device and the light-emitting device than the conventional light-emitting apparatus, with the driving device and the light-emitting device arranged close to each other. The light-emitting device and the light-receiving device for monitoring the backward light emitted from the light-emitting device are arranged on a main surface of the substrate. The driving device is disposed on a bottom of a concave formed between the light-emitting device and the light-receiving device so that the driving device is lower than a straight line connecting a backward light emitting point of the light-emitting device and a backward light receiving point of the light-receiving device.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: February 27, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shuichi Nagai, Hiroyuki Sakai, Kazuhiro Yahata, Seiichiro Tamai
  • Patent number: 7177519
    Abstract: A functional multilayer film and a method for manufacturing the same is provided in which the intervals of fine metallic bodies in the thickness direction and the arrangement thereof in the surface direction are regular, and the fine metallic bodies arranged on each layer are aligned in the thickness direction. A functional multilayer film is obtained by fixing a plurality of fine metallic bodies to a matrix made of a dielectric substance. The matrix is obtained by laminating metal-arranged thin films, which each contain a dielectric thin film having a predetermined thickness and the fine metallic bodies arranged on the dielectric thin film. A plurality of recesses is regularly formed on the surface of the dielectric thin film, and the fine metallic bodies are arranged in the lower parts of the recesses.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: February 13, 2007
    Assignees: Alps Electric Co., Ltd.
    Inventors: Yoshihiro Someno, Munemitsu Abe, Masayoshi Esashi
  • Patent number: 7177504
    Abstract: An apparatus comprising a substrate having a trench therein, the trench extending to an edge of the substrate, a waveguide array positioned in the trench, the waveguide array extending to the edge of the substrate, and a ferrule attached at or near the edge of the substrate and spanning a width of the waveguide array, the ferrule being directly in contact with a surface of the waveguide array. A process comprising positioning a waveguide in a trench on a substrate, the waveguide extending to an edge of the substrate, and attaching a ferrule at or near the edge of the substrate, the ferrule including a recess having a bottom, wherein the bottom is in direct contact with a surface of the waveguide.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: February 13, 2007
    Assignee: Intel Corporation
    Inventors: Anna M. George, legal representative, Daoqiang Lu, Henning Braunisch, Steven Towle, deceased